Reinforcement Learning

Prof. Gheith Abandah

Reference: Hands-On Machine Learning with Scikit-Learn and
TensorFlow by Aurélien Géron (O’Reilly), 2017, 978-1-491-96229-9.

Introduction

 YouTube Video: An introduction to Reinforcement
Learning from Arxiv Insights

https://youtu.be/JgvyzlkgxFO

https://youtu.be/JgvyzIkgxF0
https://youtu.be/JgvyzIkgxF0

Outline

Introduction

Policy Search

OpenAl Gym

The Credit Assignment Problem
Deep Q-Learning Network Policy

Summary

N o U A W NhPE

Exercises

1. Introduction — History

e RL started in 1950s

* 1992: IBM’s TD-Gammon, a
Backgammon playing program.

e 2013: DeepMind demonstrated a
system that learns to play Atari
games from scratch.

e Use deep learning with raw pixels as
inputs and without any prior
knowledge of the rules of the games.

* 2014: Google bought DeepMind for
S500M.

* 2016: AlphaGo beats Lee Sedol.

1. Introduction — Definition

* In Reinforcement Learning, a software agent makes
observations and takes actions within an
environment, and in return it receives rewards.

* |ts objective is to learn to act in a way that will
maximize its expected long-term rewards.

* In short, the agent acts in the environment and
learns by trial and error to maximize its p/easure
and minimize its pain.

1. Introduction — Examples

Figure 16-1. Reinforcement Learning examples: (a) walking robot, (b) Ms. Pac-Man, (c)
Go player, (d) thermostat, (e) automatic trader’

2. Policy Search

* The algorithm used by the software agent to
determine its actions is called its policy.

* The policy can be deterministic or stochastic.

* Policy search techniques: Brute force, Genetic
algorithm, Policy Gradient (PG), Temporal
Difference (TD) Learning, Q-Learning.

Agent Environment

- A

0

Rewards +
Observations ,
9 ':, 7

Actions

Outline

OpenAl Gym

The Credit Assignment Problem
Deep Q-Learning Network Policy
Summary

N oUW

Exercises

3. OpenAl Gym

* OpenAl Gym is a toolkit that provides simulated
environments (Atari games, board games, 2D and
3D physical simulations, ...).

* OpenAl is a nonprofit Al research company funded
in part by Elon Musk. Recently got $1 billion
investment from Microsoft.

S pip3 install --upgrade gym

Cart position, cart speed, pole angle,
>>> import pole velocity

>>> env = gym.make("CartPole-v0")

[2016-10-14 16:03:23,199] Making new env

>>> obs = env.reset()

>>> obs

array([-0.03799846, -0.03288115, 0.02337094°, 0.00720711])

3. OpenAl Gym

>>> env.render()
Velocity

Position
e render()can also return the rendered image as a
NumPy array.
>>> img = env.render(mode="rgb _array")

>>> img.shape # height, width, channels (3=RGB)
(400, 600, 3)

10

3. OpenAl Gym — Balancing the
pole

The possible actions are integers 0 and 1, which
>>> env.action _space / represent accelerating left (0) or right (1).

Discrete(2)

>>> action = 1 # accelerate right

>>> obs, reward, done, info = env.step(action)

>>> obs

array([-0.03865608, 0.16189797, 0.02351508, -0.27801135])
>>> reward

1.0

>>> done

False

>>> info

{}

11

3. OpenAl Gym — Balancing the pole

def basic_policy(obs):
angle = obs[2]
return 0 if angle < 0 else 1 | Accelerates left when the pole is leaning left and

accelerates right when the pole is leaning right.

totals = []
for episode in range(500):
episode rewards = 0
obs = env.reset()
for step in range(1000): # 1000 steps max, we don't want to run fore
action = basic_policy(obs)
obs, reward, done, info = env.step(action)
episode_rewards += reward
if done:
break
totals.append(episode rewards)

>>> import numpy as np
>>> np.mean(totals), np.std(totals), np.min(totals), np.max(totals)
(42.125999999999998, 9.1237121830974033, 24.0, 68.0)

Outline

The Credit Assignment Problem
Deep Q-Learning Network Policy
Summary

N o ok

Exercises

4. The Credit Assignment Problem

* Rewards are typically sparse and delayed.

* Credit assignment problem: when the agent gets a
reward, it is hard for it to know which actions
should get credited (or blamed) for it.

e Evaluate an action based on the sum of all the
rewards that come after it, usually applying a
discount rate y at each step.

I

Reo M
";/3\“: e B B> B>

Actions: Right Right Right
Rewards: +10 0 -50

+ l + l +
Sum discounted -22 -40 -50

rewards: e
+80% +80% <---____ Discount
ratio

5. Deep Q-Learning Network Policy

* Reference: Keon Kim, Deep Q-Learning with Keras and
Gym, https://keon.io/deep-qg-learning/

* Deep reinforcement learning (deep Q-learning)
example to play a CartPole game using Keras and Gym.

* Google’s DeepMind published Playing Atari with Deep
Reinforcement Learning where they introduced the
algorithm Deep Q Network (DQN) in 2013.

* In DQN, the function Q Function is used to approximate
the reward based on a state. Q(s,a) calculates the
expected future value from state sand action a.

* A neural network is used to approximate the reward
based on the state.

15

https://keon.io/deep-q-learning/
https://keon.io/deep-q-learning/
https://keon.io/deep-q-learning/
https://keon.io/deep-q-learning/
https://keon.io/deep-q-learning/
https://keon.io/deep-q-learning/
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602

5. Deep Q-Learning Network Policy

e Carry out an action g, and observe the reward r and resulting
new state s”.

* Calculate the maximum target Q and then discount it so that the
future reward is worth less than immediate reward by 7.

* Add the current reward to the discounted future reward to get
the target value.

e Subtracting our current prediction from the target gives the loss.

e Squaring this value allows us to punish the large loss value more
and treat the negative values same as the positive values.

Reward Decay Rate

/ 2
loss = (r + vy max O(s,d) — Q(s, a)>

Target Prediction

5. DQN — Imports and Definitions

import random

import gym

import numpy as np

from collections import deque

from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import Adam

EPISODES = 5000

17

5. DQN — Agent Class (1/4)

class DQNAgent:
def _1init__(self, state_size, action_size):
self.state_size = state_size
self.action_size
self.memory = deque(max1en=2000)

action_size

self.gamma = 0.95 # discount rate
self.epsilon = 1.0 # exploration rate
self.epsilon_min = 0.01 # min exploration rate
self.epsilon_decay = 0.995

self.learning_rate = 0.001

self.model = self._build_model ()

5. DQN — Agent Class (2/4)

def _build_model(self):

model = Sequential()

model.add(Dense(24, input_dim=self.state_size,
activation="relu'))

model.add(Dense(24, activation='relu'))

model.add(Dense(self.action_size, «<— |
activation='linear'))

model.compile(loss="mse’,
optimizer=Adam(Ir=self.learning_rate))

return model

19

5. DQN — Agent Class (3/4)

def

def

remember(self, state, action, reward,
next_state, done):

Queue of previous experiences to re-train
the model

self.memory.append((state, action, reward,
next_state, done))

act(self, state):
Returns an action randomly or from the model
if np.random.rand() <= self.epsilon:

return random.randrange(self.action_size)
act_values = self.model.predict(state)
return np.argmax(act_values[0])

20

5. DQN — Agent Class (4/4)

def replay(self, batch_size):
minibatch = random.sample(self.memory, batch_size)
for state, action, reward, next_state, done 1in

minibatch:
Replay t t = ard 5(s d 2
trains the neural .ar'ge = rew loss = (F +ymaxQ(s,a) — Qs a)>
net with if not done:
experiences in target = (reward + self.gamma * np.max(
the memory self.model.predict(next_state)[0]))

target_f = self.model.predict(state) :
_ Learn to predict
target_f[0] [action] = target A(’//— the reward

self.model.fit(state, target_f, epochs=1,
verbose=0)

if self.epsilon > self.epsilon_min:
self.epsilon *= self.epsilon_decay 21

5. DQON — Setup

if _name__ == "_main__":

env = gym.make('CartpPole-vl1l'")

state_size = env.observation_space.shape[0] # 4
env.action_space.n # 2
agent = DQNAgent(state_size, action_size)

action_size

done = False
32

batch_size

22

5. DQN - Training

for e in range(EPISODES):
state = env.reset()
state = np.reshape(state, [1l, state_size])
for time in range(5000):
action = agent.act(state)
next_state, reward, done, _ = env.step(action)
reward = reward if not done else -10

next_state =_np.reshape(next_state, [1,
state_size])

aggnt.gemember(state, action, reward, next_state,
one

state = next_state
if done:
print("episode: {}/{}, score: {}"
.format(e, EPISODES, time))
break
it Ten(agent.memory) > batch_size:
agent.replay(batch_size) 23

5. DQN — Results

T
L

i
L

i

Lad g = fud
W o e =y

LR LA

"
e

LA

i

e

C &y 5 o
- I-..I I-..I |._.| 5

o
L

T

i

LOO6

T

LR LA

T

P

|
3
epi 4/
5
6
7

5 [3. [3. 3]

Py
L

T

im
r.
[¥y]
[}
=] Chn LN B

C &y 5 o
- I-..I I-..I |._.|

T
oty
-]

[O O - S 6 [

[&]
el
(il £ il)
L
= s RS =] B

[ATATA
S EVENED

"
L

"

or

T

5
-
E.

iT

5000

(]

(]
g’
= WD

|'.E|
s

C &y 5 o
- |._.| |._.| |._.|

T

P

C i) &
e

T

e

WO WD

A Tartal
) |._.| |._.| |._.|

5000

(¥}

P

o O LT i I 5 |
i \El

"
e

T
! hE'

P

g AT AT AT
- I-..I I-..I |._.|

5000

T

e

3 Pd WD =) B O L =

oo
L B WD

WO WD

T

P

W

e N R o S R T A T el

|'.E|

C &
-

Lad

a6

T

P

=] Ch LN Ja L fud =

|£|

5000

OO

SIS SN SN N S N S N

T
m T T
2
i '|E|
e

T

Summary

Introduction

Policy Search

OpenAl Gym

The Credit Assignment Problem
Deep Q-Learning Network Policy

Summary

N o U A W NhPE

Exercises

Exercises

From Chapter 16, solve exercises:

