The University of Jordan

School of Engineering

Computer Engineering Department

Summer Term 2018/2019

Course Special Topics in Computer Engineering – 0907779 (3 Cr. – Elective Course)

Machine Learning

Catalog Description The course helps the student gain an advanced level understanding of Machine

Learning (ML) applications and algorithms. It also covers neural networks and deep learning. The course concentrates on the practical skills to use ML to solve real-life problems and includes a term project on designing and implementing a ML solution

to solve a problem of the student choice.

Prerequisites by Course

None

Prerequisites by Topic

Students are assumed to have good background in mathematics, particularly, calculus, linear algebra, statistics, and probability. Additionally, the students should have good programming skills, preferably, using Python.

Textbooks

- 1. Aurélien Géron, Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts: Tools, and Techniques to Build Intelligent Systems, O'Reilly Media, 2017.
- 2. François Chollet, Deep Learning with Python, Manning Pub. 2018.

References

- 1. Prateek Joshi, Artificial Intelligence with Python, Packt Publishing, 2017.
- 2. Theodoridis S, Koutroumbas K, Pattern Recognition, 3rd ed. Academic Press, 2006.
- 3. Richard O. Duda, Peter E. Hart and David G. Stork, Pattern Classification, 2nd ed. Wiley Interscience, 2001.

Course Website

http://www.abandah.com/gheith/?page id=2149

Facebook group

https://www.facebook.com/groups/315669882258644/

Schedule & Duration

15 or 10 weeks; 45 lectures, 60 minutes each; or 18 lectures, 150 minutes each (including exams)

Student Material

Textbook, class handouts, some instructor keynotes, selected YouTube videos, and access to a personal computer and the internet.

College Facilities

Classroom with whiteboard and projection display facilities with speakers, library, and computer laboratory.

Course Objectives

The objectives of this course are:

- 1. Introduce students to the techniques used in ML including data preparation, training models, classification, neural networks, and deep learning.
- 2. Introduce students to the practical techniques used in developing ML systems including sample collection, training, and evaluation.
- 3. Introduce students to the programming techniques and libraries used in ML (Python, Scikit-Learn, Keras, and TensorFlow).

Course Outcomes and Relation to ABET

Upon successful completion of this course, a student should be able to:

- 1. Solve an AI problem by developing an appropriate ML system [e].
- 2. Communicate the development of a ML system through a detailed technical Page 1 of 3

Program Outcomes

report and a short presentation [g].

3. Use Python and its specialized libraries to develop programs for solving ML problems [k].

Course Topics

- Introduction
- Python programming language
- Data preparation
- Classification
- Neural networks

Midterm Exam

- Deep neural networks
- Convolutional neural networks
- Recurrent neural networks
- Reinforcement learning

Computer Usage

Practical aspects of the course are covered in class and through the term project.

Important Dates

Date	Event
Sun 9 Jun, 2019	Classes Begin
Sun 7 Jul, 2019	Midterm Exam
Tue 9 Jul, 2019	Term project proposal is due
Sun 28 Jul, 2019	Term project report is due and start of project demonstrations
Wed 8 Aug, 2019	Last Lecture
Sun 18 Aug, 2019	Final Exam

Policies

- Attendance is required. Class attendance will be taken every class and the university's polices will be enforced in this regard.
- · All submitted work must be yours
- Cheating will not be tolerated
- Open-book exams
- Join the Facebook group of this course
- Check department announcements at: https://www.facebook.com/Master-in-Computer-Engineering-and-Networks-in-the-University-of-Jordan-257067841079897 for the program announcements.

Assessments

Exams and term project

Grading policy

Term project report and presentation	30%
Midterm Exam	30%
Final Exam	40%

Instructors

Prof. Gheith Abandah

Email: <u>abandah@ju.edu.jo</u>

Homepage: http://www.abandah.com/gheith **Office Hours**: Sun through Wed: 12:00 – 1:00

Time and Location

Section 1: Sun & Tue: 4:00–6:30, CPE 001

Last Updated: Jun 8, 2019

Program Outcomes (PO)

a	An ability to apply knowledge of mathematics, science, and engineering	
b	An ability to design and conduct experiment as well as to analyze and interpret data.	
С	An ability to design a system, component, or process to meet desired needs, within realistic	
	constraints such as economic, environmental, social, political, ethical, health and safety,	
	manufacturability, and sustainability.	
d	An ability to function on multidisciplinary teams	
e	An ability to identify, formulate, and solve engineering problems	
f	An understanding of professional and ethical responsibility.	
g	An ability to communicate effectively	
h	The broad education necessary to understand the impact of engineering solutions in a global, economic,	
	environmental, and societal context	
i	A recognition of the need for, and an ability to engage in life-long learning	
j	Knowledge of contemporary issues	
k	An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice	