
Convolutional Neural
Networks (Covnets)

Prof. Gheith Abandah

References:

• Hands-On Machine Learning with Scikit-Learn and TensorFlow by
Aurélien Géron (O’Reilly), 2017, 978-1-491-96229-9.

• François Chollet, Deep Learning with Python, Manning Pub. 2018

1

Introduction

• YouTube Video: Convolutional Neural Networks
(CNNs) explained from Deeplizard

https://youtu.be/YRhxdVk_sIs

2

https://youtu.be/YRhxdVk_sIs

Outline

1. Introduction

2. Convolutional layer
1. Filters

2. Stacking feature maps

3. Mathematical summary

3. Pooling layer

4. CNN architectures

5. Keras example

6. Exercises

3

1. Introduction

• Convolutional neural networks (CNNs) emerged
from the study of the brain’s visual cortex.

• Many neurons in the visual cortex have a small
local receptive field.

4

2. Convolutional Layer

• Neurons in one layer are
not connected to every
single pixel/neuron in the
previous layer, but only to
pixels/neurons in their
receptive fields.

• This architecture allows the
network to concentrate on
low-level features in one
layer, then assemble them
into higher-level features in
the next layer.

• Each layer is represented in
2D.

5

2. Convolutional Layer

• fh and fw are the height
and width of the
receptive field.

• Zero padding: In order
for a layer to have the
same height and width
as the previous layer, it
is common to add zeros
around the inputs.

• Keras default is no
padding

6

2. Convolutional Layer

• It is also possible to connect
a large input layer to a
smaller layer by spacing out
the receptive fields.

• The distance between two
consecutive receptive fields
is called the stride.

• A neuron located in row i,
column j is connected to
the neurons in the previous
layer located in:
• Rows: i × sh to i × sh + fh – 1
• Cols: j × sw to j × sw + fw – 1

7

2.1. Filters

• A neuron’s weights can
be represented as a
small image the size of
the receptive field,
called filters.

• When all neurons in a
layer use the same line
filters, we get the
feature maps on the
top.

8

2.2. Stacking Feature Maps

• In reality, each layer is 3D
composed of several
feature maps of equal sizes.

• Within one feature map, all
neurons share the same
parameters, but different
feature maps may have
different parameters.

• Once the CNN has learned
to recognize a pattern in
one location, it can
recognize it in any other
location.

9

2.3. Mathematical Summary

• zi, j, k is the output of the neuron located in row i,
column j in feature map k

• fn′ is the number of feature maps in the previous
layer

10

Outline

1. Introduction

2. Convolutional layer
1. Filters

2. Stacking feature maps

3. Mathematical summary

3. Pooling layer

4. CNN architectures

5. Keras example

6. Exercises

11

3. Pooling Layer

• Its goal is to subsample (i.e., shrink) the input
image in order to reduce the computational load,
the memory usage, and the number of parameters.

• It aggregates the inputs using max or mean.

12

Outline

1. Introduction

2. Convolutional layer
1. Filters

2. Stacking feature maps

3. Mathematical summary

3. Pooling layer

4. CNN architectures

5. Keras example

6. Exercises

13

4. CNN Architectures

• Stack few convolutional layers (each one generally
followed by a ReLU layer), then a pooling layer, then
another few convolutional layers, then another
pooling layer, and so on. The image gets smaller
and smaller, but it also gets deeper and deeper. At
the end, a regular NN is added.

14

5. Keras Example - MNIST

from keras import models

from keras import layers

model = models.Sequential()

model.add(layers.Conv2D(32, (3, 3), activation='relu',
input_shape=(28, 28, 1)))

model.add(layers.MaxPooling2D((2, 2)))

model.add(layers.Conv2D(64, (3, 3), activation='relu'))

model.add(layers.MaxPooling2D((2, 2)))

model.add(layers.Conv2D(64, (3, 3), activation='relu'))

15

32 feature maps
Filter size

2×2 window and stride 2

5. Keras Example

add a classifier

model.add(layers.Flatten())

model.add(layers.Dense(64, activation='relu'))

model.add(layers.Dense(10, activation='softmax'))

16

5. Keras Example
>>> Model.summary()
Layer (type) Output Shape Param #
===
conv2d_1 (Conv2D) (None, 26, 26, 32) 320

max_pooling2d_1 (MaxPooling2 (None, 13, 13, 32) 0

conv2d_2 (Conv2D) (None, 11, 11, 64) 18496

max_pooling2d_2 (MaxPooling2 (None, 5, 5, 64) 0

conv2d_3 (Conv2D) (None, 3, 3, 64) 36928

flatten_1 (Flatten) (None, 576) 0

dense_1 (Dense) (None, 64) 36928

dense_2 (Dense) (None, 10) 650
===
Total params: 93,322
Trainable params: 93,322
Non-trainable params: 0

17

5. Keras Example

18

5. Example – Prepare the data

from keras.datasets import mnist

(train_images, train_labels), (test_images,
test_labels) = mnist.load_data()

#(60000, 28, 28), (6000), #(10000, 28, 28), (1000)

train_images = train_images.reshape((60000, 28 * 28))

train_images = train_images.astype('float32') / 255

test_images = test_images.reshape((10000, 28 * 28))

test_images = test_images.astype('float32') / 255

from keras.utils import to_categorical #one hot

train_labels = to_categorical(train_labels)

test_labels = to_categorical(test_labels)

19

5. Keras Example

Compile, train and evaluate

model.compile(optimizer='rmsprop',

loss='categorical_crossentropy',

metrics=['accuracy'])

model.fit(train_images, train_labels, epochs=5,
batch_size=64)

…

Epoch 5/5

60000/60000 [===] - 7s - loss: 0.0187 - acc: 0.9943

test_loss, test_acc = model.evaluate(test_images,
test_labels)

20
0.9913

Summary

1. Introduction

2. Convolutional layer
1. Filters

2. Stacking feature maps

3. Mathematical summary

3. Pooling layer

4. CNN architectures

5. Keras example

6. Exercises

21

Exercises

From Chapter 13, solve exercises:
• 2
• 7

22

