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0907731 Advanced Computer Architecture (Spring 2018) 

Final Exam 
 

لاسم: ...............................................ا رقم التسجيل: ................... .......... :التسلسلرقم   

=========================================================================== 

Instructions: Time 80 min. Open book and notes exam. No electronics. Please answer all problems in the 

space provided and limit your answer to the space provided. No questions are allowed. There are eight 

problems and each problem is for 5 marks. 

=========================================================================== 

P1. Assume that we make an enhancement to a computer that improves some mode of execution by a factor 

of 10. Enhanced mode is used 50% of the time, measured as a percentage of the execution time when the 

enhanced mode is in use. Recall that Amdahl’s law depends on the fraction of the original, unenhanced 

execution time that could make use of enhanced mode. Thus, we cannot directly use this 50% 

measurement to compute the speedup using Amdahl’s law. What is the speedup we have obtained from 

the enhancement? 

 For the enhanced run: s = 10 

 (1-f) = f/s => 10 – 10f = f => 11f = 10 => f = 10/11 

 

 Speedup = 1 / (1-f + f/s) = 1 / (1/11 + 10/11/10) = 1 / (2/11) = 11/2 = 5.5 

 

 

 

 

 

P2. Assume that the following code sequence is executed by a dual-issue speculative pipelined processor. 

This processor uses reservation stations, common data bus, and reorder buffer. The fetch stage takes one 

cycle and the issue stage takes one cycle. The integer latency is 1 cycle and the memory latency is 2 

cycles (1 cycle for address calculation and 1 cycle for data memory access). The processor has one 

address calculation unit, one memory access unit, and one integer ALU units. Using the multi-cycle 

pipeline diagram below, specify the execution of these instructions in this processor pipeline. 

 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

   lw  R2, 0(R1) F I A M W C          

   lw  R3, 0(R2) F I  A M W C         

   add R4, R2, R3  F I    E W C       

   sw  R4, 0(R2)  F I  A    C       
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P3. For the purpose of this problem, we assume that we have 512-byte cache with 64-byte blocks. We also 

assume that the main memory is 2 KB large. We can regard the memory as an array of 64-byte blocks: 

M0, M1, …, M31. The following table shows the memory blocks that can reside in different cache blocks 

if the cache was fully associative. Show the contents of the table if the cache is organized as direct-

mapped cache. 

 

Fully-associative cache 

Cache block Set Way 
Memory blocks that can reside in 

cache block 

0 0 0 M0, M1, …, M31 

1 0 1 M0, M1, …, M31 

2 0 2 M0, M1, …, M31 

3 0 3 M0, M1, …, M31 

4 0 4 M0, M1, …, M31 

5 0 5 M0, M1, …, M31 

6 0 6 M0, M1, …, M31 

7 0 7 M0, M1, …, M31 

 

 

 

 

Direct-mapped cache 

Cache block Set Way 
Memory blocks that can reside in 

cache block 

0 0 0 M0, M8, M16, M24 

1 1 0 M1, M9, M17, M25 

2 2 0  

3 3 0 … 

4 4 0  

5 5 0  

6 6 0  

7 7 0 M7, M15, M23, M31 
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P4. A traditional VLIW processor accepts long instructions that have the following five fields: 

Branch ALU ALU Memory Memory 

 

Show the best schedule for the following 10 operations into such 5-operation instructions. Assume that 

the processor has full forwarding paths, resolves the branch instructions in the execute stage, executes 

branch and ALU instructions in one cycle, and executes memory instructions in two cycles (address 

calculation and memory access). Show your schedule by writing the instruction numbers (I1 through 

I10) in the table to the right of the 10 operations. 

 

I1  Loop: lw  r1, 0(r2) 

I2   lw  r3, 1000(r2) 

I3   lw  r4, -4(r2) 

I4   add r1, r1, r3 

I5   lw  r5, 996(r2) 

I6   sw r1, 2000(r2) 

I7   add r4, r4, r5 

I8   addi r2, r2, -8 

I9   sw r4, 2004(r2) 

I10  bne r2, zero, Loop 

Branch ALU ALU Memory Memory 

   I1 I2 

   I3 I5 

 I4    

 I7 I8 I6  

I10   I9  

     

     
 

 

 

 

 

P5. Convert the following C-language double-precision code into Vector MIPS. Assume that x and y are 

double-precision vectors and their starting addresses are in registers Rx and Ry, respectively. 

for (i=0; i<64; i=i+1)  

  x[i] = x[i] * y[i] + 2.0; 

 

The solution is: 

 

.data 

fp1:  .double 2.0 

 

.text    

      lv      $v1, (Rx)      ;load vector x 

      lv      $v2, (Ry)      ;load vector y 

      mulv.d  $v3,$v1,$v2    ;vector add 

      l.d     $f0, fp1 

      addvs.d $v3, $v3, $f0  ;add vector to scalar 

      sv      $v3, (Rx)      ;store vector x 
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P6. Given same hardware resources, why does simultaneous multithreading (SMT) processors achieve 

higher instruction throughput compared to superscalar processors. 

 

 SMT processors fetch and execute instructions from multiple threads simultaneously. While 

superscalar processors, they fetch instructions from a single thread. Therefore, SMT processors 

can find more independent instructions to execute concurrently. Thus, they achieve higher 

instruction throughput. 

 

 

 

 

 

 

 

P7. For the write-back snoopy cache coherence protocol described in the class, complete the following table 

for Processors P1 and P2 connected through a snoopy bus to the shared memory. Assume that Addresses 

A1 and A2 map to same cache block. Enter (M, S, or I) in the “State” field, (A1 or A2) in the “Addr” 

field, (Read miss, Write miss, or Write back) in the “Action” field, and the processor number in the 

“Proc” field. 
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P8. Assume a hypothetical GPU with the following characteristics: 

 Clock rate 2.0 GHz 

 Contains 16 SIMD processors, each containing 16 single-precision floating-point units 

 Has 400 GB/sec off-chip memory bandwidth 

A) Without considering memory bandwidth, what is the peak single-precision floating-point throughput 

for this GPU in GFLOPS/s, assuming that all memory latencies can be hidden? 

 

 Peak performance = 16 x 16 x 2.0 = 512 GFLOPS/s 

 

 

 

B) Is this throughput sustainable given the memory bandwidth limitation? Assume that each single 

precision operation requires two operands and outputs one result. 

 

 Required memory bandwidth = (2+1) x 4 x 512 = 6.1 TB/s 

 The required memory bandwidth is much larger the off-chip memory bandwidth. Therefore, this 

peak performance is not sustainable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

<Good Luck> 


