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Introduction

 SIMD architectures can exploit significant data-
level parallelism for:
 Matrix-oriented scientific computing

 Media-oriented image and sound processing

 SIMD is more energy efficient than MIMD
 Only needs to fetch one instruction per data operation

 Makes SIMD attractive for personal mobile devices

 SIMD allows programmer to continue to think 
sequentially
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Vector Architectures
 Basic idea

 Read sets of data 
elements into “vector 
registers”

 Operate on those 
registers

 Disperse the results 
back into memory

 Registers are 
controlled by compiler
 Used to hide memory 

latency

 Leverage memory 
bandwidth
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RV64V Extension
 Loosely based on Cray-1

 32 64-bit vector registers
 Register file has 16 read ports and 8 write ports

 Elements per v. register depends on the configuration

 Vector functional units
 Fully pipelined

 Data and control hazards are detected

 Vector load-store unit
 Fully pipelined

 One word per clock cycle after initial latency

 Scalar registers
 32 general-purpose registers

 32 floating-point registers
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RV64V Vector Instructions
 Operate on vectors or vectors and scalars

 Examples: vadd, vmul, vld, vst

 Have suffixes
 .vv:  two vector operands

 .vs and .sv:  vector and scalar operands

 The compiler usually adds these suffixes according to the 
operands

 Example: vmul v1,v0,fo is vmul.vs

 These instructions can operate on the following types:

 The operand type is implicit according to the register 
type.

 Registers are configurable at run time.
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Example: DAXPY

 DAXPY: A times X 

plus Y

 C Code:

for (i=0; i<32; i++)

Y[i]=a*X[i]+Y[i];

 RISC-V Code:

fld f0,a

addi x28,x5,#256

Loop:

fld f1,0(x5)

fmul.d f1,f1,f0

fld f2,0(x6)

fadd.d f2,f2,f1

fsd f2,0(x6)

addi x5,x5,#8

addi x6,x6,#8

bne x28,x5,Loop
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Example: DAXPY

 RV64V Code:

vsetdcfg 4*FP64 # Enable 4 DP FP vregs

fld f0,a # Load scalar a

vld v0,x5 # Load vector X

vmul v1,v0,f0 # Vector-scalar mult

vld v2,x6 # Load vector Y

vadd v3,v1,v2 # Vector-vector add

vst v3,x6 # Store the sum

vdisable # Disable vector regs

 Only 8 instructions
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Vector Execution Time

 Execution time depends on three factors:
 Length of operand vectors

 Structural hazards

 Data dependencies

 RV64V functional units consume one element 
per clock cycle
 Execution time is approximately the vector length

 Convey
 Set of vector instructions that could potentially 

execute together
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Chimes

 Sequences with read-after-write dependency 
hazards placed in same convey via chaining 

 Chaining
 Allows a vector operation to start as soon as the 

individual elements of its vector source operand 
become available

 Chime
 Unit of time to execute one convey

 m conveys executes in m chimes for vector length n

 For vector length of n, requires m x n clock cycles
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Example

vld v0,x5 # Load vector X

vmul v1,v0,f0 # Vector-scalar multiply

vld v2,x6 # Load vector Y

vadd v3,v1,v2 # Vector-vector add

vst v3,x6 # Store the sum

Convoys:

1 vld vmul

2 vld vadd

3 vst

3 chimes, 2 FP ops per result, cycles per FLOP = 1.5

For 32 element vectors, requires 32 x 3 = 96 clock cycles
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Challenges

 Start up time

 Latency of vector functional unit

 Assume the same as Cray-1
 Floating-point add => 6 clock cycles

 Floating-point multiply => 7 clock cycles

 Floating-point divide => 20 clock cycles

 Vector load => 12 clock cycles

 Improvements:
1. > 1 element per clock cycle

2. Non-32 wide vectors

3. IF statements in vector code

4. Memory system optimizations to support vector 

processors
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Multiple Lanes
 Beyond one element per clock cycle

 Element i of vector register A is “hardwired” to element i
of vector register B
 Allows for multiple hardware lanes
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Vector-Length Registers

 RV64V has two hardware registers:

 MVL: maximum vector-length register

 VL: vector-length register

 Vectors of arbitrary length are processed with 

strip mining. All blocks but the last are of length 

MVL, utilizing the full power of the vector 

processor. The last block contains the reminder 

elements.
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Vector-Length Registers
Handling loops not equal to 32.

vsetdcfg 2 DP FP # Enable 2 64b FP registers

fld f0,a # Load scalar a

loop:

setvl t0,a0 # vl = t0 = min(mvl,n)

vld v0,x5 # Load vector X

slli t1,t0,3 # t1 = vl * 8 (in bytes)

add x5,x5,t1 # Increment pointer to X by vl*8

vmul v0,v0,f0 # Vector-scalar mult

vld v1,x6 # Load vector Y

vadd v1,v0,v1 # Vector-vector add

sub a0,a0,t0 # n -= vl (t0)

vst v1,x6 # Store the sum into Y

add x6,x6,t1 # Increment pointer to Y by vl*8

bnez a0,loop # Repeat if n != 0

vdisable # Disable vector regs
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Predicate Registers
 Consider:

for (i = 0; i < 64; i=i+1)

if (X[i] != 0)

X[i] = X[i] – Y[i];

 Use predicate register to “disable” elements:
vsetdcfg 2*FP64 # Enable 2 64b FP vector regs

vsetpcfgi 1 # Enable 1 predicate register

vld v0,x5 # Load vector X into v0

vld v1,x6 # Load vector Y into v1

fmv.d.x f0,x0 # Put (FP) zero into f0

vpne p0,v0,f0 # Set p0(i) to 1 if v0(i)!=f0

vsub v0,v0,v1 # Subtract under vector mask

vst v0,x5 # Store the result in X

vdisable # Disable vector registers

vpdisable # Disable predicate registers
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Memory Banks

 Memory system must be designed to support high 

bandwidth for vector loads and stores

 Spread accesses across multiple banks

 Control bank addresses independently

 Load or store non sequential words (need independent bank 

addressing)

 Support multiple vector processors sharing the same memory
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Memory Banks

 Example: Cray T932

 32 processors, each generating 4 loads and 2 

stores/cycle

 Processor cycle time is 2.167 ns, SRAM cycle time is 

15 ns

 How many memory banks needed?

SRAM cycle time = 15 / 2.167  = 7 cycles

Access rate = 32 x (4+2) = 192 access/cycle

192 x 7 = 1334 banks
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 Media applications operate on data types narrower than 

the native word size

 Limitations, compared to vector instructions:

 Number of data operands encoded into op code

 No predicate registers

 No sophisticated addressing (strided, scatter-gather)
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Intel x86 SIMD Implementations

 Intel MMX (1996)

 Eight 8-bit integer ops or four 16-bit integer ops

 Streaming SIMD Extensions (SSE) (1999)

 Eight 16-bit integer ops

 Four 32-bit integer/fp ops or two 64-bit integer/fp ops

 Advanced Vector Extensions (2010)

 Four 64-bit integer/fp ops

 AVX-512 (2017)

 Eight 64-bit integer/fp ops

 Operands must be consecutive and aligned 

memory locations
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DAXPY SIMD Example

fld f0,a # Load scalar a

splat.4D f0,f0 # Make 4 copies of a

addi x28,x5,#256 # Last address to load

Loop:

fld.4D   f1,0(x5) # Load X[i] ... X[i+3]

fmul.4D f1,f1,f0 # a x X[i] ... a x X[i+3]

fld.4D f2,0(x6) # Load Y[i] ... Y[i+3]

fadd.4D f2,f2,f1 # a x X[i]+Y[i] ...

# a x X[i+3]+Y[i+3]

fsd.4D f2,0(x6) # Store Y[i]... Y[i+3]

addi x5,x5,#32 # Increment index to X

addi x6,x6,#32 # Increment index to Y

bne x28,x5,Loop # Check if done
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Roofline Performance Model

 Basic idea:

 Plot peak floating-point throughput as a function of 

arithmetic intensity

 Ties together floating-point performance and 

memory performance for a target machine

 Arithmetic intensity

 Floating-point operations per byte accessed

Attainable GPLOPs/sec = Min (Peak Memory BW 

× Arithmetic Intensity, Peak FP Performance )
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Example: Vector vs SIMD Ext.
 NEC SX-9 is a vector supercomputer announced 

in 2008 that cost millions of dollars. It has a peak 

DP FP performance of 102.4 GFLOP/s and a 

peak memory bandwidth of 162 GB/s from the 

Stream benchmark.

 3.2 GHz, eight vector pipes, each having two multiply 

and two addition units; peak vector performance of 

102.4 GFLOP/s

 Core i7 920 has a peak DP FP performance of 

42.66 GFLOP/s and a peak memory bandwidth of 

16.4 GB/s.
 Peak Performance =  2.66 GHz * 4 (cores/chip)  * 2 (ops/SIMD 

instr.) * 2 (FP add-mul/op) = 42.66 GFLOP/s

Copyright © 2019, Elsevier Inc. All rights Reserved



28Copyright © 2019, Elsevier Inc. All rights Reserved

Example: Vector vs SIMD Ext.

 Arith. Int. = 4 FLOP/byte: both processors operate at 

peak performance. SX-9 is 2.4 × faster than Core i7.

 Arith. Int. = 0.25 FLOP/byte: SX-9 is 10 × faster than 

Core i7.
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Introduction
 Heterogeneous execution 

model

 CPU is the host, GPU is the 

device

 Develop a C-like 

programming language for 

GPU

 CUDA: Compute Unified 

Device Architecture

 Unify all forms of GPU 

parallelism as CUDA thread

 Programming model is 

“Single Instruction Multiple 

Thread”
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CUDA GPU Programming
 A thread is associated with each data element. 

Single instruction, multiple threads.

 C DAXPY function:
void daxpy(int n, double a, double *x, double *y) {

int i;

for(i=0; i<n; i++)

y[i] = a*x[i] + y[i];

}

 CUDA DAXPY function:
void daxpy(int n, double a, double *x, double *y) {

int i = blockIdx.x * blockDim.x + threadIdx.x;

if (i < n) y[i] = a*x[i] + y[i];

}
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CUDA GPU Programming

 Code that works over all 

elements is the grid.

 Grids are broken into thread 

blocks of manageable sizes, 

e.g., 512 threads per block.

 SIMD instruction executes 

32 elements at a time 

(warp).

 Block = 512/32 = 16 warps.

 GPU hardware handles 

thread management, not 

applications or OS
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NVIDIA GPU Architecture
 Current-generation GPUs 

have tens of multithreaded 

SIMD processors.

 Nvidia calls the 

multithreaded SIMD 

processor Streaming 

multiprocessor (SM).

 Blocks are assigned to a 

SMs by the Thread Block 

Scheduler.

 Each SM has SIMD Thread 

Scheduler (Warp scheduler) 

that schedules  threads of 

SIMD instructions.
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NVIDIA GPU Architecture
 Pascal P100 GPU has 60 SMs, four spares.
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Simplified SM Processor
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NVIDIA GPU Architecture

 Similarities to vector machines:

 Works well with data-level parallel problems

 Scatter-gather transfers

 Mask registers

 Large register files

 Differences:

 No scalar processor

 Uses multithreading to hide memory latency

 Has many functional units, as opposed to a few 

deeply pipelined units like a vector processor
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Terminology

 Each thread is limited to 64 registers

 Groups of 32 threads combined into a SIMD thread or “warp”

 Mapped to 16 physical lanes

 Up to 32 warps are scheduled on a single SIMD processor

 Each warp has its own PC

 Thread scheduler uses scoreboard to dispatch warps

 By definition, no data dependencies between warps

 Dispatch warps into pipeline, hide memory latency

 Thread block scheduler schedules blocks to SIMD processors

 Within each SIMD processor:

 32 SIMD lanes

 Wide (16 lanes) and shallow (2 ops per lane) compared to vector 

processors

 See figure 4.14
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NVIDIA GPU ISA

 ISA is an abstraction of the hardware instruction set

 “Parallel Thread Execution (PTX)”

 Uses virtual registers

 Translation to machine code is performed in software

 Format of PTX instruction: opcode.type d,a,b,c;
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NVIDIA GPU ISA

 DAXPY Example:

shl.s32 R8, blockIdx, 9 ; Block ID * Block size (512 or 29)

add.s32 R8, R8, threadIdx ; R8 = i = my CUDA thread ID

ld.global.f64  RD0, [X+R8]   ; RD0 = X[i]

ld.global.f64 RD2, [Y+R8]   ; RD2 = Y[i]

mul.f64        RD0, RD0, RD4 ; Product in RD0 = RD0 * RD4 (scalar a)

add.f64        RD0, RD0, RD2 ; Sum in RD0 = RD0 + RD2 (Y[i])

st.global.f64  [Y+R8], RD0   ; Y[i] = sum (X[i]*a + Y[i])
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NVIDIA GPU Memory Structures
 Each SIMD Lane has 

private section of off-

chip DRAM

 Contains stack frame, 

spilling registers, and 

private variables

 Each multithreaded 

SIMD processor also 

has local memory

 Shared by SIMD lanes 

/ threads within a 

block

 Memory shared by 

SIMD processors is 

GPU Memory

 Host can read and 

write GPU memory

G
ra

p
h
ic

a
l P

ro
c
e
s
s
in

g
 U

n
its



42

Contents

 Introduction

 Vector Architecture

 SIMD Instruction Set Extensions for Multimedia

 Graphics Processing Units

 Fallacies and Pitfalls

Copyright © 2019, Elsevier Inc. All rights Reserved



43

Fallacies and Pitfalls

 F: GPUs suffer from being coprocessors

 GPUs have flexibility to change ISA

 P: Concentrating on peak performance in vector 

architectures and ignoring start-up overhead

 Overheads require long vector lengths to achieve speedup

 P: Increasing vector performance without comparable 

increases in scalar performance

 F: You can get good vector performance without 

providing memory bandwidth

 F: On GPUs, just add more threads if you don’t have 

enough memory performance

 This works only if threads have good memory locality.
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