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Introduction

Goal: connecting multiple computers
to get higher performance

Multiprocessors
Scalability, availability, power efficiency

Task-level (process-level) parallelism
High throughput for independent jobs
Parallel processing program
Single program run on multiple processors

Multicore microprocessors
Chips with multiple processors (cores)

Chapter 6 — Parallel Processors from Client to Cloud — 3



Hardware and Software

Hardware

Serial: e.g., Pentium 4

Parallel: e.g., quad-core Xeon 5345
Software

Sequential: e.g., matrix multiplication

Concurrent: e.g., operating system
Sequential/concurrent software can run on
serial/parallel hardware

Challenge: making effective use of parallel
hardware
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What We’ve Already Covered

§2.11: Parallelism and Instructions
Synchronization

§3.6: Parallelism and Computer Arithmetic
Subword Parallelism

§4.10: Parallelism and Advanced
Instruction-Level Parallelism

§5.10: Parallelism and Memory
Hierarchies

Cache Coherence
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Parallel Programming

Parallel software is the problem
Need to get significant performance
Improvement
Otherwise, just use a faster uniprocessor,
since it's easier!
Difficulties
Partitioning
Coordination
Communications overhead
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Amdahl’s Law

Sequential part can limit speedup

Example: 100 processors, 90x speedup?
T = Tparallelizablelloo +T

1
(1-F

new sequential

Speedup = 90

paralleliable) + Fpara”e“ablellOO
parallelizable = 0.999

Need sequential part to be 0.1% of original
time

Solving: F
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Scaling Example

Workload: sum of 10 scalars, and 10 x 10 matrix
sum

Speed up from 10 to 100 processors
Single processor: Time = (10 + 100) x t_g,4
10 processors
Time =10 xt_44 + 100/10 x t_44 = 20 x t_yq
Speedup = 110/20 = 5.5 (55% of potential)
100 processors
Time =10 x t_44 + 100/100 x t_, =11 x t_4
Speedup = 110/11 = 10 (10% of potential)

Assumes load can be balanced across
Processors
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Scaling Example (cont)

What if matrix size is 100 x 100?
Single processor: Time = (10 + 10000) x t_,4
10 processors

Time =10 x t_44 + 10000/10 x t_44 = 1010 x t_4
Speedup = 10010/1010 = 9.9 (99% of potential)

100 processors
Time =10 x t_,, + 10000/100 x t 4, = 110 x t_ 4
Speedup = 10010/110 = 91 (91% of potential)

Assuming load balanced
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Strong vs Weak Scaling

Strong scaling: problem size fixed
As In example

Weak scaling: problem size proportional to
number of processors
10 processors, 10 x 10 matrix
Time =20 x t gy,
100 processors, 32 x 32 matrix
Time = 10 x t 4y + 1000/100 % t_4q = 20 % t_yq
Constant performance In this example
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Instruction and Data Streams

An alternate classification

Data Streams

Single Multiple
Instruction | Single SISD: SIMD: SSE
Streams Intel Pentium 4 Instructions of x86
Multiple | MISD: MIMD:
No examples today | Intel Xeon e5345

SPMD: Single Program Multiple Data

A parallel program on a MIMD computer
Conditional code for different processors
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Vector Processors

Highly pipelined function units

Stream data from/to vector registers to units
Data collected from memory into registers
Results stored from registers to memory

Example: Vector extension to RISC-V
vO to v31: 32 x 64-element registers, (64-bit elements)

Vector instructions
fld.v, fsd.v: load/store vector
fadd.d.v: add vectors of double
fadd.d.vs: add scalar to each element of vector of double

Significantly reduces instruction-fetch bandwidth
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Example: DAXPY (Y =a x X +Y)

Conventional RISC-V code:
fl1d f0,a(x3) // load scalar a
addi x5,x19,512 // end of array X
Toop: fld f1,0(x19) // load x[i]

fmul.d // a * x[i]

fld // load y[i]

fadd. // a * x[i] + y[il

fsd // store y[i]

addi // increment index to Xx

addi x20,x20,8 // increment index to y
bltu x19,x5,1loop // repeat if not done

Vector RISC-V code:
fl1d f0,a(x3) // load scalar a
fld.v v0,0(x19) // load vector x
fmul.d.vs vO,vO0,f0 // vector-scalar multiply
fld.v v1l,0(x20) // load vector y
fadd.d.v v1,vl,v0 // vector-vector add
fsd.v v1l,0(x20) // store vector y
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Vector vs. Scalar

Vector architectures and compilers
Simplify data-parallel programming

Explicit statement of absence of loop-carried
dependences

Reduced checking in hardware

Regular access patterns benefit from
Interleaved and burst memory

Avoid control hazards by avoiding loops

More general than ad-hoc media
extensions (such as MMX, SSE)

Better match with compiler technology
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SIMD

Operate elementwise on vectors of data

E.g., MMX and SSE instructions in x86
Multiple data elements in 128-bit wide registers

All processors execute the same
Instruction at the same time

Each with different data address, etc.
Simplifies synchronization
Reduced instruction control hardware

Works best for highly data-parallel
applications
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Vector vs. Multimedia Extensions

Vector instructions have a variable vector width,
multimedia extensions have a fixed width

Vector instructions support strided access,
multimedia extensions do not

Vector units can be combination of pipelined and
arrayed functional units: =TT T

Al9] B[9] FP add FP add FP add FP add
A[8] B8] pipe 0 pipe 1 pipe 2 pipe 3
m|  [erm I [ |
Al6] B[6] Vector Vector Vector Vector
A[5] B[5] registers: registers: registers: registers:
1 elements elements elements elements
Al4]| |B[4] 0,4,8, ... 1,509, .. 2,6,10, ... 3,7, 11, ...
A Bl IR P
Al2]| |B[2]
— FP mul FP mul FP mul FP mul
All] B[1] pipe 0 pipe 1 pipe 2 pipe 3
e .
C[0] Vector load store unit
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Multithreading

Performing multiple threads of execution in
parallel

Replicate registers, PC, etc.
Fast switching between threads

Fine-grain multithreading
Switch threads after each cycle
Interleave instruction execution
If one thread stalls, others are executed

Coarse-grain multithreading

Only switch on long stall (e.g., L2-cache miss)

Simplifies hardware, but doesn’t hide short stalls
(eg, data hazards)
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Simultaneous Multithreading

In multiple-issue dynamically scheduled
Processor
Schedule instructions from multiple threads

Instructions from independent threads execute
when function units are available

Within threads, dependencies handled by
scheduling and register renaming

Example: Intel Pentium-4 HT

Two threads: duplicated registers, shared
function units and caches
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Multithreading

Issue slots ——
Thread A

Thread B

Time

Issue slots ——

Coarse MT Fine MT
Time [N 1 |
[ | HER
HEE 1 ] |
HE
HE B
]|
] =
HEE
|
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Future of Multithreading

Wil it survive? In what form?

Power considerations = simplified
microarchitectures

Simpler forms of multithreading

Tolerating cache-miss latency
Thread switch may be most effective

Multiple simple cores might share
resources more effectively
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Shared Memory

SMP: shared memory multiprocessor

Hardware provides single physical
address space for all processors

Synchronize shared variables using locks

Memory access time
UMA (uniform) vs. NUMA (nonuniform)

Processor Processor - Processor

Interconnection Network

A
Y

Memory I/O
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Example: Sum Reduction

Sum 64,000 numbers on 64 processor UMA
Each processor has ID: 0 < Pn <63
Partition 1000 numbers per processor
Initial summation on each processor
sum[Pn] = O;
for (1 = 1000*Pn;
1 < 1000*(Pn+1); 1 += 1)
sum[Pn] += A[1];
Now need to add these partial sums
Reduction: divide and conquer
Half the processors add pairs, then quarter, ...

Need to synchronize between reduction steps
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Example: Sum Reduction

(half = 1)[0][1

(half = 2) [o][1][2][3

half = 64; s
do (half = 4) [0][1][2 ;?fﬁg]e 7

synch();
it (half%2 !'= 0 && Pn == 0)
sum[0] += sum[half-1];
/% Conditional sum needed when half is odd;
ProcessorQ gets missing element */
half = half/2; /* dividing 1ine on who sums */
if (Pn < half) sum[Pn] += sum[Pn+half];
while Chalf > 1);
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History of GPUs

Early video cards

Frame buffer memory with address generation for
video output

3D graphics processing
Originally high-end computers (e.g., SGI)
Moore’s Law = lower cost, higher density
3D graphics cards for PCs and game consoles

Graphics Processing Units

Processors oriented to 3D graphics tasks

Vertex/pixel processing, shading, texture mapping,
rasterization
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Graphics in the System

Intel
CPU

A
Front Side Bus
Y

x16 PCI-Express Link

North | DDR2
display Bridge | Memory
x4 PCI-Express Link # 128-bit
derivative y 667 MT/s
GPU AMD
Memory South CPU
CPU Bridge CPU
core
A f
Front Side Bus : i 128-bit

! internal bus 667 MT/s
Bridge Bridge Memory

A

v PClBus 1

J x16 PCI-Express Link ¢ HyperTransport 1.03

\
South Framebuffer _ Chipset
Bridge Memory display

/
iy
VGA GPU
LAN UART _{ZI Display Memory
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GPU Architectures

Processing is highly data-parallel
GPUs are highly multithreaded

Use thread switching to hide memory latency
Less reliance on multi-level caches

Graphics memory is wide and high-bandwidth
Trend toward general purpose GPUs

Heterogeneous CPU/GPU systems
CPU for sequential code, GPU for parallel code

Programming languages/APIs
DirectX, OpenGL

C for Graphics (Cg), High Level Shader Language
(HLSL)

Compute Unified Device Architecture (CUDA)
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Example: NVIDIA Fermi

Multiple SIMD processors, each as shown:

Instruction register
| [

Y ¥ ¥ ¥ Y y Y Y Y Y Y Y Y ¥ ¥ ¥

0 % % R e

Regi- | Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg
sters

1Kx32 | 1Kx 32 [1Kx 32 [1Kx32 | TKx 32 [1Kx32 | 1Kx32 [1Kx32 [1Kx 32 | 1IKx 32 [ 1Kx32 [ 1Kx32 | 1TKx32 [ 1Kx 32 | 1Kx32 | 1K= 32

Load Load Load Load | Load | Load Load Load Load Load | Load | Load Load Load Load | Load
store store store store store store store store store store store store store store store store
unit unit unit unit unit unit unit unit unit unit unit unit unit unit unit unit

Y Y

Address coalescing unit Interconnection network
A [
\ *
To Global
Local Memory
. Memo
64 KiB Y
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Example: NVIDIA Fermi

SIMD Processor: 16 SIMD lanes

SIMD Iinstruction
Operates on 32 element wide threads

Dynamically scheduled on 16-wide processor
over 2 cycles

32K x 32-bit registers spread across lanes
64 registers per thread context
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GPU Memory Structures

CUDA Thread

%——{ Per-CUDA Thread Private Memory

Thread block

Per-Block
Local Memory

Grid 0 Sequence
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2 22 2 2 22
[« [4 LELELT [
BEREE N ) ] ) ]
CLCeeieee (A (4 LeL
FPFPPrrrres FPFPEPRRFRY
— — — Inter-Grid Synchronization — — — GPU Memory
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) =] 230
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| o air oy G
ErEFErr] EFr) 2 23X 3, el
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Classifying GPUs

Don't fit nicely into SIMD/MIMD model

Conditional execution in a thread allows an
illusion of MIMD

But with performance degredation

Need to write general purpose code with care

Static: Discovered Dynamic: Discovered
at Compile Time at Runtime
Instruction-Level VLIW Superscalar
Parallelism
Data-Level SIMD or Vector Tesla Multiprocessor
Parallelism
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Putting GPUs into Perspective
GPU

SIMD processors 4108 810 16
SIMD lanes/processor 2104 8to 16
Multithreading hardware support for 2to4 16 to 32
SIMD threads

Typical ratio of single precision to 2:1 2:1
double-precision performance

Largest cache size 8 MB 0.75 MB
Size of memory address 64-bit 64-bit
Size of main memory 8 GB to 256 GB 4 GB to 6 GB
Memory protection at level of page Yes Yes
Demand paging Yes No
Integrated scalar processor/SIMD Yes No
processor

Cache coherent Yes No
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Guide to GPU Terms

<
A

M<

MORGAN KAUFMANN

Maore descriptive | Closast nH tarm Official CUDAS
Vectorizable Vectorizabls Loop A vectorizable loop, sxecutad on the GPLL mads

@ Loop up of one or mors Thresd Blocks bodies of

i vedtorized loop) that can execute in parallel.

o

E Body of Body of a Thread Block A vectorized loop exscuted on a multith readed

B Vectorized Loop | (St p-Mined) SIMD Procsssor, made up of one or moms threads

= Vectorized Loop of SIMD instructions. They can communicate via

E Lozal Memaory.

? Sequence of One iteration of CLIDA Thread A vertical cut of a thread of SIMD instuctions
SIMD Lane a Secalar Loop cormesponding to one eement sxscutsd by one
Operatians SIMD Lare. Result is storsd depending on mask

arl predicats regjster.

- A Thread of Thread of Vector Warp A traditional thread, but it contains just SIMD

ki SIMD Instructions instructions that are exscuted on & mukltithreadsd

5 Irstructions SIMD Procsssaor. Results stored depending on &

z perzlement mask.

E SIMD Vector Instruction | PTX Instruction A single SIMD instruction sxecutsd across SIMD
Iretruction Lanss.

Multithresded [Multithreaded) Streaming A multithreaded SIMD Procsssor sxscutes
SIMD Vector Processor Multiprecessor threads of SIMD instructions, ndspendent of
Processor other SIMD Processors.,

Thread Black Sealar Processor Giga Thread Aszsigns multipke Thread Blocks (bodiss of

g Scheduler Engine vedtorized loop) to rultithreadsd SIMD

= Procassors,

£ SIMD Thread Thread scheduler | Warp Scheduler Hardware unit that schedules and issuss threads

o Scheduler in a Multithreaded of SIMD instructions when they ars ready to

H P execute; includes a scosboard to track SIMD

g Thread emscution.

o SIMD Lane Vector lane Thread Processor A SIMD Lane executes the opsrations in a thread
of SIMD instructions on a single elemsnt. Results
stored depending on mask,

GPU Mamory Main Memary Global Memary DRAM remory accessible by all multithreaded

Y SIMD Procsssors ina GPL.

-

= Lezal Mamony Leszal Mamory Shared Mamary Fast local SRAM for one multithreadsd SIMD

E‘ Processor, unavailabls to other SIMD Precessors.

&

= SIMD Lane Vector Lans Thread Frocessor Registers in a single SIMD Lane allocatsd across
Registers Redisters Registers a full thr=ad block kody of vectorized loop).
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Message Passing

Each processor has private physical
address space

Hardware sends/receives messages
between processors

Processor Processor Processor
\ J\ y
Y A\ Y
Cache Cache Cache
A A A
Y Y Y
Memory Memory Memory
A A A
Y Y Y
Interconnection Network
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Loosely Coupled Clusters

Network of independent computers
Each has private memory and OS

Connected using I/O system
E.g., Ethernet/switch, Internet

Suitable for applications with independent tasks
Web servers, databases, simulations, ...
High availability, scalable, affordable

Problems
Administration cost (prefer virtual machines)

Low interconnect bandwidth
c.f. processor/memory bandwidth on an SMP

Chapter 6 — Parallel Processors from Client to Cloud — 42



Sum Reduction (Again)

Sum 64,000 on 64 processors

First distribute 1000 numbers to each
The do partial sums
sum = 0;
for (1 = 0; 1<1000; 1 += 1)
sum += AN[1];
Reduction

Half the processors send, other half receive
and add

The quarter send, quarter receive and add, ...
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Sum Reduction (Again)

Given send() and receive() operations

Timit = 64; half = 64;/* 64 processors */
do
half = (half+1)/2; /* send vs. receive
dividing line */
if (Pn >= half & Pn < 1imit)
send(Pn - half, sum);
if (Pn < (1imit/2))
sum += receive();
Timit = half; /* upper 1imit of senders */
while (half > 1); /* exit with final sum */

Send/recelive also provide synchronization
Assumes send/receive take similar time to addition
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Grid Computing

Separate computers interconnected by
long-haul networks

E.g., Internet connections

Work units farmed out, results sent back
Can make use of idle time on PCs

E.g., SETI@home, World Community Grid
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Interconnection Networks

Network topologies
Arrangements of processors, switches, and links

I S S S S T

Bus Ring

52

N-cube (N = 3)

AN N N

U wUat

Fully connected
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Multistage Networks
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Network Characteristics

Performance
Latency per message (unloaded network)

Throughput
Link bandwidth
Total network bandwidth
Bisection bandwidth

Congestion delays (depending on traffic)
Cost
Power
Routability in silicon
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Parallel Benchmarks

Linpack: matrix linear algebra

SPECrate: parallel run of SPEC CPU programs
Job-level parallelism

SPLASH: Stanford Parallel Applications for

Shared Memory
Mix of kernels and applications, strong scaling

NAS (NASA Advanced Supercomputing) suite
computational fluid dynamics kernels

PARSEC (Princeton Application Repository for

Shared Memory Computers) suite

Multithreaded applications using Pthreads and
OpenMP
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Code or Applications?

Traditional benchmarks
Fixed code and data sets

Parallel programming is evolving

Should algorithms, programming languages,
and tools be part of the system?

Compare systems, provided they implement a
given application

E.g., Linpack, Berkeley Design Patterns

Would foster innovation in approaches to
parallelism
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Modeling Performance

Assume performance metric of interest Is
achievable GFLOPs/sec

Measured using computational kernels from
Berkeley Design Patterns

Arithmetic intensity of a kernel
FLOPs per byte of memory accessed

For a given computer, determine
Peak GFLOPS (from data sheet)

Peak memory bytes/sec (using Stream
penchmark)
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Roofline Diagram
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Comparing Systems

Example: Opteron X2 vs. Opteron X4

2-core vs. 4-core, 2x FP performance/core, 2.2GHz
vs. 2.3GHz, 1 x 2 SIMD vs. 2 x 2 SIMD

Same memory system

128.0 }  Opteron X4 (Ba@na)

cio { To get higher performance
32.0 / on X4 than X2

% 16.0 Need high arithmetic intensity
o 80 /\/ Or working set must fit in X4’s
% 4.0 Opteron X2 2MB L-3 cache
< 20

1.0

0.5

g Wy 1, 12 4 8 16
Actual FLOPbyte ratio
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Optimizing Performance

Optimize FP performance -
Balance adds & multiplies

Improve superscalar ILP
and use of SIMD

Instructions

32.0

d

8.0

4.0

Attainable GFLOPs/s

2.0

1.0

0.5
Y

Optimize memory usage

Software prefetch
Avoid load stalls

Memory affinity
Avoid non-local data

aCCesses

32.0

16.0

Attainable GFLOPs/second
n B fos]
o o o

—_
o

o
n
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Qpeak floating-point performance
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Optimizing Performance

Choice of optimization depends on
arithmetic intensity of code

A

Arithmetic intensity Is
e NOL AlWAYS fixed
. 4 5 May scale with
% 00 | 4 problem size

Caching reduces
memory accesses

Increases arithmetic
Intensity

Kernel 2
1.0 :

0.5 : - -
Vg T4 12 1 2 4 8 16

Arithmetic Intensity: FLOPs/Byte Ratio
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<
A

17-960 vs. NVIDIA Tesla 280/480

Cora i7- Ratio Ratio
GTX 480 280/i7| 480/i7

Number of processing elements (cores or SMs)

Clock frequency (GHz) 3.2 1.3 1.4 0.41 0.44
Die size 263 576 520 2.2 2.0
Technology Intel 45 nm TCMS 65 nm TCMS 40 nm 1.6 1.0
Power (chip, not module) 130 130 167 1.0 1.3
Transistors 700 M 1400 M 3100 M 2.0 4.4
Memory brandwith (GBytes/sec) 32 141 177 4.4 bbb
Single frecision SIMD width 4 8 32 2.0 8.0
Dobule precision SIMD with 2 1 16 0.5 8.0
Peak Single frecision scalar FLOPS (GFLOP/sec) 26 117 63 4.6 2.5
Peak Single frecision s SIMD FLOPS (GFLOP/Sec) 102 311 to 933 515t0 1344 |[3.0-9.1 |6.613.1
(SP 1 add or multiply) N.A. (311) (515) (3.0) (6.6)
(SP 1 instruction fused) N.A (622) (1344) (6.1) (13.1)
(face SP dual issue fused) N.A (933) N.A (9.1) -
Peal double frecision SIMD FLOPS (GFLOP/sec) 51 78 515 1.5 10.1
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Benchmarks
“m

SGEMM GFLOP/sec

MC Billion paths/sec 0.8 1.4 1.8
Conv Million pixels/sec 1250 3500 2.8
FFT GFLOP/sec 714 213 3.0
SAXPY GBytes/sec 16.8 88.8 5.3
LBM Million lookups/sec 85 426 5.0
Solv Frames/sec 103 52 0.5
SpMV GFLOP/sec 4.9 9.1 1.9
GJK Frames/sec 67 1020 15.2
Sort Million elements/sec 250 198 0.8
RC Frames/sec S) 8.1 1.6
Search Million queries/sec 50 90 1.8
Hist Million pixels/sec 1517 2583 1.7
Bilat Million pixels/sec 83 475 5.7
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Performance Summary

GPU (480) has 4.4 X the memory bandwidth
Benefits memory bound kernels

GPU has 13.1 X the single precision throughout, 2.5 X
the double precision throughput
Benefits FP compute bound kernels

CPU cache prevents some kernels from becoming
memory bound when they otherwise would on GPU

GPUs offer scatter-gather, which assists with kernels
with strided data

Lack of synchronization and memory consistency
support on GPU limits performance for some kernels
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Multi-threading DGEMM

Use OpenMP:

vold dgemm (int n, double* A, double* B, double* C)
{
fpragma omp parallel for
for ( int sj = 0; sj < n; sj += BLOCKSIZE )
for ( int si = 0; si < n; si += BLOCKSIZE )
for ( int sk = 0; sk < n; sk += BLOCKSIZE )
do block(n, si, sj, sk, A, B, C);
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Multithreaded DGEMM

14 -

13 ooy

12 4 __iA
R PP
10 oo L.

O o

960 X 960
480 X 480
—m— 160 X 160

Speedup relative to 1 core

—e—32X32

Threads

/Z\ M< Chapter 6 — Parallel Processors from Client to Cloud — 65

MORGAN KAUFMANN



Multithreaded DGEMM
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Fallacies

Amdahl’'s Law doesn’t apply to parallel
computers

Since we can achieve linear speedup
But only on applications with weak scaling

Peak performance tracks observed
performance

Marketers like this approach!

But compare Xeon with others in example
Need to be aware of bottlenecks
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Pitfalls

Not developing the software to take
account of a multiprocessor architecture

Example: using a single lock for a shared
composite resource

Serializes accesses, even if they could be done in
parallel

Use finer-granularity locking
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Concluding Remarks

Goal: higher performance by using multiple
processors

Difficulties
Developing parallel software
Devising appropriate architectures

SaaS importance Is growing and clusters are a
good match

Performance per dollar and performance per
Joule drive both mobile and WSC
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Concluding Remarks (con’t)

SIMD and vector 1000
. MIMD*SIMD (32b)
operatlons match s« MIMD*SIMD (64b)
multimedia applications SIMD (32b)
—— SIMD (64 b)
and are easy to e VIND

program g
Adding 2 cores/chip g
every 2 years. 5 ok
Doubling SIMD

operations every 4

years.
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