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Introduction
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= Moore's Law enabled:
= Deep memory hierarchy
= Wide SIMD units
= Deep pipelines 180
= Branch prediction 130
= Out-of-order execution R A - A
= Speculative prefetching
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= Objective:

= Extract performance from
large applications that is
oblivious to architecture




Introduction

= Moore’s Law is slowing

= Dennard scaling ended

= More transistors switching now
means more power

= Conventional architectures
suffer from high energy
overheads for doing arithmetic
ops.

= To improve efficiency, need
factor of 100 improvements in
number of operations per
Instruction

= Requires domain specific
architectures (DSA)

= For ASICs, NRE cannot be
amortized over large volumes

» FPGASs are less efficient than
ASICs

RISC instruction 125 pJ

ALU

Overhead

m Overhead ALU 150 pJ
15—20 pJ

Load/Store

SP floating point
32-bit addition
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8-bit addition + 0.2-0.5pJ
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Guidelines for DSAS

1.

2.

Use dedicated memories to minimize data
movement

Invest resources Into more arithmetic units or
bigger memories

Use the easiest form of parallelism that
matches the domain

Reduce data size and type to the simplest
needed for the domain

SvSQ Jo} sauljaping

Use a domain-specific programming language




Guidelines for DSAS

The four DSAs in Chapter 7 and how closely

they followed the five guidelines
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Guideline

TPU

Catapult

Crest

Pixel Visual Core

Design target

Data center ASIC

Data center FPGA

Data center ASIC

PMD ASIC/SOC TP

1. Dedicated

24 MiB Unified Buffer,

Varies

N.A.

Per core: 128 KiB line

memories 4 MiB Accumulators buffer, 64 KiB P.E.
memory

2. Larger 65.536 Multiply- Varies N.A. Per core: 256 Multiply-
arithmetic unit  accumulators accumulators (512 ALUSs)

3. Easy Single-threaded, SIMD,  SIMD, MISD N.A. MPMD, SIMD, VLIW
parallelism in-order

4. Smaller data 8-Bit, 16-bit integer 8-Bit, 16-bit integer 21-bit Fl. Pt. 8-bit, 16-bit, 32-bit integer
size 32-bit Fl. Pt.

5. Domain- TensorFlow Verilog TensorFlow Halide/TensorFlow

specific lang.

MK

MORGAN KAUFMANN



contents

= |Introduction
s Guidelines for DSAs
= Example Domain: Deep Neural Networks

s Google’s Tensor Processing Unit, an Inference
Data Center Accelerator

= Microsoft Catapult, a Flexible Data Center
Accelerator

= Intel Crest, a Data Center Accelerator for Training

s Pixel Visual Core, a Personal Mobile Device
mage Processing Unit

s Fallacies and Pitfalls




Example: Deep Neural Networks

= Inpired by neuron of the brain

= Computes non-linear “activiation” function of the
weighted sum of input values

= Neurons arranged in layers

SYJoMm1aN [elnaN deaq :ajdwex3

Name DNN layers Weights Operations/Weight
MLPO 5 20M 200
MLPI 4 SM 168
LSTMO 58 52M 64
LSTMI1 56 34M 96
CNNO 16 §M 2888

CNNI1 89 100M 1750




Example: Deep Neural Networks

= Most practitioners will choose an existing design
= Topology
= Data type
= Training (learning):
= Calculate weights using backpropagation algorithm
= Supervised learning: stochastic gradient descent

SYJoMm1aN [elnaN deaq :ajdwex3

Size of
benchmark’s DNN Training
Type of data Problem area training set architecture Hardware time
text [1] Word prediction 100 billion words 2-layer skip 1 NVIDIA Titan X | 6.2 hours
(word2vec) (Wikipedia) gram GPU
audio [2] Speech recognition 2000 hours (Fisher 11-layer RNN | 1 NVIDIA K1200 3.5 days
Corpus) GPU
images [3] Image 1 million images 22-layer CNN 1 NVIDIA K20 3 weeks
classification (ImageNet) GPU
video [4] activity recognition 1 million videos 8-layer CNN 10 NVIDIA GPUs 1 month
(Sports-1M)

s Inference: use neural network for classification




Multi-Layer Perceptrons

s Parameters:
= Dim[i]: number of neurons
= Dim[i-1]: dimension of input vector
= Number of weights: Dim[i-1] x Dim[i]
= Operations: 2 x Dim[i-1] x Dim([i]
= Operations/weight: 2

SYJoMm1aN [elnaN deaq :ajdwex3

Layer[i-1] Layetr[i]
Dim[i-1]
Input
Dim(i]
VMX nif Output
Dim[i]

Weights

Dim(i-1]

Nonlinear function

@ Vector matrix multiply




Convolutional Neural Network

= Computer vision

= Each layer raises the level of abstraction
= First layer recognizes horizontal and vertical lines
= Second layer recognizes corners
= Third layer recognizes shapes
= Fourth layer recognizes features, such as ears of a dog
= Higher layers recognizes different breeds of dogs

Input image

e le]ply
NEVINE
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Output feature map

nlf

(@]

9P

Nonlinear function

6|0

@ Vector matrix multiply

Weights




Convolutional Neural Network

m Parameters:
= DimFM]i-1]: Dimension of the (square) input
Feature Map
Layer[i-1] Layer[i] = DimFM][i]: Dimension of the (square) output
(input feature maps) (output feature maps) Feature Map
= DimSten[i]: Dimension of the (square) stencil
by . NumFM[i-1]: Number of input Feature Maps
=  NumFM]Ji]: Number of output Feature Maps
= Number of neurons: NumFM][i] x DimFM[i]?
= Number of weights per output Feature Map:
NumFM[i-1] x DimSten[i]?
= Total number of weights per layer: NumFM[i] x
Number of weights per output Feature Map

= Number of operations per output Feature Map: 2
x DImFM][i]? x Number of weights per output
Feature Map

| Vector matrix multiply | ; ) _

i @ py; = = Total number of operations per layer: NumFM([i]
® -
=z

NumFM[7]

SYJoMm1aN [elnaN deaq :ajdwex3

x Number of operations per output Feature Map
= 2 x DImFM[i]? x NumFM][i] x Number of weights
per output Feature Map = 2 x DimFM([i]? x Total
number of weights per layer

= Operations/Weight: 2 x DimFM([i]?

Nonlinear function
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Recurrent Neural Network

m Used for speech recognition and language translation
m Long short-term memory (LSTM) network
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LSTMn

B!

LSTMn

B!

LSTMn

B!

LSTMn

|
SYJoMm1aN [elnaN deaq :ajdwex3

B!

LSTMn

—= “momento”

!

LSTMn

llelll

by

LSTMn

iiesl!

B!

“‘now” —= LSTMO —| LSTNI1
B! i
“is" —= LSTMO —{ LSTM1
® I I
= “the” —= LSTMO LSTMA1
Pt i
“time” —= LSTMO0 LSTMA1
! i
<end_input> — LSTMO0 —{ LSTM1
! i
‘momento” —{ LSTMo0 LSTM1
't P
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't i
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! i
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— <end_output>
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| LTMemoryin | |STMemoryin |

Output gate
weights

Forget gate
weights

Input

Input gate
weights

Input
weights

Y

\

@ Vector matrix multiply

@ Element-wise multiply
@ Element-wise addition

Short term
weights

r

| LTMemoryout | | STMemoryout |
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Recurrent Neural Network

Parameters:
Number of weights per cell:

3 X (3 x Dim x Dim)+(2 x
Dim x Dim) + (1 x Dim x
Dim) = 12 x Dim?

Number of operations for
the 5 vector-matrix
multiplies per cell: 2 x
Number of weights per cell
= 24 x Dim?

Number of operations for
the 3 element-wise
multiplies and 1 addition
(vectors are all the size of
the output): 4 x Dim

Total number of operations
per cell (5 vector-matrix
multiplies and the 4
element-wise operations):
24 x DiIm? + 4 x Dim

Operations/Weight: ~2

SYJoMm1aN [elnaN deaq :ajdwex3




Example: Deep Neural Networks

s Batches:

= Reuse weights once fetched from memory across multiple inputs
= Increases operational intensity

= Quantization
« Sufficient to use 8- or 16-bit fixed point

= Summary:

= Need the following kernels:
= Matrix-vector multiply
Matrix-matrix multiply
Stencil computations
ReLU activation
Sigmoid activation
Hyperbolic tangent (tanh) activation

SYJoMm1aN [elnaN deaq :ajdwex3
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Google’s DNN ASIC
256 x 256 8-bit matrix multiply unit
Large software-managed scratchpad
Coprocessor on the PCle bus

14
GiB/s

[ off-chip 1’0
|:| Data buffer
[] computation
. Control

Host interface

14 GiB/s

30 GiB/s

Tensor Processing Unit

30 GiB/s

Weight FIFO
(weight fetcher)

@ 30 GiBls

< % —
e —

o

-\

N

10
GiB/s

Unified 167 v al‘u i APl
buffer Systolic |GiB/s j}( L

(local data pereytle

activation setup

storage)
I\ / Accumulators
Activation
167 GiB/s

ﬂ.q—

Normalize / Pool
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TPU ISA

= Read Host Memory
= Reads memory from the CPU memory into the unified buffer

= Read Weights

= Reads weights from the Weight Memory into the Weight FIFO as input
to the Matrix Unit

= MatrixMatrixMultiply/Convolve

= Perform a matrix-matrix multiply, a vector-matrix multiply, an element-
wise matrix multiply, an element-wise vector multiply, or a convolution
from the Unified Buffer into the accumulators

= takes a variable-sized B*256 input, multiplies it by a 256x256 constant
input, and produces a B*256 output, taking B pipelined cycles to
complete

s Activate

Hun Buissasoid losua|

= Computes activation function

= Write Host_ Memory
= Writes data from unified buffer into host memory




| TPU Microarchitecture
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TPU Implementation

Local Unified Buffer for
activations
(96Kx256x8b = 24 MiB)

Matrix multiply unit
(256x256x8b = 64K MAC)

1un Buissasoid Josua]

0,
29% of chip 24%
D Host Accumulators D
E Interf. 2% | | (4Kx256x32b = 4 MiB) 6% E
M — M
port Activation pipeline 6% port
ddr3 ddr3
39 PCle : 3Y%,
Interface 3% Misc. 110 1%
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The TPU and the Guidelines

s Use dedicated memories
» 24 MiB dedicated buffer, 4 MiB accumulator buffers

= Invest resources in arithmetic units and dedicated
memories
= 60% of the memory and 250X the arithmetic units of a server-class CPU

s Use the easiest form of parallelism that matches the
domain

Hun Buissasoid losua|

= Exploits 2D SIMD parallelism

= Reduce the data size and type needed for the domain
= Primarily uses 8-bit integers

s Use a domain-specific programming language
= Uses TensorFlow
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Microsoft Catapult

= Needed to be general
purpose and power efficient

= Uses FPGA PCle board with
dedicated 20 Gbps network in 6 x

8 torus 4CBDDR3-1332 4 GB DDR3-1333
ECC SO-DIMM  ECC SO-DIMM

s Each of the 48 servers in half the 172 472
rack has a Catapult board

= Limited to 25 watts
= 32 MiB Flash memory

= Two banks of DDR3-1600 (11
GB/s) and 8 GiB DRAM ey

= FPGA (unconfigured) has 3962
18-bit ALUs and 5 MiB of on-chip
memory

= Programmed in Verilog RTL
= Shell is 23% of the FPGA

yIndede) JOSOIIN

256 Mb
4 aspl
" config
Flash

Fiasn
(RSU)
[ome |

3
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Microsoft Catapult: CNN

= CNN accelerator, mapped across multiple FPGAs
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Output volume
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Microsoft Catapult: CNN
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Microsoft Catapult: Search Ranking

Feature extraction (1 FPGA)

= Extracts 4500 features for every document-query pair, e.g. frequency in which the query
appears in the page

= Systolic array of FSMs
m Free-form expressions (2 FPGAS)
» Calculates feature combinations
= Machine-learned Scoring (1 FPGA for compression, 3 FPGAs calculate
score)
= Uses results of previous two stages to calculate floating-point score

m One FPGA allocated as a hot-spare

jIndede) 1yosouolIn
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Microsoft Catapult: Search Ranking

s Free-form expression evaluation
= 60 core processor
= Pipelined cores
= Each core supports four threads that can hide each other’s latency
= Threads are statically prioritized according to thread latency
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95th percentile latency versus throughput
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Microsoft Catapult: Search Ranking

= Version 2 of Catapult

s Placed the FPGA between the
CPU and NIC

s Increased network from 10 Gb/s
to 40 Gb/s

= Also performs network
acceleration

» Shell now consumes 44% of the
FPGA 40Gb/s

= Now FPGA performs only
feature extraction

2-socket server blade

jIndede) 1yosouolIn

Accelerator card




Catapult and the Guidelines

s Use dedicated memories
= 5 MiB dedicated memory

= Invest resources in arithmetic units and dedicated
memories
= 3926 ALUs

s Use the easiest form of parallelism that matches the
domain
= 2D SIMD for CNN, MISD parallelism for search scoring

= Reduce the data size and type needed for the
domain

yIndede) JOSOIIN

= Uses mixture of 8-bit integers and 64-bit floating-point
s Use a domain-specific programming language
= Uses Verilog RTL; Microsoft did not follow this guideline
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Intel Crest

181D [alu|

= DNN training

= 16-Dbit fixed point

= Operates on blocks of 32x32 matrices
= SRAM + HBM2

Interposer
gllalla] ez Icc glla|(|d]l2
Processing || Processing || Processing
8GB HBM2 HBM | Mem Cluster Cluster Cluster Mem | HBM 8GB HBM2
PHY | Ctrir | ——— Ctrir | PHY
Processing Processing Processing
Cluster Cluster Cluster
SPI, ICZ.| | MGMT
GPIO P | P o CPU
Cluster Cluster Cluster
HBM | Mem Mem | HBM
o, PHY | Ctrir | | Processing || Processing || Processing | | Ctrir | PHY
8GB HBM2 Clust Cluster Cluster 8GB HBM2
Coseen 28] = [[8][8]




contents

= Introduction
s Guidelines for DSAs
s Example Domain: Deep Neural Networks

s Google’s Tensor Processing Unit, an Inference
Data Center Accelerator

s Microsoft Catapult, a Flexible Data Center
Accelerator

s Intel Crest, a Data Center Accelerator for Training

s Pixel Visual Core, a Personal Mobile Device
mage Processing Unit

s Fallacies and Pitfalls




Pixel Visual Core

= Pixel Visual Core
= Image Processing Unit
= Performs stencil operations
= Decended from Image Signal processor

Sensor
Lens (ccD or CMOS

,l L




Pixel Visual Core

n Software written in Halide, a DSL
= Compiled to virtual ISA

= VISAis lowered to physical ISA using application-specific
parameters

= pISAis VLSI

= Optimized for energy

= Power Budget is 6 to 8 W for bursts of 10-20 seconds,
dropping to tens of milliwatts when not in use

= 8-bit DRAM access equivalent energy as 12,500 8-bit
Integer operations or 7 to 100 8-bit SRAM accesses

= |[EEE 754 operations require 22X to 150X of the cost of 8-bit
integer operations

s Optimized for 2D access
= 2D SIMD unit

910D |ensiA |9Xid

= On-chip SRAM structured using a square geometry




Pixel Visual Core

Pixel Visual Core




Pixel Visual Core
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Pixel Visual Core

e 2D stencil
processor

2D stencil
processor

2D stencil
processor

I
2D stencil

'
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Visual Core and the Guidelines

s Use dedicated memories
= 128 + 64 MiB dedicated memory per core

m Invest resources in arithmetic units and dedicated
memories

= 16x16 2D array of processing elements per core and 2D
shifting network per core

s Use the easiest form of parallelism that matches the
domain
= 2D SIMD and VLIW

s Reduce the data size and type needed for the
domain

yIndede) JOSOIIN

= Uses mixture of 8-bit and 16-bit integers
s Use a domain-specific programming language
= Halide for image processing and TensorFlow for CNNs
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Fallacies and Pitfalls

yIndede) JOSOIIN

s F: It costs $100 million to design a custom
chip

s P: Performance counters added as an
afterthought

s F: Architects are tackling the right DNN tasks

= . For DNN hardware, inferences per second
(IPS) Is a fair summary performance metric

= P: Being ignorant of architecture history when
designing an DSA




