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Introduction

 Moore’s Law enabled:
 Deep memory hierarchy

 Wide SIMD units

 Deep pipelines

 Branch prediction

 Out-of-order execution

 Speculative prefetching

 Multithreading

 Multiprocessing

 Objective:
 Extract performance from 

large applications that is 
oblivious to architecture
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Introduction

 Moore’s Law is slowing

 Dennard scaling ended

 More transistors switching now 
means more power

 Conventional architectures 
suffer from high energy 
overheads for doing arithmetic 
ops.

 To improve efficiency, need 
factor of 100 improvements in 
number of operations per 
instruction

 Requires domain specific 
architectures (DSA)

 For ASICs, NRE cannot be 
amortized over large volumes

 FPGAs are less efficient than 
ASICs
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Guidelines for DSAs

1. Use dedicated memories to minimize data 
movement

2. Invest resources into more arithmetic units or 
bigger memories

3. Use the easiest form of parallelism that 
matches the domain

4. Reduce data size and type to the simplest 
needed for the domain

5. Use a domain-specific programming language
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Guidelines for DSAs
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The four DSAs in Chapter 7 and how closely 

they followed the five guidelines
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Example:  Deep Neural Networks

 Inpired by neuron of the brain

 Computes non-linear “activiation” function of the 
weighted sum of input values

 Neurons arranged in layers
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Example:  Deep Neural Networks
 Most practitioners will choose an existing design

 Topology

 Data type

 Training (learning):
 Calculate weights using backpropagation algorithm

 Supervised learning:  stochastic gradient descent

 Inference:  use neural network for classification
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 Parameters:
 Dim[i]:  number of neurons

 Dim[i-1]:  dimension of input vector

 Number of weights:  Dim[i-1] x Dim[i]

 Operations:  2 x Dim[i-1] x Dim[i]

 Operations/weight:  2
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 Computer vision

 Each layer raises the level of abstraction
 First layer recognizes horizontal and vertical lines

 Second layer recognizes corners

 Third layer recognizes shapes

 Fourth layer recognizes features, such as ears of a dog

 Higher layers recognizes different breeds of dogs
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 Parameters:
 DimFM[i-1]: Dimension of the (square) input 

Feature Map

 DimFM[i]: Dimension of the (square) output 
Feature Map

 DimSten[i]: Dimension of the (square) stencil

 NumFM[i-1]: Number of input Feature Maps

 NumFM[i]: Number of output Feature Maps

 Number of neurons: NumFM[i] x DimFM[i]2

 Number of weights per output Feature Map: 
NumFM[i-1] x DimSten[i]2

 Total number of weights per layer: NumFM[i] x 
Number of weights per output Feature Map

 Number of operations per output Feature Map: 2 
x DimFM[i]2 x Number of weights per output 
Feature Map

 Total number of operations per layer: NumFM[i] 
x Number of operations per output Feature Map 
= 2 x DimFM[i]2 x NumFM[i] x Number of weights 
per output Feature Map = 2 x DimFM[i]2 x Total 
number of weights per layer

 Operations/Weight: 2 x DimFM[i]2
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 Used for speech recognition and language translation

 Long short-term memory (LSTM) network
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Recurrent Neural Network
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 Parameters:
 Number of weights per cell: 

3 x (3 x Dim x Dim)+(2 x 
Dim x Dim) + (1 x Dim x 
Dim) = 12 x Dim2

 Number of operations for 
the 5 vector-matrix 
multiplies per cell: 2 x 
Number of weights per cell 
= 24 x Dim2

 Number of operations for 
the 3 element-wise 
multiplies and 1 addition 
(vectors are all the size of 
the output): 4 x Dim

 Total number of operations 
per cell (5 vector-matrix 
multiplies and the 4 
element-wise operations): 
24 x Dim2 + 4 x Dim

 Operations/Weight: ~2
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 Batches:
 Reuse weights once fetched from memory across multiple inputs

 Increases operational intensity

 Quantization
 Sufficient to use 8- or 16-bit fixed point

 Summary:
 Need the following kernels:

 Matrix-vector multiply

 Matrix-matrix multiply

 Stencil computations

 ReLU activation

 Sigmoid activation

 Hyperbolic tangent (tanh) activation
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 Google’s DNN ASIC

 256 x 256 8-bit matrix multiply unit

 Large software-managed scratchpad

 Coprocessor on the PCIe bus
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 Read_Host_Memory

 Reads memory from the CPU memory into the unified buffer

 Read_Weights

 Reads weights from the Weight Memory into the Weight FIFO as input 
to the Matrix Unit

 MatrixMatrixMultiply/Convolve

 Perform a matrix-matrix multiply, a vector-matrix multiply, an element-
wise matrix multiply, an element-wise vector multiply, or a convolution 
from the Unified Buffer into the accumulators

 takes a variable-sized B*256 input, multiplies it by a 256x256 constant 
input, and produces a B*256 output, taking B pipelined cycles to 
complete

 Activate

 Computes activation function

 Write_Host_Memory

 Writes data from unified buffer into host memory
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TPU Microarchitecture
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TPU Implementation
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 Use dedicated memories
 24 MiB dedicated buffer, 4 MiB accumulator buffers

 Invest resources in arithmetic units and dedicated 
memories
 60% of the memory and 250X the arithmetic units of a server-class CPU

 Use the easiest form of parallelism that matches the 
domain
 Exploits 2D SIMD parallelism

 Reduce the data size and type needed for the domain
 Primarily uses 8-bit integers

 Use a domain-specific programming language
 Uses TensorFlow
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 Needed to be general 
purpose and power efficient
 Uses FPGA PCIe board with 

dedicated 20 Gbps network in 6 x 
8 torus

 Each of the 48 servers in half the 
rack has a Catapult board

 Limited to 25 watts

 32 MiB Flash memory

 Two banks of DDR3-1600 (11 
GB/s) and 8 GiB DRAM

 FPGA (unconfigured) has 3962 
18-bit ALUs and 5 MiB of on-chip 
memory

 Programmed in Verilog RTL

 Shell is 23% of the FPGA
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 CNN accelerator, mapped across multiple FPGAs
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Microsoft Catapult: CNN
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Microsoft Catapult: Search Ranking
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 Feature extraction (1 FPGA)
 Extracts 4500 features for every document-query pair, e.g. frequency in which the query 

appears in the page

 Systolic array of FSMs

 Free-form expressions (2 FPGAs)
 Calculates feature combinations

 Machine-learned Scoring (1 FPGA for compression, 3 FPGAs calculate 
score)
 Uses results of previous two stages to calculate floating-point score

 One FPGA allocated as a hot-spare
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Microsoft Catapult: Search Ranking
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 Free-form expression evaluation
 60 core processor

 Pipelined cores

 Each core supports four threads that can hide each other’s latency

 Threads are statically prioritized according to thread latency
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 Version 2 of Catapult
 Placed the FPGA between the 

CPU and NIC

 Increased network from 10 Gb/s 
to 40 Gb/s

 Also performs network 
acceleration

 Shell now consumes 44% of the 
FPGA

 Now FPGA performs only 
feature extraction
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Catapult and the Guidelines
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 Use dedicated memories
 5 MiB dedicated memory

 Invest resources in arithmetic units and dedicated 
memories
 3926 ALUs

 Use the easiest form of parallelism that matches the 
domain
 2D SIMD for CNN, MISD parallelism for search scoring

 Reduce the data size and type needed for the 
domain
 Uses mixture of 8-bit integers and 64-bit floating-point

 Use a domain-specific programming language
 Uses Verilog RTL; Microsoft did not follow this guideline
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 DNN training

 16-bit fixed point

 Operates on blocks of 32x32 matrices

 SRAM + HBM2
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 Pixel Visual Core
 Image Processing Unit

 Performs stencil operations

 Decended from Image Signal processor
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Pixel Visual Core

 Software written in Halide, a DSL
 Compiled to virtual ISA

 vISA is lowered to physical ISA using application-specific 
parameters

 pISA is VLSI

 Optimized for energy
 Power Budget is 6 to 8 W for bursts of 10-20 seconds, 

dropping to tens of milliwatts when not in use

 8-bit DRAM access equivalent energy as 12,500 8-bit 
integer operations or 7 to 100 8-bit SRAM accesses

 IEEE 754 operations require 22X to 150X of the cost of 8-bit 
integer operations

 Optimized for 2D access
 2D SIMD unit

 On-chip SRAM structured using a square geometry
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Visual Core and the Guidelines
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 Use dedicated memories
 128 + 64 MiB dedicated memory per core

 Invest resources in arithmetic units and dedicated 
memories
 16x16 2D array of processing elements per core and 2D 

shifting network per core

 Use the easiest form of parallelism that matches the 
domain
 2D SIMD and VLIW

 Reduce the data size and type needed for the 
domain
 Uses mixture of 8-bit and 16-bit integers

 Use a domain-specific programming language
 Halide for image processing and TensorFlow for CNNs
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Fallacies and Pitfalls
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 F: It costs $100 million to design a custom 
chip

 P: Performance counters added as an 
afterthought

 F: Architects are tackling the right DNN tasks

 F: For DNN hardware, inferences per second 
(IPS) is a fair summary performance metric

 P: Being ignorant of architecture history when 
designing an DSA


