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Introduction

 Thread-Level parallelism
 Have multiple program counters

 Uses MIMD model

 Targeted for tightly-coupled shared-memory 
multiprocessors

 For n processors, need n threads

 Amount of computation assigned to each thread 
= grain size
 Threads can be used for data-level parallelism, but 

the overheads may outweigh the benefit
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Multiprocessor Types

 Symmetric multiprocessors 
(SMP)
 Small number of cores

 Share single memory with 
uniform memory latency

 Distributed shared memory 
(DSM)
 Memory distributed among 

processors

 Non-uniform memory 
access/latency (NUMA)

 Processors connected via 
direct (switched) and non-
direct (multi-hop) 
interconnection networks
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Cache Coherence Problem

 Processors may see different values through their 
caches:

 Cache coherence requirement:
 All reads by any processor must return the most recently 

written value

 Writes to the same location by any two processors are 
seen in the same order by all processors
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Enforcing Coherence Schemes

 Coherent caches provide:
 Migration:  movement of data

 Replication:  multiple copies of data

 Cache coherence protocols
1. Snooping

 Each core tracks sharing status of each block

2. Directory based
 Sharing status of each block is kept in one location
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Snooping Coherence Protocols

1. Write invalidate protocols
 On write, invalidate all other copies

 Use bus itself to serialize
 Write cannot complete until bus access is obtained

2. Write update protocols
 On write, update all copies
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Basic Implementation Techniques

 Locating an item when a read miss occurs
 In write-back cache, the updated value must be sent 

to the requesting processor

 Cache lines marked as shared or 
exclusive/modified
 Only writes to shared lines need an invalidate 

broadcast
 After this, the line is marked as exclusive
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Example Protocol: MSI
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Extensions: The MESI Protocol

 Add exclusive state to 
indicate clean block in 
only one cache.

 Prevents needing to 
write invalidate on a 
write.
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Extensions: The MEOSI Protocol

 Add owned state to indicate block owned by the 
cache and out-of-date in memory.

 The owner keeps providing it on misses.

Copyright © 2019, Elsevier Inc. All rights Reserved

C
e
n
tra

liz
e
d
 S

h
a
re

d
-M

e
m

o
ry

 A
rc

h
ite

c
tu

re
s



14Copyright © 2019, Elsevier Inc. All rights Reserved

Limitations of Snooping Protocols
 Shared memory bus 

and snooping bandwidth 
is bottleneck for scaling 
symmetric 
multiprocessors.

 Solutions:
 Duplicating tags

 Partition the inclusive, 
shared L3$ on the cores.

 Place directory in 
outermost cache

 Use crossbars or point-
to-point networks with 
banked memory
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SMP Performance
 Coherence misses are misses due the coherence 

protocol.
 True sharing misses

 Write to shared block (transmission of invalidation)

 Read an invalidated block

 False sharing misses
 Read an unmodified word in an invalidated block

 Example: Assume z1 and z2 are in one shared 
block.
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Execution Time and Cache Size
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Memory Time and Cache Size
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Memory Time and Processors
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Misses and Block Size
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Directory Protocols
 Snooping schemes require communication among 

all caches on every cache miss
 Limits scalability

 Another approach:  Use centralized directory to keep 
track of every block

 Which caches have each block

 Dirty status of each block

 Can implement it in shared L3 cache
 Keep bit vector of size = # cores for each block in L3

 Not scalable beyond shared L3
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Directory Protocols

 Distributed memory with directories
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Directory Protocol Basics

 For each block, maintain state:
 Uncached

 Shared
 One or more nodes have the block cached, value in memory 

is up-to-date

 Set of node IDs

 Modified
 Exactly one node has a copy of the cache block, value in 

memory is out-of-date

 Owner node ID

 Directory maintains block states and sends 
invalidation messages
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Directory Protocols Actions

1. For uncached block:
 Read miss

 Requesting node is sent the requested data and is made the 
only sharing node, block is now shared

 Write miss
 The requesting node is sent the requested data and 

becomes the sharing node, block is now exclusive

2. For shared block:
 Read miss

 The requesting node is sent the requested data from 
memory, node is added to sharing set

 Write miss
 The requesting node is sent the value, all nodes in the 

sharing set are sent invalidate messages, sharing set only 
contains requesting node, block is now exclusive
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Directory Protocol Actions

3. For exclusive block:
 Read miss

 The owner is sent a data fetch message, block becomes 
shared, owner sends data to the directory, data written 
back to memory, sharers set contains old owner and 
requestor

 Data write back
 Block becomes uncached, sharer set is empty

 Write miss
 Message is sent to old owner to invalidate and send the 

value to the directory, requestor becomes new owner, 
block remains exclusive
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Example Messages
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Synchronization

 Basic building blocks:
 Atomic exchange

 Swaps register with memory location

 Test-and-set

 Sets under condition

 Fetch-and-increment

 Reads original value from memory and increments it in memory

 Requires memory read and write in uninterruptable instruction

 RISC-V:  load reserved/store conditional
 If the contents of the memory location specified by the load 

linked are changed before the store conditional to the same 
address, the store conditional fails
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Implementing Locks

 Atomic exchange (EXCH):
 on the memory location specified by the contents of x1

with the value in x4

try: mov x3,x4 ;move exchange value

lr x2,x1 ;load reserved from

sc x3,0(x1) ;store conditional

bnez x3,try ;branch store fails

mov x4,x2 ;put load value in x4?
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Implementing Locks

 Lock (not efficient)
addi x2,x0,#1

lockit: EXCH x2,0(x1) ;atomic exchange

bnez x2,lockit ;already locked?

 Lock (efficient):
lockit: ld x2,0(x1) ;load of lock

bnez x2,lockit ;not available-spin

addi x2,x0,#1 ;load locked value

EXCH x2,0(x1) ;swap

bnez x2,lockit ;branch if lock isn’t 0
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Models of Memory Consistency

 Memory consistency models deal with when a 
processor must see a value that has been 
updated by another processor

 Sequential consistency:
 Result of execution should be the same as long as:

 Accesses on each processor were kept in order

 Accesses on different processors were arbitrarily interleaved

 To implement, delay completion of all memory 
accesses until all invalidations caused by the 
access are completed.
 Reduces performance!
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 Example:

 Should be impossible for both if-statements to be 
evaluated as true with sequential consistency.

 Possible with delayed write invalidate.
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Models of Memory Consistency
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Relaxed Consistency Models

 The key idea in relaxed consistency models is 
to allow reads and writes to complete out of 
order, but to use synchronization operations to 
enforce ordering so that a synchronized 
program behaves as though the processor 
were sequentially consistent when needed.

 Program-enforced synchronization to force 
write on processor to occur before read on the 
other processor
 Requires synchronization object for A and another 

for B
 “Unlock” after write

 “Lock” after read
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Example Multicore Processors
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IBM Power 8
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Power 8 System with 16 Chips
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Intel Xeon E7
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E7 System with 4 and 8 Chips
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SPARC64 X+
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X+ 4-chip Building Block
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SPECintRate Speedup
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Fallacies and Pitfalls

 P: Measuring performance of multiprocessors by 
linear speedup versus execution time

 F: Amdahl’s Law doesn’t apply to parallel 
computers

 F: Linear speedups are needed to make 
multiprocessors cost-effective
 Doesn’t consider cost of other system components

 P: Not developing the software to take advantage 
of, or optimize for, a multiprocessor architecture

F
a
lla

c
ie

s
 a

n
d
 P

itfa
lls


