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Introduction

• YouTube Video: Convolutional Neural Networks 
(CNNs) explained from Deeplizard

https://youtu.be/YRhxdVk_sIs
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1. Introduction

• Convolutional neural networks (CNNs) emerged 
from the study of the brain’s visual cortex.

• Many neurons in the visual cortex have a small 
local receptive field.
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2. Convolutional Layer

• Neurons in one layer are 
not connected to every 
single pixel/neuron in the 
previous layer, but only to 
pixels/neurons in their 
receptive fields.

• This architecture allows the 
network to concentrate on 
low-level features in one 
layer, then assemble them 
into higher-level features in 
the next layer.

• Each layer is represented in 
2D.
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2. Convolutional Layer

• fh and fw are the height 
and width of the 
receptive field.

• Zero padding: In order 
for a layer to have the 
same height and width 
as the previous layer, it 
is common to add zeros 
around the inputs.

• Keras default is no 
padding
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2. Convolutional Layer

• It is also possible to connect 
a large input layer to a 
smaller layer by spacing out 
the receptive fields.

• The distance between two 
consecutive receptive fields 
is called the stride.

• A neuron located in row i, 
column j is connected to 
the neurons in the previous 
layer located in:
• Rows: i × sh to i × sh + fh – 1
• Cols:   j × sw to j × sw + fw – 1
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2.1. Filters

• A neuron’s weights can 
be represented as a 
small image the size of 
the receptive field, 
called filters.

• When all neurons in a 
layer use the same line 
filters, we get the 
feature maps on the 
top.
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2.2. Stacking Feature Maps

• In reality, each layer is 3D
composed of several 
feature maps of equal sizes.

• Within one feature map, all 
neurons share the same 
parameters, but different 
feature maps may have 
different parameters.

• Once the CNN has learned 
to recognize a pattern in 
one location, it can 
recognize it in any other 
location.
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2.3. Mathematical Summary

• zi, j, k is the output of the neuron located in row i, 
column j in feature map k 

• fn′ is the number of feature maps in the previous 
layer
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3. Pooling Layer

• Its goal is to subsample (i.e., shrink) the input 
image in order to reduce the computational load, 
the memory usage, and the number of parameters.

• It aggregates the inputs using max or mean.
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4. CNN Architectures

• Stack few convolutional layers (each one generally 
followed by a ReLU layer), then a pooling layer, then 
another few convolutional layers, then another 
pooling layer, and so on. The image gets smaller 
and smaller, but it also gets deeper and deeper. At 
the end, a regular NN is added.
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5. Keras Example - MNIST

from keras import models

from keras import layers

model = models.Sequential()

model.add(layers.Conv2D(32, (3, 3), activation='relu', 
input_shape=(28, 28, 1)))

model.add(layers.MaxPooling2D((2, 2)))

model.add(layers.Conv2D(64, (3, 3), activation='relu'))

model.add(layers.MaxPooling2D((2, 2)))

model.add(layers.Conv2D(64, (3, 3), activation='relu'))
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Filter size

2×2 window and stride 2



5. Keras Example

# add a classifier

model.add(layers.Flatten())

model.add(layers.Dense(64, activation='relu'))

model.add(layers.Dense(10, activation='softmax'))
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5. Keras Example
>>> Model.summary()
Layer (type)                 Output Shape              Param #   
=================================================================
conv2d_1 (Conv2D)            (None, 26, 26, 32)        320       
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 13, 13, 32)        0         
_________________________________________________________________
conv2d_2 (Conv2D)            (None, 11, 11, 64)        18496     
_________________________________________________________________
max_pooling2d_2 (MaxPooling2 (None, 5, 5, 64)          0         
_________________________________________________________________
conv2d_3 (Conv2D)            (None, 3, 3, 64)          36928     
_________________________________________________________________
flatten_1 (Flatten)          (None, 576)               0         
_________________________________________________________________
dense_1 (Dense)              (None, 64)                36928     
_________________________________________________________________
dense_2 (Dense)              (None, 10)                650       
=================================================================
Total params: 93,322
Trainable params: 93,322
Non-trainable params: 0
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5. Keras Example
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5. Example – Prepare the data

from keras.datasets import mnist

(train_images, train_labels), (test_images, 
test_labels) = mnist.load_data()

#(60000, 28, 28), (6000), #(10000, 28, 28), (1000)

train_images = train_images.reshape((60000, 28 * 28))

train_images = train_images.astype('float32') / 255

test_images = test_images.reshape((10000, 28 * 28))

test_images = test_images.astype('float32') / 255

from keras.utils import to_categorical   #one hot

train_labels = to_categorical(train_labels)

test_labels = to_categorical(test_labels)
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5. Keras Example

# Compile, train and evaluate

model.compile(optimizer='rmsprop',

loss='categorical_crossentropy',

metrics=['accuracy'])

model.fit(train_images, train_labels, epochs=5, 
batch_size=64)

…

Epoch 5/5

60000/60000 [===] - 7s - loss: 0.0187 - acc: 0.9943 

test_loss, test_acc = model.evaluate(test_images, 
test_labels)
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Exercises

From Chapter 13, solve exercises:
• 2
• 7
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