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Introduction

 Thread-Level parallelism
 Have multiple program counters

 Uses MIMD model

 Targeted for tightly-coupled shared-memory 
multiprocessors

 For n processors, need n threads

 Amount of computation assigned to each thread 
= grain size
 Threads can be used for data-level parallelism, but 

the overheads may outweigh the benefit
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Multiprocessor Types

 Symmetric multiprocessors 
(SMP)
 Small number of cores

 Share single memory with 
uniform memory latency

 Distributed shared memory 
(DSM)
 Memory distributed among 

processors

 Non-uniform memory 
access/latency (NUMA)

 Processors connected via 
direct (switched) and non-
direct (multi-hop) 
interconnection networks
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Cache Coherence Problem

 Processors may see different values through their 
caches:

 Cache coherence requirement:
 All reads by any processor must return the most recently 

written value

 Writes to the same location by any two processors are 
seen in the same order by all processors
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Enforcing Coherence Schemes

 Coherent caches provide:
 Migration:  movement of data

 Replication:  multiple copies of data

 Cache coherence protocols
1. Snooping

 Each core tracks sharing status of each block

2. Directory based
 Sharing status of each block is kept in one location
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Snooping Coherence Protocols

1. Write invalidate protocols
 On write, invalidate all other copies

 Use bus itself to serialize
 Write cannot complete until bus access is obtained

2. Write update protocols
 On write, update all copies
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Basic Implementation Techniques

 Locating an item when a read miss occurs
 In write-back cache, the updated value must be sent 

to the requesting processor

 Cache lines marked as shared or 
exclusive/modified
 Only writes to shared lines need an invalidate 

broadcast
 After this, the line is marked as exclusive
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Example Protocol: MSI
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Extensions: The MESI Protocol

 Add exclusive state to 
indicate clean block in 
only one cache.

 Prevents needing to 
write invalidate on a 
write.
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Extensions: The MEOSI Protocol

 Add owned state to indicate block owned by the 
cache and out-of-date in memory.

 The owner keeps providing it on misses.

Copyright © 2019, Elsevier Inc. All rights Reserved

C
e
n
tra

liz
e
d
 S

h
a
re

d
-M

e
m

o
ry

 A
rc

h
ite

c
tu

re
s



14Copyright © 2019, Elsevier Inc. All rights Reserved

Limitations of Snooping Protocols
 Shared memory bus 

and snooping bandwidth 
is bottleneck for scaling 
symmetric 
multiprocessors.

 Solutions:
 Duplicating tags

 Partition the inclusive, 
shared L3$ on the cores.

 Place directory in 
outermost cache

 Use crossbars or point-
to-point networks with 
banked memory
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SMP Performance
 Coherence misses are misses due the coherence 

protocol.
 True sharing misses

 Write to shared block (transmission of invalidation)

 Read an invalidated block

 False sharing misses
 Read an unmodified word in an invalidated block

 Example: Assume z1 and z2 are in one shared 
block.
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Execution Time and Cache Size
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Memory Time and Cache Size
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Memory Time and Processors
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Misses and Block Size
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Directory Protocols
 Snooping schemes require communication among 

all caches on every cache miss
 Limits scalability

 Another approach:  Use centralized directory to keep 
track of every block

 Which caches have each block

 Dirty status of each block

 Can implement it in shared L3 cache
 Keep bit vector of size = # cores for each block in L3

 Not scalable beyond shared L3
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Directory Protocols

 Distributed memory with directories
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Directory Protocol Basics

 For each block, maintain state:
 Uncached

 Shared
 One or more nodes have the block cached, value in memory 

is up-to-date

 Set of node IDs

 Modified
 Exactly one node has a copy of the cache block, value in 

memory is out-of-date

 Owner node ID

 Directory maintains block states and sends 
invalidation messages
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Directory Protocols Actions

1. For uncached block:
 Read miss

 Requesting node is sent the requested data and is made the 
only sharing node, block is now shared

 Write miss
 The requesting node is sent the requested data and 

becomes the sharing node, block is now exclusive

2. For shared block:
 Read miss

 The requesting node is sent the requested data from 
memory, node is added to sharing set

 Write miss
 The requesting node is sent the value, all nodes in the 

sharing set are sent invalidate messages, sharing set only 
contains requesting node, block is now exclusive

D
is

trib
u
te

d
 S

h
a
re

d
 M

e
m

o
ry

 a
n
d
 D

ire
c
to

ry
-B

a
s
e
d
 C

o
h
e
re

n
c
e



26Copyright © 2019, Elsevier Inc. All rights Reserved

Directory Protocol Actions

3. For exclusive block:
 Read miss

 The owner is sent a data fetch message, block becomes 
shared, owner sends data to the directory, data written 
back to memory, sharers set contains old owner and 
requestor

 Data write back
 Block becomes uncached, sharer set is empty

 Write miss
 Message is sent to old owner to invalidate and send the 

value to the directory, requestor becomes new owner, 
block remains exclusive
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Example Messages
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Synchronization

 Basic building blocks:
 Atomic exchange

 Swaps register with memory location

 Test-and-set

 Sets under condition

 Fetch-and-increment

 Reads original value from memory and increments it in memory

 Requires memory read and write in uninterruptable instruction

 RISC-V:  load reserved/store conditional
 If the contents of the memory location specified by the load 

linked are changed before the store conditional to the same 
address, the store conditional fails
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Implementing Locks

 Atomic exchange (EXCH):
 on the memory location specified by the contents of x1

with the value in x4

try: mov x3,x4 ;move exchange value

lr x2,x1 ;load reserved from

sc x3,0(x1) ;store conditional

bnez x3,try ;branch store fails

mov x4,x2 ;put load value in x4?
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Implementing Locks

 Lock (not efficient)
addi x2,x0,#1

lockit: EXCH x2,0(x1) ;atomic exchange

bnez x2,lockit ;already locked?

 Lock (efficient):
lockit: ld x2,0(x1) ;load of lock

bnez x2,lockit ;not available-spin

addi x2,x0,#1 ;load locked value

EXCH x2,0(x1) ;swap

bnez x2,lockit ;branch if lock isn’t 0
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Models of Memory Consistency

 Memory consistency models deal with when a 
processor must see a value that has been 
updated by another processor

 Sequential consistency:
 Result of execution should be the same as long as:

 Accesses on each processor were kept in order

 Accesses on different processors were arbitrarily interleaved

 To implement, delay completion of all memory 
accesses until all invalidations caused by the 
access are completed.
 Reduces performance!
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 Example:

 Should be impossible for both if-statements to be 
evaluated as true with sequential consistency.

 Possible with delayed write invalidate.
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Relaxed Consistency Models

 The key idea in relaxed consistency models is 
to allow reads and writes to complete out of 
order, but to use synchronization operations to 
enforce ordering so that a synchronized 
program behaves as though the processor 
were sequentially consistent when needed.

 Program-enforced synchronization to force 
write on processor to occur before read on the 
other processor
 Requires synchronization object for A and another 

for B
 “Unlock” after write

 “Lock” after read
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Example Multicore Processors
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IBM Power 8
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Power 8 System with 16 Chips
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Intel Xeon E7
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E7 System with 4 and 8 Chips
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SPARC64 X+
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X+ 4-chip Building Block
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SPECintRate Speedup
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Fallacies and Pitfalls

 P: Measuring performance of multiprocessors by 
linear speedup versus execution time

 F: Amdahl’s Law doesn’t apply to parallel 
computers

 F: Linear speedups are needed to make 
multiprocessors cost-effective
 Doesn’t consider cost of other system components

 P: Not developing the software to take advantage 
of, or optimize for, a multiprocessor architecture
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