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Introduction

* YouTube Video: Convolutional Neural Networks
(CNNs) explained from Deeplizard

https://yvoutu.be/YRhxdVk sls



https://youtu.be/YRhxdVk_sIs
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1. Introduction

e Convolutional neural networks (CNNs) emerged
from the study of the brain’s visual cortex.

* Many neurons in the visual cortex have a small
local receptive field.




2. Convolutional Layer

* Neurons in one layer are
not connected to every
single pixel/neuron in the
previous layer, but only to
pixels/neurons in their
receptive fields.

* This architecture allows the
network to concentrate on
low-level features in one
layer, then assemble them
into higher-level features in
the next layer.

. Each layer is represented in
D.
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2. Convolutional Layer

* f, and f, are the height
and width of the
receptive field.

* Zero padding: In order
for a layer to have the
same height and width
as the previous layer, it
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is common to add zeros

around the inputs.

e Keras default is no
padding




2. Convolutional Layer

* It is also possible to connect
a large input layer to a
smaller layer by spacing out
the receptive fields.

* The distance between two
consecutive receptive fields
is called the stride. s, =

A neuron located in row J,
columnjis connected to
the neurons in the previous
layer located in: Sw =

* Rows:ixs, toixs, +f —1
* Cols: jxs, tojxs, +f,—1




2.1. Filters

* A neuron’s weights can
be representEd aS a Feature i Feéttjfe

Map 2
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the receptive field, | “T“m;',

called filters.
Vertical filter ll = Horizontal filter
* When all neurons in a .
H R
layer use the same line e TR
b —

filters, we get the
feature maps on the

top.



2.2. Stacking Feature Maps

* In reality, each layer is 3D

Convolutional

composed of several - . layer 2
feature maps of equal sizes. &2/ e
A rEL
e Within one feature map, all ? Ma;p2 f
neurons share the same
parameters, but different feh Convolutional
feature maps may have A Vel iimi aysr-d
different parameters. ARy 2
. =
e Once the CNN has learned £
to recognize a pattern in :
one location, it can . nputlaver
recognize it in any other rhey
location. il

Blue



2.3. Mathematical Summary

Equation 13-1. Computing the output of a neuron in a convolutional layer
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* Z; ; « is the output of the neuron located in row j,
column j in feature map k

* f..is the number of feature maps in the previous
layer
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3. Pooling Layer

e Its goal is to subsample (i.e., shrink) the input
image in order to reduce the computational load,
the memory usage, and the number of parameters.

* |t aggregates the inputs using max or mean.
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4. CNN Architectures

e Stack few convolutional layers (each one generally
followed by a ReLU layer), then a pooling layer, then
another few convolutional layers, then another
pooling layer, and so on. The image gets smaller
and smaller, but it also gets deeper and deeper. At
the end, a regular NN is added.
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5. Keras Example - MNIST

from keras import models

from keras import layers

32 feature maps

mode] models.Sequential ()

Filter size

model.add(layers.Conv2D(32, (3, 3), activation='relu',

input_shape=(28, 28, 1)))

2x2 window and stride 2

model.add(layers.MaxPooling2D((2, 2)))

model.add(layers.Conv2D(64, (3, 3), activation="relu'))

model.add(layers.MaxPooling2D((2, 2)))

model.add(layers.Conv2D(64, (3, 3), activation="'relu'))
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5. Keras Example

# add a classifier

model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))
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5. Keras Example

>>> Model.summary()

Layer (type) Output Shape Param #
com2d_1 (Conv2D)  (Nome, 26, 26, 32) 320
max_pooling2d_1 (MaxPooling2 (None, 13, 13, 32) 0

conv2d_2 (Conv2D) (None, 11, 11, 64) 18496
max_pooling2d_2 (MaxPooling2 (None, 5, 5, 64) 0

conv2d_3 (Conv2D) (None, 3, 3, 64) 36928
flatten_1l (Flatten) (None, 576) 0

dense_1 (Dense) (None, 64) 36928
dense_2 (Dense) (None, 10) 650

Total params: 93,322
Trainable params: 93,322
Non-trainable params: O



5. Keras Example

Figure 5.5 Valid locations of 3 x 3 patches in a 5 x 5 input feature map
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5. Example — Prepare the data

from keras.datasets import mnist

(train_images, train_labels), (test_images,
test_labels) = mnist.load_data()

#(60000, 28, 28), (6000), #(10000, 28, 28), (1000)
train_images = train_images.reshape((60000, 28 * 28))
train_images = train_images.astype('float32') / 255
test_images = test_images.reshape((10000, 28 * 28))
test_images = test_images.astype('float32') / 255

from keras.utils import to_categorical #one hot
train_labels = to_categorical(train_labels)
test_labels = to_categorical(test_labels)
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5. Keras Example

# Compile, train and evaluate

model .compile(optimizer="rmsprop’,
loss="categorical_crossentropy’,
metrics=["accuracy'])

model.fit(train_images, train_labels, epochs=5,
batch_size=6£5

Epoch 5/5
60000/60000 [===] - 7s - loss: 0.0187 - acc: 0.9943

test_loss, test_acc = model.evaluate(test_images,

test_1abe1s)‘k\\\}

0.9913
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Exercises

From Chapter 13, solve exercises:
¢ 2
¢ 7



