
1Copyright © 2019, Elsevier Inc. All rights Reserved

Chapter 5

Thread-Level Parallelism

Adapted by Prof. Gheith Abandah

Computer Architecture
A Quantitative Approach, Sixth Edition

2

Contents
 Introduction

 Centralized Shared-Memory Architectures

 Performance of Symmetric Shared-Memory

Multiprocessors

 Distributed Shared-Memory and Directory-Based

Coherence

 Synchronization

 Models of Memory Consistency

 Example Multicore Processors

 Fallacies and Pitfalls

Copyright © 2019, Elsevier Inc. All rights Reserved

3Copyright © 2019, Elsevier Inc. All rights Reserved

Introduction

 Thread-Level parallelism
 Have multiple program counters

 Uses MIMD model

 Targeted for tightly-coupled shared-memory
multiprocessors

 For n processors, need n threads

 Amount of computation assigned to each thread
= grain size
 Threads can be used for data-level parallelism, but

the overheads may outweigh the benefit

In
tro

d
u
c
tio

n

4Copyright © 2019, Elsevier Inc. All rights Reserved

Multiprocessor Types

 Symmetric multiprocessors
(SMP)
 Small number of cores

 Share single memory with
uniform memory latency

 Distributed shared memory
(DSM)
 Memory distributed among

processors

 Non-uniform memory
access/latency (NUMA)

 Processors connected via
direct (switched) and non-
direct (multi-hop)
interconnection networks

In
tro

d
u
c
tio

n

5

Contents
 Introduction

 Centralized Shared-Memory Architectures

 Performance of Symmetric Shared-Memory

Multiprocessors

 Distributed Shared-Memory and Directory-Based

Coherence

 Synchronization

 Models of Memory Consistency

 Example Multicore Processors

 Fallacies and Pitfalls

Copyright © 2019, Elsevier Inc. All rights Reserved

6

Contents
 Centralized Shared-Memory Architectures

 Cache Coherence Problem

 Enforcing Coherence Schemes

 Snooping Coherence Protocols

 Basic Implementation Techniques

 Extensions

 Limitations of Snooping Protocols

Copyright © 2019, Elsevier Inc. All rights Reserved

7Copyright © 2019, Elsevier Inc. All rights Reserved

Cache Coherence Problem

 Processors may see different values through their
caches:

 Cache coherence requirement:
 All reads by any processor must return the most recently

written value

 Writes to the same location by any two processors are
seen in the same order by all processors

C
e
n
tra

liz
e
d
 S

h
a
re

d
-M

e
m

o
ry

 A
rc

h
ite

c
tu

re
s

8Copyright © 2019, Elsevier Inc. All rights Reserved

Enforcing Coherence Schemes

 Coherent caches provide:
 Migration: movement of data

 Replication: multiple copies of data

 Cache coherence protocols
1. Snooping

 Each core tracks sharing status of each block

2. Directory based
 Sharing status of each block is kept in one location

C
e
n
tra

liz
e
d
 S

h
a
re

d
-M

e
m

o
ry

 A
rc

h
ite

c
tu

re
s

9Copyright © 2019, Elsevier Inc. All rights Reserved

Snooping Coherence Protocols

1. Write invalidate protocols
 On write, invalidate all other copies

 Use bus itself to serialize
 Write cannot complete until bus access is obtained

2. Write update protocols
 On write, update all copies

C
e
n
tra

liz
e
d
 S

h
a
re

d
-M

e
m

o
ry

 A
rc

h
ite

c
tu

re
s

10Copyright © 2019, Elsevier Inc. All rights Reserved

Basic Implementation Techniques

 Locating an item when a read miss occurs
 In write-back cache, the updated value must be sent

to the requesting processor

 Cache lines marked as shared or
exclusive/modified
 Only writes to shared lines need an invalidate

broadcast
 After this, the line is marked as exclusive

C
e
n
tra

liz
e
d
 S

h
a
re

d
-M

e
m

o
ry

 A
rc

h
ite

c
tu

re
s

11Copyright © 2019, Elsevier Inc. All rights Reserved

Example Protocol: MSI
C

e
n
tra

liz
e
d
 S

h
a
re

d
-M

e
m

o
ry

 A
rc

h
ite

c
tu

re
s

12

Extensions: The MESI Protocol

 Add exclusive state to
indicate clean block in
only one cache.

 Prevents needing to
write invalidate on a
write.

Copyright © 2019, Elsevier Inc. All rights Reserved

C
e
n
tra

liz
e
d
 S

h
a
re

d
-M

e
m

o
ry

 A
rc

h
ite

c
tu

re
s

13

Extensions: The MEOSI Protocol

 Add owned state to indicate block owned by the
cache and out-of-date in memory.

 The owner keeps providing it on misses.

Copyright © 2019, Elsevier Inc. All rights Reserved

C
e
n
tra

liz
e
d
 S

h
a
re

d
-M

e
m

o
ry

 A
rc

h
ite

c
tu

re
s

14Copyright © 2019, Elsevier Inc. All rights Reserved

Limitations of Snooping Protocols
 Shared memory bus

and snooping bandwidth
is bottleneck for scaling
symmetric
multiprocessors.

 Solutions:
 Duplicating tags

 Partition the inclusive,
shared L3$ on the cores.

 Place directory in
outermost cache

 Use crossbars or point-
to-point networks with
banked memory

C
e
n
tra

liz
e
d
 S

h
a
re

d
-M

e
m

o
ry

 A
rc

h
ite

c
tu

re
s

NUCA

15

Contents
 Introduction

 Centralized Shared-Memory Architectures

 Performance of Symmetric Shared-Memory

Multiprocessors

 Distributed Shared-Memory and Directory-Based

Coherence

 Synchronization

 Models of Memory Consistency

 Example Multicore Processors

 Fallacies and Pitfalls

Copyright © 2019, Elsevier Inc. All rights Reserved

16Copyright © 2019, Elsevier Inc. All rights Reserved

SMP Performance
 Coherence misses are misses due the coherence

protocol.
 True sharing misses

 Write to shared block (transmission of invalidation)

 Read an invalidated block

 False sharing misses
 Read an unmodified word in an invalidated block

 Example: Assume z1 and z2 are in one shared
block.

P
e
rfo

rm
a
n
c
e
 o

f S
y
m

m
e
tric

 S
h
a
re

d
-M

e
m

o
ry

 M
u
ltip

ro
c
e
s
s
o
rs

17

Execution Time and Cache Size

Copyright © 2019, Elsevier Inc. All rights Reserved

P
e
rfo

rm
a
n
c
e
 o

f S
y
m

m
e
tric

 S
h
a
re

d
-M

e
m

o
ry

 M
u
ltip

ro
c
e
s
s
o
rs

18

Memory Time and Cache Size

Copyright © 2019, Elsevier Inc. All rights Reserved

P
e
rfo

rm
a
n
c
e
 o

f S
y
m

m
e
tric

 S
h
a
re

d
-M

e
m

o
ry

 M
u
ltip

ro
c
e
s
s
o
rs

19

Memory Time and Processors

Copyright © 2019, Elsevier Inc. All rights Reserved

P
e
rfo

rm
a
n
c
e
 o

f S
y
m

m
e
tric

 S
h
a
re

d
-M

e
m

o
ry

 M
u
ltip

ro
c
e
s
s
o
rs

20

Misses and Block Size

Copyright © 2019, Elsevier Inc. All rights Reserved

P
e
rfo

rm
a
n
c
e
 o

f S
y
m

m
e
tric

 S
h
a
re

d
-M

e
m

o
ry

 M
u
ltip

ro
c
e
s
s
o
rs

21

Contents
 Introduction

 Centralized Shared-Memory Architectures

 Performance of Symmetric Shared-Memory

Multiprocessors

 Distributed Shared-Memory and Directory-Based

Coherence

 Synchronization

 Models of Memory Consistency

 Example Multicore Processors

 Fallacies and Pitfalls

Copyright © 2019, Elsevier Inc. All rights Reserved

22Copyright © 2019, Elsevier Inc. All rights Reserved

Directory Protocols
 Snooping schemes require communication among

all caches on every cache miss
 Limits scalability

 Another approach: Use centralized directory to keep
track of every block

 Which caches have each block

 Dirty status of each block

 Can implement it in shared L3 cache
 Keep bit vector of size = # cores for each block in L3

 Not scalable beyond shared L3

D
is

trib
u
te

d
 S

h
a
re

d
 M

e
m

o
ry

 a
n
d
 D

ire
c
to

ry
-B

a
s
e
d
 C

o
h
e
re

n
c
e

23Copyright © 2019, Elsevier Inc. All rights Reserved

Directory Protocols

 Distributed memory with directories

D
is

trib
u
te

d
 S

h
a
re

d
 M

e
m

o
ry

 a
n
d
 D

ire
c
to

ry
-B

a
s
e
d
 C

o
h
e
re

n
c
e

24Copyright © 2019, Elsevier Inc. All rights Reserved

Directory Protocol Basics

 For each block, maintain state:
 Uncached

 Shared
 One or more nodes have the block cached, value in memory

is up-to-date

 Set of node IDs

 Modified
 Exactly one node has a copy of the cache block, value in

memory is out-of-date

 Owner node ID

 Directory maintains block states and sends
invalidation messages

D
is

trib
u
te

d
 S

h
a
re

d
 M

e
m

o
ry

 a
n
d
 D

ire
c
to

ry
-B

a
s
e
d
 C

o
h
e
re

n
c
e

25Copyright © 2019, Elsevier Inc. All rights Reserved

Directory Protocols Actions

1. For uncached block:
 Read miss

 Requesting node is sent the requested data and is made the
only sharing node, block is now shared

 Write miss
 The requesting node is sent the requested data and

becomes the sharing node, block is now exclusive

2. For shared block:
 Read miss

 The requesting node is sent the requested data from
memory, node is added to sharing set

 Write miss
 The requesting node is sent the value, all nodes in the

sharing set are sent invalidate messages, sharing set only
contains requesting node, block is now exclusive

D
is

trib
u
te

d
 S

h
a
re

d
 M

e
m

o
ry

 a
n
d
 D

ire
c
to

ry
-B

a
s
e
d
 C

o
h
e
re

n
c
e

26Copyright © 2019, Elsevier Inc. All rights Reserved

Directory Protocol Actions

3. For exclusive block:
 Read miss

 The owner is sent a data fetch message, block becomes
shared, owner sends data to the directory, data written
back to memory, sharers set contains old owner and
requestor

 Data write back
 Block becomes uncached, sharer set is empty

 Write miss
 Message is sent to old owner to invalidate and send the

value to the directory, requestor becomes new owner,
block remains exclusive

D
is

trib
u
te

d
 S

h
a
re

d
 M

e
m

o
ry

 a
n
d
 D

ire
c
to

ry
-B

a
s
e
d
 C

o
h
e
re

n
c
e

27

Example Messages

Copyright © 2019, Elsevier Inc. All rights Reserved

28

Contents
 Introduction

 Centralized Shared-Memory Architectures

 Performance of Symmetric Shared-Memory

Multiprocessors

 Distributed Shared-Memory and Directory-Based

Coherence

 Synchronization

 Models of Memory Consistency

 Example Multicore Processors

 Fallacies and Pitfalls

Copyright © 2019, Elsevier Inc. All rights Reserved

29Copyright © 2019, Elsevier Inc. All rights Reserved

Synchronization

 Basic building blocks:
 Atomic exchange

 Swaps register with memory location

 Test-and-set

 Sets under condition

 Fetch-and-increment

 Reads original value from memory and increments it in memory

 Requires memory read and write in uninterruptable instruction

 RISC-V: load reserved/store conditional
 If the contents of the memory location specified by the load

linked are changed before the store conditional to the same
address, the store conditional fails

S
y
n
c
h
ro

n
iz

a
tio

n

30Copyright © 2019, Elsevier Inc. All rights Reserved

Implementing Locks

 Atomic exchange (EXCH):
 on the memory location specified by the contents of x1

with the value in x4

try: mov x3,x4 ;move exchange value

lr x2,x1 ;load reserved from

sc x3,0(x1) ;store conditional

bnez x3,try ;branch store fails

mov x4,x2 ;put load value in x4?

S
y
n
c
h
ro

n
iz

a
tio

n

31Copyright © 2019, Elsevier Inc. All rights Reserved

Implementing Locks

 Lock (not efficient)
addi x2,x0,#1

lockit: EXCH x2,0(x1) ;atomic exchange

bnez x2,lockit ;already locked?

 Lock (efficient):
lockit: ld x2,0(x1) ;load of lock

bnez x2,lockit ;not available-spin

addi x2,x0,#1 ;load locked value

EXCH x2,0(x1) ;swap

bnez x2,lockit ;branch if lock isn’t 0

S
y
n
c
h
ro

n
iz

a
tio

n

32

Contents
 Introduction

 Centralized Shared-Memory Architectures

 Performance of Symmetric Shared-Memory

Multiprocessors

 Distributed Shared-Memory and Directory-Based

Coherence

 Synchronization

 Models of Memory Consistency

 Example Multicore Processors

 Fallacies and Pitfalls

Copyright © 2019, Elsevier Inc. All rights Reserved

33Copyright © 2019, Elsevier Inc. All rights Reserved

Models of Memory Consistency

 Memory consistency models deal with when a
processor must see a value that has been
updated by another processor

 Sequential consistency:
 Result of execution should be the same as long as:

 Accesses on each processor were kept in order

 Accesses on different processors were arbitrarily interleaved

 To implement, delay completion of all memory
accesses until all invalidations caused by the
access are completed.
 Reduces performance!

C
e
n
tra

liz
e
d
 S

h
a
re

d
-M

e
m

o
ry

 A
rc

h
ite

c
tu

re
s

34

 Example:

 Should be impossible for both if-statements to be
evaluated as true with sequential consistency.

 Possible with delayed write invalidate.

Copyright © 2019, Elsevier Inc. All rights Reserved

Models of Memory Consistency
M

o
d
e
ls

 o
f M

e
m

o
ry

 C
o
n
s
is

te
n
c
y
: A

n
 In

tro
d
u
c
tio

n

Processor 1:

A=0

…

A=1

if (B==0) …

Processor 2:

B=0

…

B=1

if (A==0) …

35Copyright © 2019, Elsevier Inc. All rights Reserved

Relaxed Consistency Models

 The key idea in relaxed consistency models is
to allow reads and writes to complete out of
order, but to use synchronization operations to
enforce ordering so that a synchronized
program behaves as though the processor
were sequentially consistent when needed.

 Program-enforced synchronization to force
write on processor to occur before read on the
other processor
 Requires synchronization object for A and another

for B
 “Unlock” after write

 “Lock” after read

M
o
d
e
ls

 o
f M

e
m

o
ry

 C
o
n
s
is

te
n
c
y
: A

n
 In

tro
d
u
c
tio

n

36

Contents
 Introduction

 Centralized Shared-Memory Architectures

 Performance of Symmetric Shared-Memory

Multiprocessors

 Distributed Shared-Memory and Directory-Based

Coherence

 Synchronization

 Models of Memory Consistency

 Example Multicore Processors

 Fallacies and Pitfalls

Copyright © 2019, Elsevier Inc. All rights Reserved

37

Example Multicore Processors

Copyright © 2019, Elsevier Inc. All rights Reserved

38

IBM Power 8

Copyright © 2019, Elsevier Inc. All rights Reserved

39

Power 8 System with 16 Chips

Copyright © 2019, Elsevier Inc. All rights Reserved

40

Intel Xeon E7

Copyright © 2019, Elsevier Inc. All rights Reserved

41

E7 System with 4 and 8 Chips

Copyright © 2019, Elsevier Inc. All rights Reserved

42

SPARC64 X+

Copyright © 2019, Elsevier Inc. All rights Reserved

43

X+ 4-chip Building Block

Copyright © 2019, Elsevier Inc. All rights Reserved

44

SPECintRate Speedup

Copyright © 2019, Elsevier Inc. All rights Reserved

45

Contents
 Introduction

 Centralized Shared-Memory Architectures

 Performance of Symmetric Shared-Memory

Multiprocessors

 Distributed Shared-Memory and Directory-Based

Coherence

 Synchronization

 Models of Memory Consistency

 Example Multicore Processors

 Fallacies and Pitfalls

Copyright © 2019, Elsevier Inc. All rights Reserved

46Copyright © 2019, Elsevier Inc. All rights Reserved

Fallacies and Pitfalls

 P: Measuring performance of multiprocessors by
linear speedup versus execution time

 F: Amdahl’s Law doesn’t apply to parallel
computers

 F: Linear speedups are needed to make
multiprocessors cost-effective
 Doesn’t consider cost of other system components

 P: Not developing the software to take advantage
of, or optimize for, a multiprocessor architecture

F
a
lla

c
ie

s
 a

n
d
 P

itfa
lls

