
1Copyright © 2019, Elsevier Inc. All rights Reserved

Chapter 4

Data-Level Parallelism in

Vector, SIMD, and GPU

Architectures

Adapted by Prof. Gheith Abandah

Computer Architecture
A Quantitative Approach, Sixth Edition

2

Contents

 Introduction

 Vector Architecture

 SIMD Instruction Set Extensions for Multimedia

 Graphics Processing Units

 Fallacies and Pitfalls

Copyright © 2019, Elsevier Inc. All rights Reserved

3Copyright © 2019, Elsevier Inc. All rights Reserved

Introduction

 SIMD architectures can exploit significant data-
level parallelism for:
 Matrix-oriented scientific computing

 Media-oriented image and sound processing

 SIMD is more energy efficient than MIMD
 Only needs to fetch one instruction per data operation

 Makes SIMD attractive for personal mobile devices

 SIMD allows programmer to continue to think
sequentially

In
tro

d
u
c
tio

n

4

Contents

 Introduction

 Vector Architecture

 SIMD Instruction Set Extensions for Multimedia

 Graphics Processing Units

 Fallacies and Pitfalls

Copyright © 2019, Elsevier Inc. All rights Reserved

5

Contents

 Vector Architecture

 Basic Idea

 RV64V Extensions

 RV64V Vector Instructions

 Example: DAXPY

 Vector Execution Time

 Challenges

 Improvements

1. Multiple Lanes

2. Vector-Length Registers

3. Predicate Registers

4. Memory Banks

Copyright © 2019, Elsevier Inc. All rights Reserved

6

Vector Architectures
 Basic idea

 Read sets of data
elements into “vector
registers”

 Operate on those
registers

 Disperse the results
back into memory

 Registers are
controlled by compiler
 Used to hide memory

latency

 Leverage memory
bandwidth

Copyright © 2019, Elsevier Inc. All rights Reserved

V
e
c
to

r A
rc

h
ite

c
tu

re
s

7Copyright © 2019, Elsevier Inc. All rights Reserved

RV64V Extension
 Loosely based on Cray-1

 32 64-bit vector registers
 Register file has 16 read ports and 8 write ports

 Elements per v. register depends on the configuration

 Vector functional units
 Fully pipelined

 Data and control hazards are detected

 Vector load-store unit
 Fully pipelined

 One word per clock cycle after initial latency

 Scalar registers
 32 general-purpose registers

 32 floating-point registers

V
e
c
to

r A
rc

h
ite

c
tu

re
s

8Copyright © 2019, Elsevier Inc. All rights Reserved

RV64V Vector Instructions
 Operate on vectors or vectors and scalars

 Examples: vadd, vmul, vld, vst

 Have suffixes
 .vv: two vector operands

 .vs and .sv: vector and scalar operands

 The compiler usually adds these suffixes according to the
operands

 Example: vmul v1,v0,fo is vmul.vs

 These instructions can operate on the following types:

 The operand type is implicit according to the register
type.

 Registers are configurable at run time.

V
e
c
to

r A
rc

h
ite

c
tu

re
s

9

Example: DAXPY

 DAXPY: A times X

plus Y

 C Code:

for (i=0; i<32; i++)

Y[i]=a*X[i]+Y[i];

 RISC-V Code:

fld f0,a

addi x28,x5,#256

Loop:

fld f1,0(x5)

fmul.d f1,f1,f0

fld f2,0(x6)

fadd.d f2,f2,f1

fsd f2,0(x6)

addi x5,x5,#8

addi x6,x6,#8

bne x28,x5,Loop

Copyright © 2019, Elsevier Inc. All rights Reserved

V
e
c
to

r A
rc

h
ite

c
tu

re
s

259 instructions

10Copyright © 2019, Elsevier Inc. All rights Reserved

Example: DAXPY

 RV64V Code:

vsetdcfg 4*FP64 # Enable 4 DP FP vregs

fld f0,a # Load scalar a

vld v0,x5 # Load vector X

vmul v1,v0,f0 # Vector-scalar mult

vld v2,x6 # Load vector Y

vadd v3,v1,v2 # Vector-vector add

vst v3,x6 # Store the sum

vdisable # Disable vector regs

 Only 8 instructions

V
e
c
to

r A
rc

h
ite

c
tu

re
s

11Copyright © 2019, Elsevier Inc. All rights Reserved

Vector Execution Time

 Execution time depends on three factors:
 Length of operand vectors

 Structural hazards

 Data dependencies

 RV64V functional units consume one element
per clock cycle
 Execution time is approximately the vector length

 Convey
 Set of vector instructions that could potentially

execute together

V
e
c
to

r A
rc

h
ite

c
tu

re
s

12Copyright © 2019, Elsevier Inc. All rights Reserved

Chimes

 Sequences with read-after-write dependency
hazards placed in same convey via chaining

 Chaining
 Allows a vector operation to start as soon as the

individual elements of its vector source operand
become available

 Chime
 Unit of time to execute one convey

 m conveys executes in m chimes for vector length n

 For vector length of n, requires m x n clock cycles

V
e
c
to

r A
rc

h
ite

c
tu

re
s

13Copyright © 2019, Elsevier Inc. All rights Reserved

Example

vld v0,x5 # Load vector X

vmul v1,v0,f0 # Vector-scalar multiply

vld v2,x6 # Load vector Y

vadd v3,v1,v2 # Vector-vector add

vst v3,x6 # Store the sum

Convoys:

1 vld vmul

2 vld vadd

3 vst

3 chimes, 2 FP ops per result, cycles per FLOP = 1.5

For 32 element vectors, requires 32 x 3 = 96 clock cycles

V
e
c
to

r A
rc

h
ite

c
tu

re
s

14Copyright © 2019, Elsevier Inc. All rights Reserved

Challenges

 Start up time

 Latency of vector functional unit

 Assume the same as Cray-1
 Floating-point add => 6 clock cycles

 Floating-point multiply => 7 clock cycles

 Floating-point divide => 20 clock cycles

 Vector load => 12 clock cycles

 Improvements:
1. > 1 element per clock cycle

2. Non-32 wide vectors

3. IF statements in vector code

4. Memory system optimizations to support vector

processors

V
e
c
to

r A
rc

h
ite

c
tu

re
s

15Copyright © 2019, Elsevier Inc. All rights Reserved

Multiple Lanes
 Beyond one element per clock cycle

 Element i of vector register A is “hardwired” to element i
of vector register B
 Allows for multiple hardware lanes

V
e
c
to

r A
rc

h
ite

c
tu

re
s

16

Vector-Length Registers

 RV64V has two hardware registers:

 MVL: maximum vector-length register

 VL: vector-length register

 Vectors of arbitrary length are processed with

strip mining. All blocks but the last are of length

MVL, utilizing the full power of the vector

processor. The last block contains the reminder

elements.

Copyright © 2019, Elsevier Inc. All rights Reserved

17Copyright © 2019, Elsevier Inc. All rights Reserved

Vector-Length Registers
Handling loops not equal to 32.

vsetdcfg 2 DP FP # Enable 2 64b FP registers

fld f0,a # Load scalar a

loop:

setvl t0,a0 # vl = t0 = min(mvl,n)

vld v0,x5 # Load vector X

slli t1,t0,3 # t1 = vl * 8 (in bytes)

add x5,x5,t1 # Increment pointer to X by vl*8

vmul v0,v0,f0 # Vector-scalar mult

vld v1,x6 # Load vector Y

vadd v1,v0,v1 # Vector-vector add

sub a0,a0,t0 # n -= vl (t0)

vst v1,x6 # Store the sum into Y

add x6,x6,t1 # Increment pointer to Y by vl*8

bnez a0,loop # Repeat if n != 0

vdisable # Disable vector regs

V
e
c
to

r A
rc

h
ite

c
tu

re
s

18Copyright © 2019, Elsevier Inc. All rights Reserved

Predicate Registers
 Consider:

for (i = 0; i < 64; i=i+1)

if (X[i] != 0)

X[i] = X[i] – Y[i];

 Use predicate register to “disable” elements:
vsetdcfg 2*FP64 # Enable 2 64b FP vector regs

vsetpcfgi 1 # Enable 1 predicate register

vld v0,x5 # Load vector X into v0

vld v1,x6 # Load vector Y into v1

fmv.d.x f0,x0 # Put (FP) zero into f0

vpne p0,v0,f0 # Set p0(i) to 1 if v0(i)!=f0

vsub v0,v0,v1 # Subtract under vector mask

vst v0,x5 # Store the result in X

vdisable # Disable vector registers

vpdisable # Disable predicate registers

V
e
c
to

r A
rc

h
ite

c
tu

re
s

19Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Banks

 Memory system must be designed to support high

bandwidth for vector loads and stores

 Spread accesses across multiple banks

 Control bank addresses independently

 Load or store non sequential words (need independent bank

addressing)

 Support multiple vector processors sharing the same memory

V
e
c
to

r A
rc

h
ite

c
tu

re
s

20Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Banks

 Example: Cray T932

 32 processors, each generating 4 loads and 2

stores/cycle

 Processor cycle time is 2.167 ns, SRAM cycle time is

15 ns

 How many memory banks needed?

SRAM cycle time = 15 / 2.167 = 7 cycles

Access rate = 32 x (4+2) = 192 access/cycle

192 x 7 = 1334 banks

V
e
c
to

r A
rc

h
ite

c
tu

re
s

21

Contents

 Introduction

 Vector Architecture

 SIMD Instruction Set Extensions for Multimedia

 Graphics Processing Units

 Fallacies and Pitfalls

Copyright © 2019, Elsevier Inc. All rights Reserved

22

Contents

 SIMD Instruction Set Extensions for Multimedia

 Introduction

 Intel x86 SIMD Implementations

 DAXPY SIMD Example

 Roofline Performance Model

Copyright © 2019, Elsevier Inc. All rights Reserved

23

 Media applications operate on data types narrower than

the native word size

 Limitations, compared to vector instructions:

 Number of data operands encoded into op code

 No predicate registers

 No sophisticated addressing (strided, scatter-gather)

Copyright © 2019, Elsevier Inc. All rights Reserved

Introduction
S

IM
D

 In
s
tru

c
tio

n
 S

e
t E

x
te

n
s
io

n
s
 fo

r M
u
ltim

e
d
ia

24Copyright © 2019, Elsevier Inc. All rights Reserved

Intel x86 SIMD Implementations

 Intel MMX (1996)

 Eight 8-bit integer ops or four 16-bit integer ops

 Streaming SIMD Extensions (SSE) (1999)

 Eight 16-bit integer ops

 Four 32-bit integer/fp ops or two 64-bit integer/fp ops

 Advanced Vector Extensions (2010)

 Four 64-bit integer/fp ops

 AVX-512 (2017)

 Eight 64-bit integer/fp ops

 Operands must be consecutive and aligned

memory locations

S
IM

D
 In

s
tru

c
tio

n
 S

e
t E

x
te

n
s
io

n
s
 fo

r M
u
ltim

e
d
ia

25Copyright © 2019, Elsevier Inc. All rights Reserved

DAXPY SIMD Example

fld f0,a # Load scalar a

splat.4D f0,f0 # Make 4 copies of a

addi x28,x5,#256 # Last address to load

Loop:

fld.4D f1,0(x5) # Load X[i] ... X[i+3]

fmul.4D f1,f1,f0 # a x X[i] ... a x X[i+3]

fld.4D f2,0(x6) # Load Y[i] ... Y[i+3]

fadd.4D f2,f2,f1 # a x X[i]+Y[i] ...

a x X[i+3]+Y[i+3]

fsd.4D f2,0(x6) # Store Y[i]... Y[i+3]

addi x5,x5,#32 # Increment index to X

addi x6,x6,#32 # Increment index to Y

bne x28,x5,Loop # Check if done

S
IM

D
 In

s
tru

c
tio

n
 S

e
t E

x
te

n
s
io

n
s
 fo

r M
u
ltim

e
d
ia

26Copyright © 2019, Elsevier Inc. All rights Reserved

Roofline Performance Model

 Basic idea:

 Plot peak floating-point throughput as a function of

arithmetic intensity

 Ties together floating-point performance and

memory performance for a target machine

 Arithmetic intensity

 Floating-point operations per byte accessed

Attainable GPLOPs/sec = Min (Peak Memory BW

× Arithmetic Intensity, Peak FP Performance)

S
IM

D
 In

s
tru

c
tio

n
 S

e
t E

x
te

n
s
io

n
s
 fo

r M
u
ltim

e
d
ia

27

Example: Vector vs SIMD Ext.
 NEC SX-9 is a vector supercomputer announced

in 2008 that cost millions of dollars. It has a peak

DP FP performance of 102.4 GFLOP/s and a

peak memory bandwidth of 162 GB/s from the

Stream benchmark.

 3.2 GHz, eight vector pipes, each having two multiply

and two addition units; peak vector performance of

102.4 GFLOP/s

 Core i7 920 has a peak DP FP performance of

42.66 GFLOP/s and a peak memory bandwidth of

16.4 GB/s.
 Peak Performance = 2.66 GHz * 4 (cores/chip) * 2 (ops/SIMD

instr.) * 2 (FP add-mul/op) = 42.66 GFLOP/s

Copyright © 2019, Elsevier Inc. All rights Reserved

28Copyright © 2019, Elsevier Inc. All rights Reserved

Example: Vector vs SIMD Ext.

 Arith. Int. = 4 FLOP/byte: both processors operate at

peak performance. SX-9 is 2.4 × faster than Core i7.

 Arith. Int. = 0.25 FLOP/byte: SX-9 is 10 × faster than

Core i7.

S
IM

D
 In

s
tru

c
tio

n
 S

e
t E

x
te

n
s
io

n
s
 fo

r M
u
ltim

e
d
ia

29

Contents

 Introduction

 Vector Architecture

 SIMD Instruction Set Extensions for Multimedia

 Graphics Processing Units

 Fallacies and Pitfalls

Copyright © 2019, Elsevier Inc. All rights Reserved

30

Contents

 Graphics Processing Units

 Introduction

 CUDA GPU Programming

 NVIDIA GPU Architecture

 NVIDIA GPU ISA

 NVIDIA GPU Memory Structures

 NVIDIA GPU Memory Structures

Copyright © 2019, Elsevier Inc. All rights Reserved

31

Introduction
 Heterogeneous execution

model

 CPU is the host, GPU is the

device

 Develop a C-like

programming language for

GPU

 CUDA: Compute Unified

Device Architecture

 Unify all forms of GPU

parallelism as CUDA thread

 Programming model is

“Single Instruction Multiple

Thread”

Copyright © 2019, Elsevier Inc. All rights Reserved

G
ra

p
h
ic

a
l P

ro
c
e
s
s
in

g
 U

n
its

32Copyright © 2019, Elsevier Inc. All rights Reserved

CUDA GPU Programming
 A thread is associated with each data element.

Single instruction, multiple threads.

 C DAXPY function:
void daxpy(int n, double a, double *x, double *y) {

int i;

for(i=0; i<n; i++)

y[i] = a*x[i] + y[i];

}

 CUDA DAXPY function:
void daxpy(int n, double a, double *x, double *y) {

int i = blockIdx.x * blockDim.x + threadIdx.x;

if (i < n) y[i] = a*x[i] + y[i];

}

G
ra

p
h
ic

a
l P

ro
c
e
s
s
in

g
 U

n
its

33

CUDA GPU Programming

 Code that works over all

elements is the grid.

 Grids are broken into thread

blocks of manageable sizes,

e.g., 512 threads per block.

 SIMD instruction executes

32 elements at a time

(warp).

 Block = 512/32 = 16 warps.

 GPU hardware handles

thread management, not

applications or OS

Copyright © 2019, Elsevier Inc. All rights Reserved

G
ra

p
h
ic

a
l P

ro
c
e
s
s
in

g
 U

n
its

34

NVIDIA GPU Architecture
 Current-generation GPUs

have tens of multithreaded

SIMD processors.

 Nvidia calls the

multithreaded SIMD

processor Streaming

multiprocessor (SM).

 Blocks are assigned to a

SMs by the Thread Block

Scheduler.

 Each SM has SIMD Thread

Scheduler (Warp scheduler)

that schedules threads of

SIMD instructions.

Copyright © 2019, Elsevier Inc. All rights Reserved

G
ra

p
h
ic

a
l P

ro
c
e
s
s
in

g
 U

n
its

35Copyright © 2019, Elsevier Inc. All rights Reserved

NVIDIA GPU Architecture
 Pascal P100 GPU has 60 SMs, four spares.

G
ra

p
h
ic

a
l P

ro
c
e
s
s
in

g
 U

n
its

36Copyright © 2019, Elsevier Inc. All rights Reserved

Simplified SM Processor
G

ra
p
h
ic

a
l P

ro
c
e
s
s
in

g
 U

n
its

as 16 SIMD Lanes. 2 clocks per instr.

The scheduler has 64 independent

threads of SIMD instructions that it

schedules. Each tow 32-bit registers

can act as DP register.

37Copyright © 2019, Elsevier Inc. All rights Reserved

NVIDIA GPU Architecture

 Similarities to vector machines:

 Works well with data-level parallel problems

 Scatter-gather transfers

 Mask registers

 Large register files

 Differences:

 No scalar processor

 Uses multithreading to hide memory latency

 Has many functional units, as opposed to a few

deeply pipelined units like a vector processor

G
ra

p
h
ic

a
l P

ro
c
e
s
s
in

g
 U

n
its

38Copyright © 2019, Elsevier Inc. All rights Reserved

Terminology

 Each thread is limited to 64 registers

 Groups of 32 threads combined into a SIMD thread or “warp”

 Mapped to 16 physical lanes

 Up to 32 warps are scheduled on a single SIMD processor

 Each warp has its own PC

 Thread scheduler uses scoreboard to dispatch warps

 By definition, no data dependencies between warps

 Dispatch warps into pipeline, hide memory latency

 Thread block scheduler schedules blocks to SIMD processors

 Within each SIMD processor:

 32 SIMD lanes

 Wide (16 lanes) and shallow (2 ops per lane) compared to vector

processors

 See figure 4.14

G
ra

p
h
ic

a
l P

ro
c
e
s
s
in

g
 U

n
its

39Copyright © 2019, Elsevier Inc. All rights Reserved

NVIDIA GPU ISA

 ISA is an abstraction of the hardware instruction set

 “Parallel Thread Execution (PTX)”

 Uses virtual registers

 Translation to machine code is performed in software

 Format of PTX instruction: opcode.type d,a,b,c;

G
ra

p
h
ic

a
l P

ro
c
e
s
s
in

g
 U

n
its

40Copyright © 2019, Elsevier Inc. All rights Reserved

NVIDIA GPU ISA

 DAXPY Example:

shl.s32 R8, blockIdx, 9 ; Block ID * Block size (512 or 29)

add.s32 R8, R8, threadIdx ; R8 = i = my CUDA thread ID

ld.global.f64 RD0, [X+R8] ; RD0 = X[i]

ld.global.f64 RD2, [Y+R8] ; RD2 = Y[i]

mul.f64 RD0, RD0, RD4 ; Product in RD0 = RD0 * RD4 (scalar a)

add.f64 RD0, RD0, RD2 ; Sum in RD0 = RD0 + RD2 (Y[i])

st.global.f64 [Y+R8], RD0 ; Y[i] = sum (X[i]*a + Y[i])

G
ra

p
h
ic

a
l P

ro
c
e
s
s
in

g
 U

n
its

41Copyright © 2019, Elsevier Inc. All rights Reserved

NVIDIA GPU Memory Structures
 Each SIMD Lane has

private section of off-

chip DRAM

 Contains stack frame,

spilling registers, and

private variables

 Each multithreaded

SIMD processor also

has local memory

 Shared by SIMD lanes

/ threads within a

block

 Memory shared by

SIMD processors is

GPU Memory

 Host can read and

write GPU memory

G
ra

p
h
ic

a
l P

ro
c
e
s
s
in

g
 U

n
its

42

Contents

 Introduction

 Vector Architecture

 SIMD Instruction Set Extensions for Multimedia

 Graphics Processing Units

 Fallacies and Pitfalls

Copyright © 2019, Elsevier Inc. All rights Reserved

43

Fallacies and Pitfalls

 F: GPUs suffer from being coprocessors

 GPUs have flexibility to change ISA

 P: Concentrating on peak performance in vector

architectures and ignoring start-up overhead

 Overheads require long vector lengths to achieve speedup

 P: Increasing vector performance without comparable

increases in scalar performance

 F: You can get good vector performance without

providing memory bandwidth

 F: On GPUs, just add more threads if you don’t have

enough memory performance

 This works only if threads have good memory locality.

Copyright © 2019, Elsevier Inc. All rights Reserved

F
a
lla

c
ie

s
 a

n
d
 P

itfa
lls

