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Introduction
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= Thread-Level parallelism

= Have multiple program counters
= Uses MIMD model

= Targeted for tightly-coupled shared-memory
multiprocessors

s For nprocessors, need nthreads

= Amount of computation assigned to each thread
= grain size
= Threads can be used for data-level parallelism, but
the overheads may outweigh the benefit




Multiprocessor Types
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= Symmetric multiprocessors ’ e . e
(SMP) o | o, | o
= Small number of cores | | =

= Share single memory with

uniform memory latency
= Distributed shared memory | e I
(DSM)

m mem l0s yst m

= Memory distributed among
Processors

= Non-uniform memory
access/latency (NUMA)

= Processors connected via
direct (switched) and non-
direct (multi-hop)
Interconnection networks
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Cache Coherence Problem

s Processors may see different values through their

Time Event processor A processor B location X

caches:

Cache contents for Cache contents for Memory contents for

0

1

Processor A reads X | |

Processor B reads X | 1 1

D19 | -

= Cache coherence requirement:

Processor A stores 0 1 0
0into X
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= All reads by any processor must return the most recently
written value

= Writes to the same location by any two processors are
seen in the same order by all processors




Enforcing Coherence Schemes

= Coherent caches provide:
s Migration. movement of data
s Replication. multiple copies of data

s Cache coherence protocols

1. Snooping
= Each core tracks sharing status of each block

CFPU CPU CFPU CFPU
cache cache caclhe cacle
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Bus

2. Directory based
» Sharing status of each block is kept in one location




Snooping Coherence Protocols

1. Write invalidate protocols
= On write, invalidate all other copies

s Use bus itself to serialize

= Write cannot complete until bus access is obtained
Contents of processor Contents of processor  Contents of memory
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Processor activity Bus activity A’s cache B's cache location X
0
Processor A reads X Cache miss 0 0
for X
Processor B reads X Cache miss 0 0 0
for X
Processor A writes a Invalidation 1 0
lto X for X
Processor B reads X Cache miss 1 1 1
for X

2. Write update protocols
= On write, update all copies




Basic Implementation Techniques

= Locating an item when a read miss occurs

= In write-back cache, the updated value must be sent
to the requesting processor

s Cache lines marked as shared or
exclusive/modified

= Only writes to shared lines need an invalidate
broadcast
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= After this, the line is marked as exclusive




Example Protocol: MSI

CPU read hit

Write miss for this block

Invalidate for
this block

Shared

(read only) Shared

(read only)

CPU read -
Place read miss on bus

CPU
read
miss

CPU
read
miss

CPU write

0 i
g 3 Place read S|z
3= miss on bus = g "
g0 <5 8
8|4 SIE S
oE 2 5 e
£la
Write miss 3 |®
for this block

Read miss

for this block Cache state transitions based
on requests from the bus
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Exclusive
(readiwrite)

Exclusive
(read/write)

Cache state fransitions
based on requests from CPU

CPU write miss

Write-back cache block
Place write miss on bus

CPU write hit
CPU read hit
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Extensions: The MESI Protocol

s Add exclusive state to
Indicate clean block In
only one cache.

= Prevents needing to
write invalidate ona,_
write.
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Extensions: The MEOSI Protocol

= Add owned state to indicate block owned by the
cache and out-of-date in memory.

= The owner keeps providing it on misses.
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| GetX
" GetS GetX .
s I(:;S‘ '0 FCLET I{;_/p "etse?él;is” T
Wr /- 3 ' ¥ GetX

Wr/GetX
Wr /-

Rd/GetS
Wr/GetX

Wr/GetX




Limitations of Snooping Protocols

= Shared memory bus
and snooping bandwidth
IS bottleneck for scaling
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) NUCA
symmetric
multiprocessors. N
s Solutions:
= Duplicating tags Jonear N | omeor || omeor )| omear
. . . of private of private of private of private
= Partition the inclusive, e | | _cme | | e | | con
shared L3$ on the cores.
= Place directory in ‘*‘T"‘* “f“‘* | ‘
OUtermOSt CaChe [ Interconnection network j

= Use crossbars or point-

to-point networks with — l — I
banked memory
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SMP Performance

s Coherence misses are misses due the coherence
protocol.
= True sharing misses

= Write to shared block (transmission of invalidation)
= Read an invalidated block

= False sharing misses
= Read an unmodified word in an invalidated block

= Example: Assume z1 and z2 are in one shared
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block.
Time P1 P2
1 Write z1
2 Read 22
3 Write z1
4 Write z2
5 Read z2




Execution Time and Cache Size
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Memory Time and Cache Size

3.25
3
2.75 1 B Instruction
25 O Capacity/conflict
' O Compulsory
2.25 | False sharing

B True sharing

Memory cycles per instruction
=N
o o
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0.25 -
0
1 2 4 8
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Cache size (MB)




Memory Time and Processors
3_

@ Instruction

@ Capacity/conflict
O Compulsory

m False sharing

m True sharing
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Processor count




Misses per 1000 instructions

16
15
14 1
13 1
12 1
11 S

64 128
Block size (bytes)

Misses and Block Size

B Instruction

O Capacity/conflict
O Compulsory

B False sharing

B True sharing

256
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Directory Protocols

= Snooping schemes require communication among
all caches on every cache miss

= Limits scalability
= Another approach: Use centralized directory to keep

track of every block P [p] p| P [P
= Which caches have each block
- Dirty status of each block —

Interconnection Network ]
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= Can implement it in shared L3 cache
= Keep bit vector of size = # cores for each block in L3
= Not scalable beyond shared L3
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Directory Protocols

= Distributed memory with directories

Multicore
processor
+ caches

Multicore
processor
+ caches

Multicore
processor
+ caches

Multicore
processor
+ caches

Interconnection network

Multicore
processor processor
+ caches

+ caches

IO 11O

processor
+ caches

processor
+ caches
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Directory Protocol Basics

s For each block, maintain state:

s Uncached
s Shared

= One or more nodes have the block cached, value in memory
IS up-to-date
« Set of node IDs
= Modified

= Exactly one node has a copy of the cache block, value in
memory is out-of-date

= Owner node ID

= Directory maintains block states and sends
Invalidation messages
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Directory Protocols Actions

1. For uncached block:

= Read miss

» Requesting node is sent the requested data and is made the
only sharing node, block is now shared

s Write miss

= The requesting node Is sent the requested data and
becomes the sharing node, block is now exclusive

2. For shared block:

» Read miss

= The requesting node Is sent the requested data from
memory, node is added to sharing set

s \Write miss

= The requesting node is sent the value, all nodes in the
sharing set are sent invalidate messages, sharing set only
contains requesting node, block is now exclusive
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Directory Protocol Actions

3. For exclusive block:

= Read miss

= The owner is sent a data fetch message, block becomes
shared, owner sends data to the directory, data written
back to memory, sharers set contains old owner and
requestor

= Data write back
= Block becomes uncached, sharer set is empty

s Write miss

= Message is sent to old owner to invalidate and send the
value to the directory, requestor becomes new owner,
block remains exclusive

)
92]
—
—=.
o
c
—
@D
o
92
=
jab)
=
®
Qo
<
®
3
o
=
<
jab)
-
o
o
=
@D
(®)]
—t
o
=
<
Qo
jab)
(7]
®
Q.
O
o
=2
®
=
®
-]
()
@D



Example Messages

3. Read Request
Local Node,

Requester

4a. Data Reply 1. Read Request

2. Read resp.
Provide Owner

Remote
Node with
Dirty Copy

Home Node,
Dir. Of Block

Ab. Ack. Message
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Synchronization

= Basic building blocks:
= Atomic exchange
= Swaps register with memory location
= Test-and-set
= Sets under condition
= Fetch-and-increment
= Reads original value from memory and increments it in memory
= Requires memory read and write in uninterruptable instruction
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s RISC-V: load reserved/store conditional

= If the contents of the memory location specified by the load
linked are changed before the store conditional to the same
address, the store conditional fails




Implementing Locks

= Atomic exchange (EXCH):

= 0N the memory location specified by the contents of x1
with the value In x4
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try: mov x3,x4 ;move exchange value
Tr x2,x1 :1oad reserved from
SC x3,0(x1) :store conditional
bnez x3,try :branch store fails

mov x4,x2 ;put load value in x47?




= Lock (not efficient)
addi x2,x0,#1

Tockit: EXCH x2,0(x1)
bnez x2,lockit

= Lock (efficient):

Tockit: 1d x2,0(x1)
bnez x2,lockit
addi x2,x0,#1
EXCH x2,0(x1)
bnez x2,lockit

Implementing Locks
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;atomic exchange
;already locked?

»1oad of Tock

;not available-spin

- 1load locked value

; swap

:branch if lock isn’t O
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Models of Memory Consistency

= Memory consistency models deal with when a
processor must see a value that has been
updated by another processor

= Sequential consistency:

= Result of execution should be the same as long as:
= Accesses on each processor were kept in order
= Accesses on different processors were arbitrarily interleaved
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= To iImplement, delay completion of all memory
accesses until all invalidations caused by the
access are completed.

= Reduces performance!




Models of Memory Consistency

= Example:
Processor 1: Processor 2:
A=0 B=0
A=1 B=1
if (B==0) ... if (A==0) ...

= Should be impossible for both if-statements to be
evaluated as true with sequential consistency.
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s Possible with delayed write invalidate.




Relaxed Consistency Models

= The key idea In relaxed consistency models is
to allow reads and writes to complete out of
order, but to use synchronization operations to
enforce ordering so that a synchronized
program behaves as though the processor
were sequentially consistent when needed.

s Program-enforced synchronization to force
write on processor to occur before read on the
other processor

= Requires synchronization object for A and another
for B
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= “Unlock” after write
= ‘Lock” after read
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Example Multicore Processors

Feature IBM Power8 Intel Xeon E7 Fujitsu SPARC64 X +
Cores/chip 4,6,8, 10,12 4, 8,10, 12, 22, 24 16
Multithreading ~ SMT SMT SMT
Threads/core 8 2 2
Clock rate 3.1-3.8 GHz 2.1-3.2 GHz 3.5GHz
L1 I cache 32 KB per core 32 KB per core 64 KB per core
L1 D cache 64 KB per core 32 KB per core 64 KB per core
L2 cache 512 KB per core 256 KB per core 24 MiB shared
L3 cache L3: 32-96 MiB: 8 MiB per 10-60 MiB @ 2.5 MiB per core; None
core (using eDRAM); shared  shared, with larger core counts
with nonuniform access time
Inclusion Yes, L3 superset Yes, L3 superset Yes
Multicore Extended MESI with MESIF: an extended form of MESI  MOESI
coherence behavioral and locality hints allowing direct transfers of clean
protocol (13-states) blocks
Multichip Hybrid strategy with Hybrid strategy with snooping and  Hybnd strategy with
coherence snooping and directory directory snooping and directory
implementation
Multiprocessor ~ Can connect up to 16 Up to 8 processor chips directly via  Crossbar interconnect chip,
interconnect processor chips with 1 or 2 Quickpath; larger system and supports up to 64 processors;
support hops to reach any processor directory support with additional includes directory support

logic

Processor chip
range

1-16

2-32

1-64

Core count 4-192 12-576 8-1024
I igi range -
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IBM Power 8

x 3 differential links

Core Core Core Core
I I I I
512 KB 512 KB 512 KB 512 KB
L2 L2 L2 Up to 12 Cores L2
| 1 1 1
8 MB 8 MB 8 MB 8 MB
L3 L3 L3 L3
Region Region Region Region
| 1 1 |
On-chip coherence and data interconnect
Off-chip Off-chip Interrupt Accelerator — o
Intra-group || Intergroup || Control Interface S F’lHB v nn“" ,
SMP Cirl SMP Cirl RNGI | e =
Accel CAPP m Memory
| Control
- Crypto Cmp \ J * {
Intragroup links Accel || Accel PClgen 3 1/0 ~—
8B@4.8GHz/ Intergroup links 8 GHz / direction differential 2B @ 9.6 GHz read, 1B+cmd
direction 2B @ 6.4 GHz/ (16x+16x) or (16x+8x+8x) @ 9.6 GHz write
x 3 single-ended links direction x 8 differential channels




Power 8 System with 16 Chips

7 N XN o=

4 chip
—|
group 12-core 12-core 12-core 12-core
% Power 8 / Power 8 Power 8 \ Power 8 x
i/ ] [\ 1Y
12-core 12-core 12-core 12-core
/ Power 8 / Power 8 Power 8 \ Power 8 \
& 12-core & 12-core 12-core / 12-core /
25.6 GB/s Power 8 Power 8 Power 8 Power 8
Inter-group —3 \
Cable
1 i [l I
& 12-core \\ 12-core 12-core / 12-core /
78.4 GB/s Power 8 Power 8 Power 8 Power 8
Intra-group ~~._ N

Bus

-




Intel Xeon E7

[ Paro | [ Pom1 | [ Ponz | [ owi | wh b A
QP! Agent QPI Agent
10APIC [+ DMA UBox PCU
2x20, 9.6 GTis _ | | EX 1x20, 9.6 GT/s
Core 2 L3 L3 o Core L3 Core
~25GHz 38 CacneBo pemp| ||25Me CacheBo 38 ._sscHa| ||25Ms CacheBe 55 >=25 GHz
Core 2 L3 L3 o Core L3 Core
»25GHz 38 CacheBo 5 mp| | |25mp Cacheso 33 . _oconel ||25ms CacheBo §£>=2.56H2
Core 2o L3 L3 2o Core L3 Core
~25GHz 3B CacheBo 5 omp| | [25mB CacneBe 3D . _s5aHz| ||25ms CacheBo §3>=2.56|-|z
Core 2o L3 L3 2o Core L3 Core
~25GHz 3B CacheBo 5 omp| | [25mB CacneBe 3D . _s5aHz| ||25ms CacheBo §3>=2.56|-|z
Core 2o L3 L3 o Core L3 Core
= =]
»=25GHz 3 @ CacheBo ,emp| | |25Mp CacheBo 8% . oschz| ||25me CaheBe §3>=2.56|-|z
Home Agent Home Agent
DDR (2 channels)
DD (4 channsls)




E/ System with 4 and 8 Chips

32 PCle*

Mext generation
Intel" AVX 2.0 / Haswell New J Intel” Scalable
Instruction (HNI) Inteng:l:uﬂn 5
| 11 /7<\
| Il
I ] 11
I I
| E7 E7 E7 E7
Il It
Il Itk
Il It
Il 114
E7 E7 E7 E7




SPARCGO4 X+

L2 Cache '
- Control"

i
o
-
O
&
o
o
@ f
2
Av'n ‘

DB/ §3AHIS

DDR3 Interface
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Speedup relative to the smallest configuration
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600
580
560

540 —
520 ¢

500
480
460
440
420
400
380
360
340

320 ¢
300 ¢
280
260 |
240
220
200
180 |
160 |
140 ¢
120 ¢
100 ¢

SPECintRate Speedup

| == [BM Power8
Fujitu SPARCG64 X+
|_| == |ntel Xeon E7Y o
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Fallacies and Pitfalls

= P: Measuring performance of multiprocessors by
linear speedup versus execution time
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= F: Amdahl’'s Law doesn’t apply to parallel
computers

s . Linear speedups are needed to make
multiprocessors cost-effective

= Doesn’t consider cost of other system components

= P: Not developing the software to take advantage
of, or optimize for, a multiprocessor architecture




