CPE432: Computer Design

Course Introduction

Prof. Gheith Abandah أ.د. غيث علي عبندة

Outline

- Course Information
- Textbook and References
- Course Objectives and Outcomes
- Course Topics
- Policies
- Grading
- Important Dates

Course Information

- Instructor: Prof. Gheith Abandah
- Email: abandah@ju.edu.jo
- Office: **CPE 406**
- Home page: <u>http://www.abandah.com/gheith</u>
- Facebook group:

https://www.facebook.com/groups/549894571732525/

- Prerequisites: CPE 335: Computer Organization
- Office hours: Mon through Thu: 11:00 12:00

Textbook and References

- Patterson and Hennessy, Computer Organization and Design: The Hardware/Software Interface, RISC-V ed., Morgan Kaufmann, Elsevier Inc., 2018.
- References:
 - Hennessy and Patterson. Computer Architecture: A Quantitative Approach,
 6th ed., Morgan Kaufmann, Elsevier Inc., 2017.
 - J. P. Shen and M. H. Lipasti. Modern Processor Design: Fundamentals of Superscalar Processors, Mc Graw Hill, 2005.
 - D. Culler and J.P. Singh with A. Gupta. Parallel Computer Architecture: A Hardware/Software Approach, Morgan Kaufmann, 1998.
 - J. Hayes. Computer Architecture and Organization, 3rd ed., McGraw-Hill, 1998.
- Course slides at: <u>http://www.abandah.com/gheith/?page_id=2057</u>

Course Objectives

- Introduce students to the technological changes in designing and building processors and computers.
- Introduce students to the advanced techniques used in modern processors including pipelining, branch prediction, dynamic and speculative execution, multiple issue, multithreading, and software optimizations.
- Introduce the students to the basic concepts and technologies used in designing memory and storage systems including cache, main memory, virtual memory, and secondary memory.
- Introduce the students to the various approaches in parallel processing including SIMD extensions, vector processors, GPUs, multicore processors, shared memory multiprocessors, clusters, and message-passing multicomputers.

Course Outcomes

- Understand and analyze the performance of singleprocessor architectures, as well as multiprocessor architectures [a].
- Understand and analyze the performance of memory hierarchy levels [a].
- Understand the technological improvements and the effect of these improvements on modern computers [h].
- Survey research papers that describe contemporary issues in computer design [i, j].

Course Topics

- Introduction
- Computer Technology and Performance (1.5–1.11)
- Processor: Instruction-Level Parallelism (4.6–4.11, 4.14–4.15)

Midterm Exam

- Memory Hierarchy (5.1–5.11, 5.13, 5.16–5.17)
- Parallel Processors (6.1–6.8, 6.10–6.14)

Final Exam

Policies

- Attendance is required
- All submitted work must be yours
- Cheating will not be tolerated
- Open-book exams
- Join the facebook group
- Check department announcements at: <u>http://www.facebook.com/pages/Computer-</u> <u>Engineering-Department/369639656466107</u>

Grading

•	Quizzes 1 & 2	15%
•	Research Project	15%
•	Midterm Exam	30%
•	Final Exam	40%

Important Dates

Mon 21 Jan, 2019	First Lecture	
Mon 18 Feb, 2019	Quiz 1	
Mon 18 Mar, 2019	Midterm Exam	
Mon 15 Apr, 2019	Quiz 2	
Mon 22 Apr, 2019	Project Report Due	
Mon 29 Apr, 2019	Last Lecture	
May 5 – 13, 2019	Final Exam Period	