
1 of 5

0907731 Advanced Computer Architecture (Spring 2018)

Final Exam

لاسم: ...ا رقم التسجيل: :التسلسلرقم

===

Instructions: Time 80 min. Open book and notes exam. No electronics. Please answer all problems in the

space provided and limit your answer to the space provided. No questions are allowed. There are eight

problems and each problem is for 5 marks.

===

P1. Assume that we make an enhancement to a computer that improves some mode of execution by a factor

of 10. Enhanced mode is used 50% of the time, measured as a percentage of the execution time when the

enhanced mode is in use. Recall that Amdahl’s law depends on the fraction of the original, unenhanced

execution time that could make use of enhanced mode. Thus, we cannot directly use this 50%

measurement to compute the speedup using Amdahl’s law. What is the speedup we have obtained from

the enhancement?

 For the enhanced run: s = 10

 (1-f) = f/s => 10 – 10f = f => 11f = 10 => f = 10/11

 Speedup = 1 / (1-f + f/s) = 1 / (1/11 + 10/11/10) = 1 / (2/11) = 11/2 = 5.5

P2. Assume that the following code sequence is executed by a dual-issue speculative pipelined processor.

This processor uses reservation stations, common data bus, and reorder buffer. The fetch stage takes one

cycle and the issue stage takes one cycle. The integer latency is 1 cycle and the memory latency is 2

cycles (1 cycle for address calculation and 1 cycle for data memory access). The processor has one

address calculation unit, one memory access unit, and one integer ALU units. Using the multi-cycle

pipeline diagram below, specify the execution of these instructions in this processor pipeline.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 lw R2, 0(R1) F I A M W C

 lw R3, 0(R2) F I A M W C

 add R4, R2, R3 F I E W C

 sw R4, 0(R2) F I A C

2 of 5

P3. For the purpose of this problem, we assume that we have 512-byte cache with 64-byte blocks. We also

assume that the main memory is 2 KB large. We can regard the memory as an array of 64-byte blocks:

M0, M1, …, M31. The following table shows the memory blocks that can reside in different cache blocks

if the cache was fully associative. Show the contents of the table if the cache is organized as direct-

mapped cache.

Fully-associative cache

Cache block Set Way
Memory blocks that can reside in

cache block

0 0 0 M0, M1, …, M31

1 0 1 M0, M1, …, M31

2 0 2 M0, M1, …, M31

3 0 3 M0, M1, …, M31

4 0 4 M0, M1, …, M31

5 0 5 M0, M1, …, M31

6 0 6 M0, M1, …, M31

7 0 7 M0, M1, …, M31

Direct-mapped cache

Cache block Set Way
Memory blocks that can reside in

cache block

0 0 0 M0, M8, M16, M24

1 1 0 M1, M9, M17, M25

2 2 0

3 3 0 …

4 4 0

5 5 0

6 6 0

7 7 0 M7, M15, M23, M31

3 of 5

P4. A traditional VLIW processor accepts long instructions that have the following five fields:

Branch ALU ALU Memory Memory

Show the best schedule for the following 10 operations into such 5-operation instructions. Assume that

the processor has full forwarding paths, resolves the branch instructions in the execute stage, executes

branch and ALU instructions in one cycle, and executes memory instructions in two cycles (address

calculation and memory access). Show your schedule by writing the instruction numbers (I1 through

I10) in the table to the right of the 10 operations.

I1 Loop: lw r1, 0(r2)

I2 lw r3, 1000(r2)

I3 lw r4, -4(r2)

I4 add r1, r1, r3

I5 lw r5, 996(r2)

I6 sw r1, 2000(r2)

I7 add r4, r4, r5

I8 addi r2, r2, -8

I9 sw r4, 2004(r2)

I10 bne r2, zero, Loop

Branch ALU ALU Memory Memory

 I1 I2

 I3 I5

 I4

 I7 I8 I6

I10 I9

P5. Convert the following C-language double-precision code into Vector MIPS. Assume that x and y are

double-precision vectors and their starting addresses are in registers Rx and Ry, respectively.

for (i=0; i<64; i=i+1)

 x[i] = x[i] * y[i] + 2.0;

The solution is:

.data

fp1: .double 2.0

.text

 lv $v1, (Rx) ;load vector x

 lv $v2, (Ry) ;load vector y

 mulv.d $v3,$v1,$v2 ;vector add

 l.d $f0, fp1

 addvs.d $v3, $v3, $f0 ;add vector to scalar

 sv $v3, (Rx) ;store vector x

4 of 5

P6. Given same hardware resources, why does simultaneous multithreading (SMT) processors achieve

higher instruction throughput compared to superscalar processors.

 SMT processors fetch and execute instructions from multiple threads simultaneously. While

superscalar processors, they fetch instructions from a single thread. Therefore, SMT processors

can find more independent instructions to execute concurrently. Thus, they achieve higher

instruction throughput.

P7. For the write-back snoopy cache coherence protocol described in the class, complete the following table

for Processors P1 and P2 connected through a snoopy bus to the shared memory. Assume that Addresses

A1 and A2 map to same cache block. Enter (M, S, or I) in the “State” field, (A1 or A2) in the “Addr”

field, (Read miss, Write miss, or Write back) in the “Action” field, and the processor number in the

“Proc” field.

 P1 P2 Bus Memory

Step State Addr Value State Addr Value Action Proc Addr Value Addr Value

P
2
 w

ri
te

s
7
 t

o

A
1

 E A1 7 Write

miss

P2 A1

P
1
 r

ea
d
s

A
1

S

A1

7

S A1 7 Read

miss

Write

back

P1

P2

A1

A1

7

A1

7

P
2
 w

ri
te

s
9
 t

o

A
2

I A1 E A2 9 Write

miss

P2 A2

P
1
 w

ri
te

s
1
3
 t

o

A
1

E

A1

13

I A2 Write

miss

Write

back

P1

P2

A1

A2

9

A2

9

5 of 5

P8. Assume a hypothetical GPU with the following characteristics:

 Clock rate 2.0 GHz

 Contains 16 SIMD processors, each containing 16 single-precision floating-point units

 Has 400 GB/sec off-chip memory bandwidth

A) Without considering memory bandwidth, what is the peak single-precision floating-point throughput

for this GPU in GFLOPS/s, assuming that all memory latencies can be hidden?

 Peak performance = 16 x 16 x 2.0 = 512 GFLOPS/s

B) Is this throughput sustainable given the memory bandwidth limitation? Assume that each single

precision operation requires two operands and outputs one result.

 Required memory bandwidth = (2+1) x 4 x 512 = 6.1 TB/s

 The required memory bandwidth is much larger the off-chip memory bandwidth. Therefore, this

peak performance is not sustainable.

<Good Luck>

