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Introduction

 Moore’s Law enabled:
 Deep memory hierarchy

 Wide SIMD units

 Deep pipelines

 Branch prediction

 Out-of-order execution

 Speculative prefetching

 Multithreading

 Multiprocessing

 Objective:
 Extract performance from 

large applications that is 
oblivious to architecture
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Introduction

 Moore’s Law is slowing

 Dennard scaling ended

 More transistors switching now 
means more power

 Conventional architectures 
suffer from high energy 
overheads for doing arithmetic 
ops.

 To improve efficiency, need 
factor of 100 improvements in 
number of operations per 
instruction

 Requires domain specific 
architectures (DSA)

 For ASICs, NRE cannot be 
amortized over large volumes

 FPGAs are less efficient than 
ASICs
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Guidelines for DSAs

1. Use dedicated memories to minimize data 
movement

2. Invest resources into more arithmetic units or 
bigger memories

3. Use the easiest form of parallelism that 
matches the domain

4. Reduce data size and type to the simplest 
needed for the domain

5. Use a domain-specific programming language
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Guidelines for DSAs
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The four DSAs in Chapter 7 and how closely 

they followed the five guidelines
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Example:  Deep Neural Networks

 Inpired by neuron of the brain

 Computes non-linear “activiation” function of the 
weighted sum of input values

 Neurons arranged in layers
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Example:  Deep Neural Networks
 Most practitioners will choose an existing design

 Topology

 Data type

 Training (learning):
 Calculate weights using backpropagation algorithm

 Supervised learning:  stochastic gradient descent

 Inference:  use neural network for classification
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 Parameters:
 Dim[i]:  number of neurons

 Dim[i-1]:  dimension of input vector

 Number of weights:  Dim[i-1] x Dim[i]

 Operations:  2 x Dim[i-1] x Dim[i]

 Operations/weight:  2
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 Computer vision

 Each layer raises the level of abstraction
 First layer recognizes horizontal and vertical lines

 Second layer recognizes corners

 Third layer recognizes shapes

 Fourth layer recognizes features, such as ears of a dog

 Higher layers recognizes different breeds of dogs
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 Parameters:
 DimFM[i-1]: Dimension of the (square) input 

Feature Map

 DimFM[i]: Dimension of the (square) output 
Feature Map

 DimSten[i]: Dimension of the (square) stencil

 NumFM[i-1]: Number of input Feature Maps

 NumFM[i]: Number of output Feature Maps

 Number of neurons: NumFM[i] x DimFM[i]2

 Number of weights per output Feature Map: 
NumFM[i-1] x DimSten[i]2

 Total number of weights per layer: NumFM[i] x 
Number of weights per output Feature Map

 Number of operations per output Feature Map: 2 
x DimFM[i]2 x Number of weights per output 
Feature Map

 Total number of operations per layer: NumFM[i] 
x Number of operations per output Feature Map 
= 2 x DimFM[i]2 x NumFM[i] x Number of weights 
per output Feature Map = 2 x DimFM[i]2 x Total 
number of weights per layer

 Operations/Weight: 2 x DimFM[i]2
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 Used for speech recognition and language translation

 Long short-term memory (LSTM) network
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Recurrent Neural Network
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 Parameters:
 Number of weights per cell: 

3 x (3 x Dim x Dim)+(2 x 
Dim x Dim) + (1 x Dim x 
Dim) = 12 x Dim2

 Number of operations for 
the 5 vector-matrix 
multiplies per cell: 2 x 
Number of weights per cell 
= 24 x Dim2

 Number of operations for 
the 3 element-wise 
multiplies and 1 addition 
(vectors are all the size of 
the output): 4 x Dim

 Total number of operations 
per cell (5 vector-matrix 
multiplies and the 4 
element-wise operations): 
24 x Dim2 + 4 x Dim

 Operations/Weight: ~2
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 Batches:
 Reuse weights once fetched from memory across multiple inputs

 Increases operational intensity

 Quantization
 Sufficient to use 8- or 16-bit fixed point

 Summary:
 Need the following kernels:

 Matrix-vector multiply

 Matrix-matrix multiply

 Stencil computations

 ReLU activation

 Sigmoid activation

 Hyperbolic tangent (tanh) activation
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 Google’s DNN ASIC

 256 x 256 8-bit matrix multiply unit

 Large software-managed scratchpad

 Coprocessor on the PCIe bus
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 Read_Host_Memory

 Reads memory from the CPU memory into the unified buffer

 Read_Weights

 Reads weights from the Weight Memory into the Weight FIFO as input 
to the Matrix Unit

 MatrixMatrixMultiply/Convolve

 Perform a matrix-matrix multiply, a vector-matrix multiply, an element-
wise matrix multiply, an element-wise vector multiply, or a convolution 
from the Unified Buffer into the accumulators

 takes a variable-sized B*256 input, multiplies it by a 256x256 constant 
input, and produces a B*256 output, taking B pipelined cycles to 
complete

 Activate

 Computes activation function

 Write_Host_Memory

 Writes data from unified buffer into host memory
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TPU Microarchitecture
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TPU Implementation
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 Use dedicated memories
 24 MiB dedicated buffer, 4 MiB accumulator buffers

 Invest resources in arithmetic units and dedicated 
memories
 60% of the memory and 250X the arithmetic units of a server-class CPU

 Use the easiest form of parallelism that matches the 
domain
 Exploits 2D SIMD parallelism

 Reduce the data size and type needed for the domain
 Primarily uses 8-bit integers

 Use a domain-specific programming language
 Uses TensorFlow
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 Needed to be general 
purpose and power efficient
 Uses FPGA PCIe board with 

dedicated 20 Gbps network in 6 x 
8 torus

 Each of the 48 servers in half the 
rack has a Catapult board

 Limited to 25 watts

 32 MiB Flash memory

 Two banks of DDR3-1600 (11 
GB/s) and 8 GiB DRAM

 FPGA (unconfigured) has 3962 
18-bit ALUs and 5 MiB of on-chip 
memory

 Programmed in Verilog RTL

 Shell is 23% of the FPGA
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 CNN accelerator, mapped across multiple FPGAs
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Microsoft Catapult: CNN
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Microsoft Catapult: Search Ranking
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 Feature extraction (1 FPGA)
 Extracts 4500 features for every document-query pair, e.g. frequency in which the query 

appears in the page

 Systolic array of FSMs

 Free-form expressions (2 FPGAs)
 Calculates feature combinations

 Machine-learned Scoring (1 FPGA for compression, 3 FPGAs calculate 
score)
 Uses results of previous two stages to calculate floating-point score

 One FPGA allocated as a hot-spare
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Microsoft Catapult: Search Ranking
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 Free-form expression evaluation
 60 core processor

 Pipelined cores

 Each core supports four threads that can hide each other’s latency

 Threads are statically prioritized according to thread latency
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Microsoft Catapult: Search Ranking
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 Version 2 of Catapult
 Placed the FPGA between the 

CPU and NIC

 Increased network from 10 Gb/s 
to 40 Gb/s

 Also performs network 
acceleration

 Shell now consumes 44% of the 
FPGA

 Now FPGA performs only 
feature extraction
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Catapult and the Guidelines
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 Use dedicated memories
 5 MiB dedicated memory

 Invest resources in arithmetic units and dedicated 
memories
 3926 ALUs

 Use the easiest form of parallelism that matches the 
domain
 2D SIMD for CNN, MISD parallelism for search scoring

 Reduce the data size and type needed for the 
domain
 Uses mixture of 8-bit integers and 64-bit floating-point

 Use a domain-specific programming language
 Uses Verilog RTL; Microsoft did not follow this guideline
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Intel Crest
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 DNN training

 16-bit fixed point

 Operates on blocks of 32x32 matrices

 SRAM + HBM2
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Pixel Visual Core
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 Pixel Visual Core
 Image Processing Unit

 Performs stencil operations

 Decended from Image Signal processor
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Pixel Visual Core

 Software written in Halide, a DSL
 Compiled to virtual ISA

 vISA is lowered to physical ISA using application-specific 
parameters

 pISA is VLSI

 Optimized for energy
 Power Budget is 6 to 8 W for bursts of 10-20 seconds, 

dropping to tens of milliwatts when not in use

 8-bit DRAM access equivalent energy as 12,500 8-bit 
integer operations or 7 to 100 8-bit SRAM accesses

 IEEE 754 operations require 22X to 150X of the cost of 8-bit 
integer operations

 Optimized for 2D access
 2D SIMD unit

 On-chip SRAM structured using a square geometry
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Pixel Visual Core
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Pixel Visual Core
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Visual Core and the Guidelines
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 Use dedicated memories
 128 + 64 MiB dedicated memory per core

 Invest resources in arithmetic units and dedicated 
memories
 16x16 2D array of processing elements per core and 2D 

shifting network per core

 Use the easiest form of parallelism that matches the 
domain
 2D SIMD and VLIW

 Reduce the data size and type needed for the 
domain
 Uses mixture of 8-bit and 16-bit integers

 Use a domain-specific programming language
 Halide for image processing and TensorFlow for CNNs
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Fallacies and Pitfalls
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 F: It costs $100 million to design a custom 
chip

 P: Performance counters added as an 
afterthought

 F: Architects are tackling the right DNN tasks

 F: For DNN hardware, inferences per second 
(IPS) is a fair summary performance metric

 P: Being ignorant of architecture history when 
designing an DSA


