
1Copyright © 2019, Elsevier Inc. All rights Reserved

Chapter 5

Thread-Level Parallelism

Adapted by Prof. Gheith Abandah

Computer Architecture
A Quantitative Approach, Sixth Edition

2

Contents
 Introduction

 Centralized Shared-Memory Architectures

 Performance of Symmetric Shared-Memory

Multiprocessors

 Distributed Shared-Memory and Directory-Based

Coherence

 Synchronization

 Models of Memory Consistency

 Example Multicore Processors

 Fallacies and Pitfalls

Copyright © 2019, Elsevier Inc. All rights Reserved

3Copyright © 2019, Elsevier Inc. All rights Reserved

Introduction

 Thread-Level parallelism
 Have multiple program counters

 Uses MIMD model

 Targeted for tightly-coupled shared-memory
multiprocessors

 For n processors, need n threads

 Amount of computation assigned to each thread
= grain size
 Threads can be used for data-level parallelism, but

the overheads may outweigh the benefit

In
tro

d
u
c
tio

n

4Copyright © 2019, Elsevier Inc. All rights Reserved

Multiprocessor Types

 Symmetric multiprocessors
(SMP)
 Small number of cores

 Share single memory with
uniform memory latency

 Distributed shared memory
(DSM)
 Memory distributed among

processors

 Non-uniform memory
access/latency (NUMA)

 Processors connected via
direct (switched) and non-
direct (multi-hop)
interconnection networks

In
tro

d
u
c
tio

n

5

Contents
 Introduction

 Centralized Shared-Memory Architectures

 Performance of Symmetric Shared-Memory

Multiprocessors

 Distributed Shared-Memory and Directory-Based

Coherence

 Synchronization

 Models of Memory Consistency

 Example Multicore Processors

 Fallacies and Pitfalls

Copyright © 2019, Elsevier Inc. All rights Reserved

6

Contents
 Centralized Shared-Memory Architectures

 Cache Coherence Problem

 Enforcing Coherence Schemes

 Snooping Coherence Protocols

 Basic Implementation Techniques

 Extensions

 Limitations of Snooping Protocols

Copyright © 2019, Elsevier Inc. All rights Reserved

7Copyright © 2019, Elsevier Inc. All rights Reserved

Cache Coherence Problem

 Processors may see different values through their
caches:

 Cache coherence requirement:
 All reads by any processor must return the most recently

written value

 Writes to the same location by any two processors are
seen in the same order by all processors

C
e
n
tra

liz
e
d
 S

h
a
re

d
-M

e
m

o
ry

 A
rc

h
ite

c
tu

re
s

8Copyright © 2019, Elsevier Inc. All rights Reserved

Enforcing Coherence Schemes

 Coherent caches provide:
 Migration: movement of data

 Replication: multiple copies of data

 Cache coherence protocols
1. Snooping

 Each core tracks sharing status of each block

2. Directory based
 Sharing status of each block is kept in one location

C
e
n
tra

liz
e
d
 S

h
a
re

d
-M

e
m

o
ry

 A
rc

h
ite

c
tu

re
s

9Copyright © 2019, Elsevier Inc. All rights Reserved

Snooping Coherence Protocols

1. Write invalidate protocols
 On write, invalidate all other copies

 Use bus itself to serialize
 Write cannot complete until bus access is obtained

2. Write update protocols
 On write, update all copies

C
e
n
tra

liz
e
d
 S

h
a
re

d
-M

e
m

o
ry

 A
rc

h
ite

c
tu

re
s

10Copyright © 2019, Elsevier Inc. All rights Reserved

Basic Implementation Techniques

 Locating an item when a read miss occurs
 In write-back cache, the updated value must be sent

to the requesting processor

 Cache lines marked as shared or
exclusive/modified
 Only writes to shared lines need an invalidate

broadcast
 After this, the line is marked as exclusive

C
e
n
tra

liz
e
d
 S

h
a
re

d
-M

e
m

o
ry

 A
rc

h
ite

c
tu

re
s

11Copyright © 2019, Elsevier Inc. All rights Reserved

Example Protocol: MSI
C

e
n
tra

liz
e
d
 S

h
a
re

d
-M

e
m

o
ry

 A
rc

h
ite

c
tu

re
s

12

Extensions: The MESI Protocol

 Add exclusive state to
indicate clean block in
only one cache.

 Prevents needing to
write invalidate on a
write.

Copyright © 2019, Elsevier Inc. All rights Reserved

C
e
n
tra

liz
e
d
 S

h
a
re

d
-M

e
m

o
ry

 A
rc

h
ite

c
tu

re
s

13

Extensions: The MEOSI Protocol

 Add owned state to indicate block owned by the
cache and out-of-date in memory.

 The owner keeps providing it on misses.

Copyright © 2019, Elsevier Inc. All rights Reserved

C
e
n
tra

liz
e
d
 S

h
a
re

d
-M

e
m

o
ry

 A
rc

h
ite

c
tu

re
s

14Copyright © 2019, Elsevier Inc. All rights Reserved

Limitations of Snooping Protocols
 Shared memory bus

and snooping bandwidth
is bottleneck for scaling
symmetric
multiprocessors.

 Solutions:
 Duplicating tags

 Partition the inclusive,
shared L3$ on the cores.

 Place directory in
outermost cache

 Use crossbars or point-
to-point networks with
banked memory

C
e
n
tra

liz
e
d
 S

h
a
re

d
-M

e
m

o
ry

 A
rc

h
ite

c
tu

re
s

NUCA

15

Contents
 Introduction

 Centralized Shared-Memory Architectures

 Performance of Symmetric Shared-Memory

Multiprocessors

 Distributed Shared-Memory and Directory-Based

Coherence

 Synchronization

 Models of Memory Consistency

 Example Multicore Processors

 Fallacies and Pitfalls

Copyright © 2019, Elsevier Inc. All rights Reserved

16Copyright © 2019, Elsevier Inc. All rights Reserved

SMP Performance
 Coherence misses are misses due the coherence

protocol.
 True sharing misses

 Write to shared block (transmission of invalidation)

 Read an invalidated block

 False sharing misses
 Read an unmodified word in an invalidated block

 Example: Assume z1 and z2 are in one shared
block.

P
e
rfo

rm
a
n
c
e
 o

f S
y
m

m
e
tric

 S
h
a
re

d
-M

e
m

o
ry

 M
u
ltip

ro
c
e
s
s
o
rs

17

Execution Time and Cache Size

Copyright © 2019, Elsevier Inc. All rights Reserved

P
e
rfo

rm
a
n
c
e
 o

f S
y
m

m
e
tric

 S
h
a
re

d
-M

e
m

o
ry

 M
u
ltip

ro
c
e
s
s
o
rs

18

Memory Time and Cache Size

Copyright © 2019, Elsevier Inc. All rights Reserved

P
e
rfo

rm
a
n
c
e
 o

f S
y
m

m
e
tric

 S
h
a
re

d
-M

e
m

o
ry

 M
u
ltip

ro
c
e
s
s
o
rs

19

Memory Time and Processors

Copyright © 2019, Elsevier Inc. All rights Reserved

P
e
rfo

rm
a
n
c
e
 o

f S
y
m

m
e
tric

 S
h
a
re

d
-M

e
m

o
ry

 M
u
ltip

ro
c
e
s
s
o
rs

20

Misses and Block Size

Copyright © 2019, Elsevier Inc. All rights Reserved

P
e
rfo

rm
a
n
c
e
 o

f S
y
m

m
e
tric

 S
h
a
re

d
-M

e
m

o
ry

 M
u
ltip

ro
c
e
s
s
o
rs

21

Contents
 Introduction

 Centralized Shared-Memory Architectures

 Performance of Symmetric Shared-Memory

Multiprocessors

 Distributed Shared-Memory and Directory-Based

Coherence

 Synchronization

 Models of Memory Consistency

 Example Multicore Processors

 Fallacies and Pitfalls

Copyright © 2019, Elsevier Inc. All rights Reserved

22Copyright © 2019, Elsevier Inc. All rights Reserved

Directory Protocols
 Snooping schemes require communication among

all caches on every cache miss
 Limits scalability

 Another approach: Use centralized directory to keep
track of every block

 Which caches have each block

 Dirty status of each block

 Can implement it in shared L3 cache
 Keep bit vector of size = # cores for each block in L3

 Not scalable beyond shared L3

D
is

trib
u
te

d
 S

h
a
re

d
 M

e
m

o
ry

 a
n
d
 D

ire
c
to

ry
-B

a
s
e
d
 C

o
h
e
re

n
c
e

23Copyright © 2019, Elsevier Inc. All rights Reserved

Directory Protocols

 Distributed memory with directories

D
is

trib
u
te

d
 S

h
a
re

d
 M

e
m

o
ry

 a
n
d
 D

ire
c
to

ry
-B

a
s
e
d
 C

o
h
e
re

n
c
e

24Copyright © 2019, Elsevier Inc. All rights Reserved

Directory Protocol Basics

 For each block, maintain state:
 Uncached

 Shared
 One or more nodes have the block cached, value in memory

is up-to-date

 Set of node IDs

 Modified
 Exactly one node has a copy of the cache block, value in

memory is out-of-date

 Owner node ID

 Directory maintains block states and sends
invalidation messages

D
is

trib
u
te

d
 S

h
a
re

d
 M

e
m

o
ry

 a
n
d
 D

ire
c
to

ry
-B

a
s
e
d
 C

o
h
e
re

n
c
e

25Copyright © 2019, Elsevier Inc. All rights Reserved

Directory Protocols Actions

1. For uncached block:
 Read miss

 Requesting node is sent the requested data and is made the
only sharing node, block is now shared

 Write miss
 The requesting node is sent the requested data and

becomes the sharing node, block is now exclusive

2. For shared block:
 Read miss

 The requesting node is sent the requested data from
memory, node is added to sharing set

 Write miss
 The requesting node is sent the value, all nodes in the

sharing set are sent invalidate messages, sharing set only
contains requesting node, block is now exclusive

D
is

trib
u
te

d
 S

h
a
re

d
 M

e
m

o
ry

 a
n
d
 D

ire
c
to

ry
-B

a
s
e
d
 C

o
h
e
re

n
c
e

26Copyright © 2019, Elsevier Inc. All rights Reserved

Directory Protocol Actions

3. For exclusive block:
 Read miss

 The owner is sent a data fetch message, block becomes
shared, owner sends data to the directory, data written
back to memory, sharers set contains old owner and
requestor

 Data write back
 Block becomes uncached, sharer set is empty

 Write miss
 Message is sent to old owner to invalidate and send the

value to the directory, requestor becomes new owner,
block remains exclusive

D
is

trib
u
te

d
 S

h
a
re

d
 M

e
m

o
ry

 a
n
d
 D

ire
c
to

ry
-B

a
s
e
d
 C

o
h
e
re

n
c
e

27

Example Messages

Copyright © 2019, Elsevier Inc. All rights Reserved

28

Contents
 Introduction

 Centralized Shared-Memory Architectures

 Performance of Symmetric Shared-Memory

Multiprocessors

 Distributed Shared-Memory and Directory-Based

Coherence

 Synchronization

 Models of Memory Consistency

 Example Multicore Processors

 Fallacies and Pitfalls

Copyright © 2019, Elsevier Inc. All rights Reserved

29Copyright © 2019, Elsevier Inc. All rights Reserved

Synchronization

 Basic building blocks:
 Atomic exchange

 Swaps register with memory location

 Test-and-set

 Sets under condition

 Fetch-and-increment

 Reads original value from memory and increments it in memory

 Requires memory read and write in uninterruptable instruction

 RISC-V: load reserved/store conditional
 If the contents of the memory location specified by the load

linked are changed before the store conditional to the same
address, the store conditional fails

S
y
n
c
h
ro

n
iz

a
tio

n

30Copyright © 2019, Elsevier Inc. All rights Reserved

Implementing Locks

 Atomic exchange (EXCH):
 on the memory location specified by the contents of x1

with the value in x4

try: mov x3,x4 ;move exchange value

lr x2,x1 ;load reserved from

sc x3,0(x1) ;store conditional

bnez x3,try ;branch store fails

mov x4,x2 ;put load value in x4?

S
y
n
c
h
ro

n
iz

a
tio

n

31Copyright © 2019, Elsevier Inc. All rights Reserved

Implementing Locks

 Lock (not efficient)
addi x2,x0,#1

lockit: EXCH x2,0(x1) ;atomic exchange

bnez x2,lockit ;already locked?

 Lock (efficient):
lockit: ld x2,0(x1) ;load of lock

bnez x2,lockit ;not available-spin

addi x2,x0,#1 ;load locked value

EXCH x2,0(x1) ;swap

bnez x2,lockit ;branch if lock isn’t 0

S
y
n
c
h
ro

n
iz

a
tio

n

32

Contents
 Introduction

 Centralized Shared-Memory Architectures

 Performance of Symmetric Shared-Memory

Multiprocessors

 Distributed Shared-Memory and Directory-Based

Coherence

 Synchronization

 Models of Memory Consistency

 Example Multicore Processors

 Fallacies and Pitfalls

Copyright © 2019, Elsevier Inc. All rights Reserved

33Copyright © 2019, Elsevier Inc. All rights Reserved

Models of Memory Consistency

 Memory consistency models deal with when a
processor must see a value that has been
updated by another processor

 Sequential consistency:
 Result of execution should be the same as long as:

 Accesses on each processor were kept in order

 Accesses on different processors were arbitrarily interleaved

 To implement, delay completion of all memory
accesses until all invalidations caused by the
access are completed.
 Reduces performance!

C
e
n
tra

liz
e
d
 S

h
a
re

d
-M

e
m

o
ry

 A
rc

h
ite

c
tu

re
s

34

 Example:

 Should be impossible for both if-statements to be
evaluated as true with sequential consistency.

 Possible with delayed write invalidate.

Copyright © 2019, Elsevier Inc. All rights Reserved

Models of Memory Consistency
M

o
d
e
ls

 o
f M

e
m

o
ry

 C
o
n
s
is

te
n
c
y
: A

n
 In

tro
d
u
c
tio

n

Processor 1:

A=0

…

A=1

if (B==0) …

Processor 2:

B=0

…

B=1

if (A==0) …

35Copyright © 2019, Elsevier Inc. All rights Reserved

Relaxed Consistency Models

 The key idea in relaxed consistency models is
to allow reads and writes to complete out of
order, but to use synchronization operations to
enforce ordering so that a synchronized
program behaves as though the processor
were sequentially consistent when needed.

 Program-enforced synchronization to force
write on processor to occur before read on the
other processor
 Requires synchronization object for A and another

for B
 “Unlock” after write

 “Lock” after read

M
o
d
e
ls

 o
f M

e
m

o
ry

 C
o
n
s
is

te
n
c
y
: A

n
 In

tro
d
u
c
tio

n

36

Contents
 Introduction

 Centralized Shared-Memory Architectures

 Performance of Symmetric Shared-Memory

Multiprocessors

 Distributed Shared-Memory and Directory-Based

Coherence

 Synchronization

 Models of Memory Consistency

 Example Multicore Processors

 Fallacies and Pitfalls

Copyright © 2019, Elsevier Inc. All rights Reserved

37

Example Multicore Processors

Copyright © 2019, Elsevier Inc. All rights Reserved

38

IBM Power 8

Copyright © 2019, Elsevier Inc. All rights Reserved

39

Power 8 System with 16 Chips

Copyright © 2019, Elsevier Inc. All rights Reserved

40

Intel Xeon E7

Copyright © 2019, Elsevier Inc. All rights Reserved

41

E7 System with 4 and 8 Chips

Copyright © 2019, Elsevier Inc. All rights Reserved

42

SPARC64 X+

Copyright © 2019, Elsevier Inc. All rights Reserved

43

X+ 4-chip Building Block

Copyright © 2019, Elsevier Inc. All rights Reserved

44

SPECintRate Speedup

Copyright © 2019, Elsevier Inc. All rights Reserved

45

Contents
 Introduction

 Centralized Shared-Memory Architectures

 Performance of Symmetric Shared-Memory

Multiprocessors

 Distributed Shared-Memory and Directory-Based

Coherence

 Synchronization

 Models of Memory Consistency

 Example Multicore Processors

 Fallacies and Pitfalls

Copyright © 2019, Elsevier Inc. All rights Reserved

46Copyright © 2019, Elsevier Inc. All rights Reserved

Fallacies and Pitfalls

 P: Measuring performance of multiprocessors by
linear speedup versus execution time

 F: Amdahl’s Law doesn’t apply to parallel
computers

 F: Linear speedups are needed to make
multiprocessors cost-effective
 Doesn’t consider cost of other system components

 P: Not developing the software to take advantage
of, or optimize for, a multiprocessor architecture

F
a
lla

c
ie

s
 a

n
d
 P

itfa
lls

