Computer Architecture

A Quantitative Approach, Sixth Edition

Chapter 3

COMPUTER
ARCHITECTURE

Instruction-Level Parallelism
and Its Exploitation

Adapted by Prof. Gheith Abandah

contents

= Instruction-Level Parallelism: Concepts and Challenges

= Basic Compiler Techniques for Exposing ILP

= Reducing Branch Costs with Advanced Branch Prediction
= Overcoming Data Hazards with Dynamic Scheduling

= Dynamic Scheduling: Examples and Algorithms

= Hardware-Based Speculation

= Exploiting ILP Using Multiple Issue and Static Scheduling

= Exploiting ILP Using Dynamic Scheduling, Multiple Issue, and
Speculation

= Advanced Techniques for Instruction Delivery and Speculation

= Multithreading: Exploiting Thread-Level Parallelism to Improve
Uniprocessor Throughput

m Thelinteli7 6700 and ARM Cortex-A53

s Fallacies and Pitfalls

contents

= Instruction-Level Parallelism: Concepts and
Challenges
= Introduction
= Pipelining
= ILP Approaches
= ILP Challenges
= Data Dependence
= Name Dependence
= Control Dependence

Introduction

uoNoONpPOAU|

= Instruction-Level Parallelism (ILP) allows
overlapping the execution of instructions
and reduce the execution time.

= Pipelining become universal technique In
1985

s Overlaps execution of instructions
= EXxploits “Instruction Level Parallelism”

RISC-V Five-Stage Pipeline

IF/ID IDIEX. EX/MEM MEMWE
> Add . .
4 — Add Sum
Shift
left 1
—-(0
M 5
u PC Address g Read
X 2[7 |register 1 Read » >
| 1 E data 1
= _ | Read ro -
" ister ALU
- u Read
B > > Add .
memory | write data 2 > resu 33 data
" | register Data
Write memory
data L
o rite

$ v

Example:

1d x22,16(x21)
add x5,x6,x7
sub x21,x21,x22

ILP Approaches

uoNoONpPOAU|

= Beyond pipelining, there are two main
approaches:
= Hardware-based dynamic approaches

« Used in server and desktop processors
= Not used as extensively in PMP processors

s Compliler-based static approaches
= Not as successful outside of scientific applications

ILP Challenges

= When exploiting instruction-level parallelism,
goal is to minimize CPI

= Pipeline CPI =
» ldeal pipeline CPI +
» Structural stalls +
« Data hazard stalls +
= Control stalls

uoNoONpPOAU|

= Parallelism with basic block is limited
= Typical size of basic block = 3-6 instructions
= Must optimize across branches

= Loop-Level Parallelism
= Unroll loop statically or dynamically

Data Dependence

uoNoONpPOAU|

s Data dependency (Read-after-write, RAW)

= Instruction /is data dependent on instruction /if

= Instruction /produces a result that may be used by instruction

/
= Instruction /is data dependent on instruction A and instruction
k is data dependent on instruction /

= Dependent instructions cannot be executed
simultaneously

Data Dependence

s Dependencies are a property of programs

= Pipeline organization determines if dependence
IS detected and If it causes a stall

Example:

: 1d x22,16(x21)
s Data dgpgndence conveys: 2dd X5 B w22
= Possibility of a hazard
= Order in which results must be calculated

= Upper bound on exploitable instruction level
parallelism

uoNoONpPOAU|

s Dependencies that flow through memory
locations are difficult to detect

Name Dependence

s WO Instructions use the same name but no flow
of information.

= Not a true data dependence, but is a problem
when reordering instructions.

s [Two types:

1) Antidependence (WAR): Instruction ywrites a
register or memory location that instruction /
reads.

= Initial ordering (/before y)) must be preserved.

uoNoONpPOAU|

Example:

1d x22,16(x21)
add x21,x6,x7

Name Dependence

2) Output dependence (WAW): instruction /and
Instruction /write the same register or memory
location.

= Ordering must be preserved.

uoNoONpPOAU|

Example:

1d x22,16(x21)
add x22,x6,x7

= ToO resolve, use register renaming techniques.

Example:

1d x22,16(x21)
add x23,x6,x7

= Violating the order causes RAW, WAR, or WAW
hazard.

Control Dependence

= Ordering of instruction /
with respect to a branch
Instruction

= Instruction control
dependent on a branch
cannot be moved before the
branch so that its execution
IS no longer controlled by
the branch

= An instruction not control
dependent on a branch
cannot be moved after the
branch so that its execution
IS controlled by the branch

uoNoONpPOAU|

Example 1:

add x1,x2,x3

beqg x4,x0,L

sub x1,x1,x6
L:..

or x7,x1,x8

Example 2:

add x1,x2,x3

beq x12,x0,skip

sub x4,x5,x6

add x5,x4,x9
skip:

or x7,x8,x9

contents

s Instruction-Level Parallelism: Concepts and Challenges

= Basic Compiler Techniques for Exposing ILP

= Reducing Branch Costs with Advanced Branch Prediction
= Overcoming Data Hazards with Dynamic Scheduling

= Dynamic Scheduling: Examples and Algorithms

= Hardware-Based Speculation

= Exploiting ILP Using Multiple Issue and Static Scheduling

= Exploiting ILP Using Dynamic Scheduling, Multiple Issue, and
Speculation

= Advanced Techniques for Instruction Delivery and Speculation

= Multithreading: Exploiting Thread-Level Parallelism to Improve
Uniprocessor Throughput

m Thelinteli7 6700 and ARM Cortex-A53

s Fallacies and Pitfalls

contents

= Basic Compiler Technigues for Exposing ILP
= Pipeline Scheduling
= Loop Unrolling

Pipeline Scheduling

s Separate dependent instruction from the source
Instruction by the pipeline latency of the source
Instruction

s Example: _ ,
for (i=999: i>=0: i=i-1) 4 cycles in FP Unit

x[1] = x[1] + s;

sonbiuyoa| Jojidwo)d

Instruction producing result Instruction using result Latency in|clock cycles

FP ALU op Another FP ALU op 3
FP ALU op Store double 2
Load double FP ALU op I

Load double Store double 0

Pipeline Scheduling

Loop: fld f0,0(x1)
fadd.d f4,f0,f2
fsd f4,0(x1)
addi x1,x1,-8

sonbiuyoa| Jojidwo)d

bne x1,x2,Loop

Loop: fld f0,0(x1) Loop: fld f0,0(x1)
stall addi x1,x1,-8
fadd.d f4,f0,f2 fadd.d f4,f0,f2
stall stall
stall stall
fsd f4,0(x1) fsd f4,0(x1)
addi x1,x1,-8 bne x1,x2,Loop

bne x1,x2,Loop

Loop Unrolling

= Replicate loop body to expose more parallelism
= Reduces loop-control overhead

= Use different registers per replication

» Called “register renaming”

= Avoid loop-carried anti-dependencies and out put
dependencies.

m Steps:
1. Replicate the loop instructions n times
2. Remove unneeded loop overhead
3. Modify instructions
4. Rename registers
5. Schedule instructions

Loop Unrolling

B Unroll by a factor of 4 (assume # elements is divisible by 4)

B Eliminate unnecessary instructions, modify instructions, and
rename registers.

sonbiuyoa| Jojidwo)d

Loop: f1d f0,0(x1)
fadd.d f4,f0,f2
fsd f4,0(x1) //drop addi & bne
f1d f6,-8(x1)
fadd.d f8,f6,f2
fsd 8,-8(x1) //drop addi & bne
f1d f10,-16(x1)
fadd.d f12,f10,f2
fsd f12,-16(x1) //drop addi & bne
f1d f14,-24(x1)
fadd.d f16,f14,f2

Fod F16. -24(x1) = Note: number

addi x1,x1,-32 of live registers
bne x1,x2,Loop vs. original loop

Loop:

f1d
f1d
f1d
f1d
fadd.d
fadd.d
fadd.d
fadd.d
fsd
fsd
fsd
addi
fsd
bne

Loop Unrolling/Pipeline Scheduling

= Pipeline schedule the unrolled loop:

f0,0(x1)
f6,-8(x1)
f10,-16(x1)
f14,-24(x1)
f4,f0,f2
f8,f6,f2
f12,f10,f2
f16,f14,f2
f4,0(x1)
f8,-8(x1)
f12,-16(x1)
x1,x1,-32
16,-24(x1)
x1,x2,Loo0p

sonbiuyoa| Jojidwo)d

s 14 cycles
s 3.5 cycles per element

Strip Mining

= Unknown number of loop iterations?
= Number of iterations = n
= Goal: Make & copies of the loop body

= Generate pair of loops:
= First executes nmod Atimes
= Second executes 17/ ktimes
» “Strip mining”

sonbiuyoa| Jojidwo)d

contents

s Instruction-Level Parallelism: Concepts and Challenges

s Basic Compiler Techniques for Exposing ILP

= Reducing Branch Costs with Advanced Branch Prediction
= Overcoming Data Hazards with Dynamic Scheduling

= Dynamic Scheduling: Examples and Algorithms

= Hardware-Based Speculation

= Exploiting ILP Using Multiple Issue and Static Scheduling

= Exploiting ILP Using Dynamic Scheduling, Multiple Issue, and
Speculation

= Advanced Techniques for Instruction Delivery and Speculation

= Multithreading: Exploiting Thread-Level Parallelism to Improve
Uniprocessor Throughput

m Thelinteli7 6700 and ARM Cortex-A53

s Fallacies and Pitfalls

contents

s Reducing Branch Costs with Advanced Branch
Prediction

= Basic 2-Bit Predictor

= Correlating Predictor

= Correlating gshare Predictor
= Tournament Predictor

= Tagged Hybrid Predictors

Basic 2-Bit Predictor

= Uses Branch History Table (BHT) with n =2
= Table size = n x 2X bits
s For each branch, predict taken or not taken

n-bit counter

k bits /f prediction
ol P S - .
bits

Basic 2-Bit Predictor

= Only change prediction on two successive

mispredictions

Not taken] ‘ Taken

Not taken
(Predict not taken
Taken g

Not taken

Taken

N

Correlating Predictor

| MUItIpIe 2'b|t Branch address
predictors for each 0
b ran C h 2-bit per-branch predictors

= One for each possible
combination of
outcomes of . XX} XX predictior
preceding /m branches

= (/m,n) predictor:
behavior from last m

branches to choose]
from 2™ n-bit =
p red I CtO IS 2-bit global branch history

s Size = n x 2Kk x 2M bjts

Basic vs Correlating Predictors

uonoIpald youeig

- @ 4096 entries:
nNASA7 (1)& 2 bits per entry
1 0% O Url_imited entries:
matrix300 | 0% 2 bits por antry
] 0% O 1024 entries:
1% (22)
tomeatv - 0%
1%

spice

foppp

SPEC89 benchmarks

espresso
18%
eqgntott 18%
li
5%
I T 1 T 1 Ll | 1 |l 1
0% 2% 4% 6% 8% 10% 12% 14% 16% 18%

Frequency of mispredictions

MI<

MORGAN KAUFMANN

Correlating gshare Predictor

10-bit shift register
Branch history |=——

uonoIpald youeig

Maost recent branch Branch address

result (not taken/taken)
- 1 10
Exclusive 1024 2-bit predictors
OR
10
L a
\

Prediction

Tournament Predictor

= Combine correlating predictor with local predictor

— Branch history — Branch address
Global predictors Selector Local predictors
- ——— -

4— Prediction

Local vs. Correlating vs. Tournament

8%

uonaipaid youeliyg

7%

Local 2-bit predictors

6%

11111111111111111111

5%

4% J

]
Correlating predictors

A
Tournament predictors
29%

Conditional branch misprediction rate

1% - et ————— -

0%

0 32 64 06 128 160 192 224 256 288 320 352 384 416 448 480 512
Total predictor size

Tagged Hybrid Predictors

= Need to have predictor for each branch
and history
= Problem: this implies huge tables

uonaipaid youeliyg

s Solution:

=« Use hash tables, whose hash value is based on
branch address and branch history

« Longer histories may lead to increased chance of
hash collision, so use multiple tables with
Increasingly shorter histories

Tagged Hybrid Predictors

pc h[O:L(1)] pc h[0:L(2)] pc h[0:L(3)] pc h[O:L(4)]

uonoIpald youeig

pe Geb) (b (=) (b tha_;,',]) g_ﬁ)_@ﬁ]
P(0) P(1) P(2) P(3) P(4)

Y Y Y /
5 i i i i
E pred i tag predi tag pred E tag pred i tag
; i i i i
m

Y Y

C:? }4— =1 C:? }‘— C:? "_
{

Prediction |

Misses per one thousand instructions

Tagged Hybrid Predictors

B TAGE [gshare

SPECTp

SPECint

MultiMedia

Server

contents

s Instruction-Level Parallelism: Concepts and Challenges

s Basic Compiler Techniques for Exposing ILP

s Reducing Branch Costs with Advanced Branch Prediction
= Overcoming Data Hazards with Dynamic Scheduling

= Dynamic Scheduling: Examples and Algorithms

= Hardware-Based Speculation

= Exploiting ILP Using Multiple Issue and Static Scheduling

= Exploiting ILP Using Dynamic Scheduling, Multiple Issue, and
Speculation

= Advanced Techniques for Instruction Delivery and Speculation

= Multithreading: Exploiting Thread-Level Parallelism to Improve
Uniprocessor Throughput

m Thelinteli7 6700 and ARM Cortex-A53

s Fallacies and Pitfalls

contents

= Overcoming Data Hazards with Dynamic

Scheduling
= Introduction

= Register Renaming
= Tomasulo’s Algorithm
= Tomasulo’'s Algorithm Stages

Introduction

s Rearrange order of instructions to reduce stalls
while maintaining data flow

Buinpayos a1wreuig

= Advantages:

= Compiler doesn’t need to have knowledge of
microarchitecture

= Handles cases where dependencies are unknown at
compile time

= Disadvantage:
s Substantial increase in hardware complexity
= Complicates exceptions

Introduction

= Dynamic scheduling implies:
= Out-of-order execution
= Out-of-order completion

Buinpayos a1wreuig

s Example 1:
fdiv.d f0,f2,f4
fadd.d f10,f0,f8
fsub.d f12,f8,f14

» Tsub.d is not dependent, issue before fadd.d

Introduction

= Example 2:
fdiv.d f0,f2,f4
fmul.d f6,f0,f8
fadd.d f0,f10,f14

Buinpayos a1wreuig

» fadd.d is not dependent, but the antidependence
makes it impossible to issue earlier without register
renaming

Register Renaming

= Example 3:

Buinpayos a1wreuig

fdiv.d f0,f2,f4
fadd.d f6,f0,f8
fsd 6,0(x1)
fsub.d f8,f10,f14 antidependence
fmul.d f6,f10,f8

antidependence

= Name dependence with 6

Register Renaming

= Example 3:

Buinpayos a1wreuig

fdiv.d f0,f2,f4
fadd.d s,f0,f8
fsd S,0(x1)
fsub.d 17,f10,f14
fmul.d f6,f10,T

= Now only RAW hazards remain, which can be strictly
ordered

Tomasulo’s Algorithm

= Tracks when operands are available

= Introduces register renaming in hardware
= Minimizes WAW and WAR hazards

Buinpayos a1wreuig

s Register renaming Is provided by reservation
stations (RS)

= Contains:

= The instruction
= Buffered operand values (when available)

= Reservation station number where the instruction providing
the operand values is located

Tomasulo’s Algorithm

s RS fetches and buffers an operand as soon as it
becomes available (not necessarily involving register file)

= Pending instructions designate the RS that will provide
their input

s Result values broadcast on a result bus, called the common data
bus (CDB)

= Only the last output updates the register file

= As instructions are issued, the register specifiers are
renamed with the reservation station

Buinpayos a1wreuig

= May be more reservation stations than registers

s Load and store buffers
s Contain data and addresses, act like reservation stations

MI<

MORGAN KAUFMANN

From instruction unit

Tomasulo’s Algorithm

Instruction FP registers ‘
queue
Load/store
operations
Floating-point Operand
LT S operations buses
Store buffers
' § Load buffers
L]
Operation bus

Reservation

stations

|1

=

Common data bus (CDB)

Buinpayos a1wreuig

Tomasulo’s Algorithm Stages

= Fetch (F)
= Get instructions from the instruction memory to the instruction queue.
= Issue (1)

Buinpayos a1wreuig

= Get next instruction from FIFO queue.

= [f available RS, issue the instruction to the RS with operand values if
available from the register file (RF).

= |f operand values not available, stall the instruction.
= Execute (E)

= When operand becomes available, store it in any reservation stations
waiting for it.

= When all operands are ready, issue the instruction.
= Loads and store maintained in program order through effective address.

= No instruction allowed to initiate execution until all branches that
proceed it in program order have completed.

s Write result

= Write result on CDB into RSs, RF, and store buffers
= (Stores must wait until address and value are received)

contents

s Instruction-Level Parallelism: Concepts and Challenges

s Basic Compiler Techniques for Exposing ILP

s Reducing Branch Costs with Advanced Branch Prediction
s Overcoming Data Hazards with Dynamic Scheduling

= Dynamic Scheduling: Examples and Algorithms

= Hardware-Based Speculation

= Exploiting ILP Using Multiple Issue and Static Scheduling

= Exploiting ILP Using Dynamic Scheduling, Multiple Issue, and
Speculation

= Advanced Techniques for Instruction Delivery and Speculation

= Multithreading: Exploiting Thread-Level Parallelism to Improve
Uniprocessor Throughput

m Thelinteli7 6700 and ARM Cortex-A53

s Fallacies and Pitfalls

contents

= Dynamic Scheduling: Examples and Algorithms
= Example of Floating-Point Operations
= Loop Example

Example of FP Operations

= Latencies:
fld 6,32(x2) = Load 1 cycle (A)
fid £2,44(x3) i Tovee "
fmul.d fO0,f2,f4 Memory Access
fsub.d f8,f2,f6 = Add 2 cycles
fdiv.d f0,f0,f6 = Mul 6 cycles
fadd.d 6,8, f2 » Divizcycles

Information Tables Status

Instruction status

Buinpayos a1wreuig

Instruction Issue Execute Write result
fld £6,32(x2) Vv vV vV
fld £2,44(x3) Vv vV
fmul.d f0,f2,f4 v
fsub.d f8,f2,f6 Vv Status when all instructions have
fdiv.d_f0,0,f6 v issued but only 11 has written.
fadd.d f6,f8,f2 v

Reservation stations
Name Busy Op Vj vk Qj Qk A
Loadl No
Load2 Yes Load 44 + Regs[x3]
Addl Yes SUB Mem[32 + Regs[x2]1] Load2
Add2 Yes ADD Addl Load2
Add3 No
Multl Yes MUL Regs[f4] Load2
Mult2 Yes DIV Mem[32 + Regs[x2]] Multl

Register status

Field fo f2 fa fé f8 f10 f12 f30
O Multl Load2 Add2 Addl Mult2 |

MI<

MORGAN KAUFMANN

Loop Example

Buinpayos a1wreuig

Loop: fld fO0,0(x1)
fmul.d f4,f0,f2
fsd f4,0(x1)
addi x1,x1,-8
bne x1,x2,Loop
// branches 1f x1 = x2

Information Tables Status

Instruction status

Instruction From iteration Issue Execute Write result
f1d £0,0(x1) 1 v v
fmul.d f4,f0,f2 1 Vv
fsd f4,0(x1) 1 Vv
f1d £0,0(x1) 2 v v
fmul.d f4,f0,f2 2 Vv
fsd f4,0(x1) 2 v | Status when all instrs. have issued
but only the loads have executed.
Reservation stations
Name Busy Op Vj Vk Qj Qk A
Loadl Yes Load Regs[x1]+0
Load? Yes Load Regs[x1] -8
Addl No
Add2 No
Add3 No
Multl Yes MUL Regs[f2] Loadl
Mult2 Yes MUL Regs[f2] Load2
Storel Yes Store Regs[x1] Mult]
Store2 Yes Store Regs[x1] — 8 Mul2
Register status
Field fo f2 fa fé6 f8 f10 f12 30
Qi Load2 Mulr2

MI<

MORGAN KAUFMANN

Buinpayos a1wreuig

contents

= Instruction-Level Parallelism: Concepts and Challenges

s Basic Compiler Techniques for Exposing ILP

s Reducing Branch Costs with Advanced Branch Prediction
s Overcoming Data Hazards with Dynamic Scheduling

= Dynamic Scheduling: Examples and Algorithms

= Hardware-Based Speculation

= Exploiting ILP Using Multiple Issue and Static Scheduling

= Exploiting ILP Using Dynamic Scheduling, Multiple Issue, and
Speculation

= Advanced Techniques for Instruction Delivery and Speculation

= Multithreading: Exploiting Thread-Level Parallelism to Improve
Uniprocessor Throughput

m Thelinteli7 6700 and ARM Cortex-A53

s Fallacies and Pitfalls

contents

= Hardware-Based Speculation
= Introduction
= Reorder Buffer (ROB)
= Stages with Reorder Buffer
= Commit Stage
= Examples

Introduction

s EXecute instructions along predicted execution
paths but only commit the results if prediction

was correct.

= |nstruction commit: allowing an instruction to
update the register file when instruction is no
longer speculative.

= Need an additional piece of hardware to prevent
any irrevocable action until an instruction
commits.

uoire|noads paseg-asempieH

= |l.e. updating state

Reorder Buffer (ROB)

s Reorder buffer — holds the result of instruction
between completion and commit

= Four flelds:
= Instruction type: branch/store/register
= Destination field: register number
=« Value field: output value
= Ready field: completed execution?

= Modify reservation stations:

= Operand source is now reorder buffer instead of
reservation stations.

uoire|noads paseg-asempieH

Reorder Buffer

1
Reorder buffer
From instruction unit
: Reg #, ¢ Data
Instruction
queue
FP registers
Load/store

uoire|noads paseg-asempieH

operations
Y _ _ Operand
Address unit Floating-point buses
operations !
+ Load buffers " 13
L

Operation bus

Store 3 2
address 2 Regewation 1
Store > 1 stations
data + Address
Memory unit

M(Common data bus (CDB)

MORGAN KAUFMANN

Stages with Reorder Buffer

s Fetch (F)
= Issue (I):
= Allocate RS and ROB, read available operands

= Execute (E):
= Begin execution when operand values are available

= Write result (W):
= Write result and ROB tag on CDB
= Commit (C):
= When ROB reaches head of ROB, update RF.

= When a mispredicted branch reaches head of ROB,
discard all entries.

uoire|noads paseg-asempieH

Commit Stage

= Register values and memory values are not
written until an instruction commits

uoire|noads paseg-asempieH

= On misprediction:
= Speculated entries in ROB are cleared

= EXceptions:
= Not recognized until it is ready to commit

Example of FP Operations

= Latencies:
fld 6,32(x2) = Load 1 cycle (A)
fid £2,44(x3) i Tovee "
fmul.d fO0,f2,f4 Memory Access
fsub.d f8,f2,f6 = Add 2 cycles
fdiv.d f0,f0,f6 = Mul 6 cycles
fadd.d 6,8, f2 » Divizcycles

L
" o)
=
Information Tables Status S
S =
Reorder buffer 9‘3
D
Entry Busy Instruction State Destination Value 5“
1 No fld f6,32(x2) Commit f6 Mem[32 + Regs[x2]] Q
2 No fld f2,44(x3) Commat f2 Mem[44 + Regs[x3]] %
3 Yes fmul.d f0,f2,f4 Write result f0 #2 x Regs[f4] o
4 Yes fsub.d 8,f2,6 Write result 8 #2—#1 _(é)
5 Yes fdiv.d f0,f0, f6 Execute f0 g
6 Yes fadd.d f6,f8,f2 Write result fé #4 4 #2 c
2
@)
Reservation stations -
Name Busy Op Vj Vk Qj Qk Dest A
Loadl No -
Load2 No Status when all the multiply
Addl_ No instruction is ready to commit.
Add2 No
Add3 No
Multl No fmul.d Mem[44 + Regs[x3]] Regs[f4] #3
Mult2 Yes fdiv.d Mem[32 + Regs[xZ2]] #3 #5 Assumes
fdiv.d writes
FP register status to f10
Field fo f1 f2 f3 f4 5 16 7 f8 f10 /
Reorder # 3 6 4 5

Busy Yes No No No No No Yes . Yes Yes

MORGAN KAUFMANN

Loop Example

Using pipeline diagrams, show the execution of
two iterations of this loop assuming the branch is
predicted taken and is resolved as not taken.

Buinpayos a1wreuig

Loop: fld f0,0(x1)
fmul.d 4,10, f2
fsd f4,0(x1)
addi x1,x1,-8
bne x1,x2,Loop
// branches if x1 # x2

contents

= Instruction-Level Parallelism: Concepts and Challenges

s Basic Compiler Techniques for Exposing ILP

s Reducing Branch Costs with Advanced Branch Prediction
s Overcoming Data Hazards with Dynamic Scheduling

= Dynamic Scheduling: Examples and Algorithms

s Hardware-Based Speculation

= Exploiting ILP Using Multiple Issue and Static Scheduling

= Exploiting ILP Using Dynamic Scheduling, Multiple Issue, and
Speculation

= Advanced Techniques for Instruction Delivery and Speculation

= Multithreading: Exploiting Thread-Level Parallelism to Improve
Uniprocessor Throughput

m Thelinteli7 6700 and ARM Cortex-A53

s Fallacies and Pitfalls

contents

= EXploiting ILP Using Multiple Issue and Static
Scheduling

= Introduction

= Multiple Issue Approaches
= VLIW Processors

Introduction

= To achieve CPI < 1, need to complete multiple
Instructions per clock

= Solutions:
= Statically scheduled superscalar processors
= Dynamically scheduled superscalar processors
= VLIW (very long instruction word) processors

Buiinpayos anels pue anss| sjdnni

Multiple Issue Approaches

Buiinpayos anels pue anss| sjdnni

Common Issue Hazard Distinguishing
name structure detection Scheduling characteristic Examples
Superscalar Dynamic Hardware Static In-order execution Mosty in the embedded
(staoc) space: MIPS and ARM,
including the Cortex-AS3
Superscalar Dynamic Hardware Dynamic Some out-of-order None at the present
(dynamx) executon, but no
speculation
Superscalar Dynamic Hardware Dynamic with Out-of-order execution Intel Core 13, 15, i7: AMD
(speculative) speculation with speculation Phenom: IBM Power 7
VLIWALIW Static Primanly Static All hazards determined Most examples are in signal
software and indicated by compiler processing, such as the TI
(often implhicidy) Cox
EPIC Pamanly Primanly Mostly static All hazards determined Itanium
static software and indicated explicitly

MI<

MORGAN KAUFMANN

by the compiler

VLIW Processors

s Package multiple operations into one instruction

= Example VLIW processor:
= One integer instruction (or branch)
= Two independent floating-point operations
= Two independent memory references

Buiinpayos anels pue anss| sjdnni

= Must be enough parallelism in code to fill the
available slots

VILW Processors

VLIW
(very long instruction word,1024 bits!)

CaChe/ >. FetCh ..
memory unit Single multiioperation instruction
.................................... JER—
EU =1 (— EU
— _‘"'1 — S
Multi-operation Register file
instruction

VLIW approach

VLIW Processors

Memory Memory Integer
reference 1 reference 2 FP operation 1 FP operation 2 operation/branch

fld f0,0(x1) fld f6,-8(x1)
fld f10,-16(x1) fldf14,-24(x1)
1d f18,-32(x1) fldf22,-40(x1) fadd.d f4,f0,f2 fadd.d f8, f6,f2
1d f26,-48(x1) fadd.d f12,f0,f2 fadd.d f16,f14,f2
fadd.d f20,f18,f2 fadd.d f24,f22,f2
fsd f4,0(x1) fsd f8,-8(x1) fadd.d f28,f26,f24
fsdfl12,-16(x1) fsdfl6,-24(x1) addi x1,x1,-56
fsd £20,24(x1) fsd f24,16(x1)
fsd £28,8(x1) bne x1,x2,Loop

'F
'F

Buiinpayos anels pue anss| sjdnni

= Disadvantages:
= Statically finding parallelism
= Code size
= No hazard detection hardware
= Binary code compatibility

contents

= Instruction-Level Parallelism: Concepts and Challenges

s Basic Compiler Techniques for Exposing ILP

s Reducing Branch Costs with Advanced Branch Prediction
s Overcoming Data Hazards with Dynamic Scheduling

= Dynamic Scheduling: Examples and Algorithms

s Hardware-Based Speculation

s Exploiting ILP Using Multiple Issue and Static Scheduling

= Exploiting ILP Using Dynamic Scheduling, Multiple Issue, and
Speculation

= Advanced Techniques for Instruction Delivery and Speculation

= Multithreading: Exploiting Thread-Level Parallelism to Improve
Uniprocessor Throughput

m Thelinteli7 6700 and ARM Cortex-A53

s Fallacies and Pitfalls

contents

= EXploiting ILP Using Dynamic Scheduling,
Multiple Issue, and Speculation
= Introduction

= Multiple Issue with Speculation
= Example

Introduction

= Modern microarchitectures:
= Dynamic scheduling + multiple issue + speculation

= TwO approaches:

= Assign reservation stations and update pipeline
control table in half clock cycles
= Only supports 2 instructions/clock

= Design logic to handle any possible dependencies
between the instructions

uonenoads pue ‘anss| a|dnn\ ‘Bulnpayoss diweuiq

= Issue logic is the bottleneck in dynamically
scheduled superscalars

)
m n . \<
>
Multiple Issue with Speculation 3
=}
(@)
1 ' o
(@)
=
Reorder buffer 8
From instruction unit c
=
©«
<
c
=
. Reg#y ¢ Data i)
Instruction 1 o)
queue -
Integer and FP registers (£
Load/store c
operations ..CD
Y r . _ Operand %
Address unit Floating-point buses ol
operations ‘ N
4 Load buffers 1 3 o)
g
Operation bus c
2
(@)
Store . Yy v ¥ L L 2 ¥ ¥ L] 2 >

address 2 Reservation 1 1

Store - 1 stations
data ¢ y Address -
Memory unit FP adders FP multipliers I r unit
M(Common data bus (CDB)

MORGAN KAUFMANN

Multiple Issue with Speculation

= Examine all the dependencies among the
Instructions in the bundle

» |f dependencies exist in bundle, encode them in
reservation stations

= Also need multiple completion/commit

= To simplify RS allocation:

= Limit the number of instructions of a given class that
can be issued in a “bundle”, i.e. one FP, one integer,
one |load, one store

uonenoads pue ‘anss| a|dnn\ ‘Bulnpayoss diweuiq

Example

Using pipeline diagrams, show the execution of

three iterations of this loop assuming superscaler
degree of 2.

Loop:

1d
addi
SC
addi
bne

x2,0(x1) //X2=array element

x2,X2,1 //increment x2
x2,0(x1) //store result
x1,x1,8 //increment pointer
x2,x3,Loop //branch 1f not last

uonenoads pue ‘anss| a|dnn\ ‘Bulnpayoss diweuiq

)

<

>

Example :

3,

o

Read Write %’

Issues Executes access CDB at Commits (DD'

Iteration atclock atclock at clock clock at clock o

number Instructions number number number number number Comment =

| 1d x2,0(x1) | 2 3 4 5 First issue @

1 addi x2,x2,1 1 5 6 7 Wait for 1d <

1 sd x2,0(x1) 2 3 7 Wait for addi [=

1 addi x1,x1,8 2 3 4 8 Commit in order '%

1 bne x2,x3,Loop 3 7 8 Wait for add i 7

2 Id x2,0(x1) 4 5 6 9 No execute delay (é’

2 addi x2,x2,1 4 8 9 10 Wait for 1d P

2 sd x2,0(x1) 5 6 10 Wait for addi |5

: e o

2 addi x1,x1,8 5 6 7 11 Commit in order N

2 bne x2,x3,Loop 6 10 1 Wait for addi |3

3 1d x2,0(x1) 7 8 9 10 12 Earliest possible | &

3 addi x2,x2,1 7 11 12 13 Wait for 1d 2

3 sd x2,0(x1) S 9 13 Wait for addi [S
3 addi x1,x1,8 S 9 10 14 Executes carlier
3 bne x2,x3,Loop 9 13 14 Wait for add i

contents

s Instruction-Level Parallelism: Concepts and Challenges

s Basic Compiler Techniques for Exposing ILP

s Reducing Branch Costs with Advanced Branch Prediction
s Overcoming Data Hazards with Dynamic Scheduling

= Dynamic Scheduling: Examples and Algorithms

s Hardware-Based Speculation

s Exploiting ILP Using Multiple Issue and Static Scheduling

s Exploiting ILP Using Dynamic Scheduling, Multiple Issue, and
Speculation

= Advanced Techniques for Instruction Delivery and Speculation

= Multithreading: Exploiting Thread-Level Parallelism to Improve
Uniprocessor Throughput

m Thelinteli7 6700 and ARM Cortex-A53

s Fallacies and Pitfalls

contents

= Advanced Techniques for Instruction Delivery
and Speculation
= Branch-Target Buffer
= Branch Folding
= Return Address Predictor
= Integrated Instruction Fetch Units
= Hardware Register Renaming
= How Much Speculation?
= Value and Address Prediction

Branch-Target Buffer

= Need high instruction bandwidth

= Branch-Target Buffers (BTB)
= Next PC prediction buffer, indexed by current PC

o
<
g)
@)
-
>
O
c
(D
0))]
—_h
©]
-~
>
n
Send PC to memory and '—-1'-
PC of instruction to fetch branch-target buffer c
2
Look up Predicted PC o
IF >
{»)
Number of —T
entries <
in branch- D
target Q
buffer T
predicted b}
PC >
instruction Yes o
a taken
branch? m
. ©
No: instruction is not No Taken Yes g
predicted to be a taken Normal branch? c
branch; proceed normally instruction _—
execution 'Q_Jr
Yes: then instruction is taken branch and predicted 6
PC should be used as the next PC | S
Enter Mispredicted branch, Branch correctly
branch instruction kill fetched instruction; predicted;
EX address and next restart fetch at other continue execution|
PC into branch- target; delete entry with no stalls
target buffer from target buffer

MI<

MORGAN KAUFMANN

Branch Folding

= Optimization:
= Larger branch-target buffer

= Add target instruction into buffer to deal with longer
decoding time required by larger buffer

= ‘Branch folding”

>
o
<
)
o
>
=
o
c
D
7
==
o
-
=]
0
—
-
c
o
=,
o
-
O
@
=
@
]
<
)
-
o
2
g
@D
o
=
Q
=,
o
-

Return Address Predictor

s Most unconditional branches come from
function returns

= The same procedure can be called from
multiple sites
= Causes the buffer to potentially forget about the
return address from previous calls
s Create return address buffer organized as a
stack

>
o
<
)
o
>
=
o
c
D
n
==
o
-
=]
7,
—
-
c
o
=,
o
-
O
@
=
@
]
<
)
-
o
2
g
@D
o
=
Q
=,
o
-

Return Address Predictor

10%

>

o

<

2

70% -

= Go =

-~ mB8ksim %

60% A cct | .

-0~ Compress ah

-4~ Xlisp -

- ljpeg S5

50% A Perl ol

§‘ -e- Vortex c

< 2

o @)

8 40% =

S O
Q

- Q)

= —

30% <

|4 D

g <

QD

20% 2

o

02]

©

(g)

(@)

c

2

@)

>

0%

Return address buffer entries

MI<

MORGAN KAUFMANN

Integrated Instruction Fetch Unit

= Design monolithic unit that performs:
= Branch prediction

= Instruction prefetch
= Fetch ahead

= Instruction memory access and buffering
= Deal with crossing cache lines

>
o
<
)
e
>
=3
o)
c
M
0
*
@]
=
S
0
~+
=
c
0O
=,
o
>
O
@
=
D
=
<
o)
-
o
wn
o
D
O
c
)
=,
o
>

Hardware Register Renaming

Instead of virtual registers from reservation stations and reorder
buffer, create a single register pool

= Contains visible registers and virtual registers
Use hardware-based map to rename registers during issue
WAW and WAR hazards are avoided
Speculation recovery occurs by copying during commit
Still need a ROB-like queue to update table in order
Simplifies commit:

= Record that mapping between architectural register and physical register
IS no longer speculative

= Free up physical register used to hold older value
= In other words: SWAP physical registers on commit

Physical register de-allocation is more difficult

= Simple approach: deallocate virtual register when next instruction writes
to its mapped architecturally-visibly register

uonenoads pue AlaAlj@@ uononasu| 10) sanbluyda] "ApY

Hardware Register Renaming

= Combining instruction issue with register renaming:

= Issue logic pre-reserves enough physical registers for the
bundle

= Issue logic finds dependencies within bundle, maps registers
as necessary

= Issue logic finds dependencies between current bundle and
already in-flight bundles, maps registers as necessary

Physical register assigned Instruction with physical Rename map
Instr. # Instruction or destination register numbers changes
| add x1,x2,x3 p32 add p32,p2,p3 xl-> p32
2 sub x1,x1,x2 p33 sub p33,p32,p2 x1->p33
3 add x2 ,x1,x2 p34 add p34,p33,x2 x2->pi4
4 sub x1,x3,x2 p35 sub p35,p3,p34 x1->p3s
5 add x1,x1,x2 p36 add p36,p35,p34 x1->p36
6 sub x1,x3,x1 p37 sub p37,p3,p36 x1->p37

uonenoads pue AlaAlj@@ uononasu| 10) sanbluyda] "ApY

How Much Speculation?

= How much to speculate

= Mis-speculation degrades performance and power
relative to no speculation
= May cause additional misses (cache, TLB)

= Prevent speculative code from causing higher
costing misses (e.g. L2)

= Speculating through multiple branches
= Complicates speculation recovery

= Speculation and energy efficiency

= Note: speculation is only energy efficient when it
significantly improves performance

uonenoads pue AlaAlj@@ uononasu| 10) sanbluyda] "ApY

How Much Speculation?

Integer

45% -

40% -

35% -

§ 8

:

Misspeculation

15% -

Value and Address Prediction

= Value prediction

s Uses:
» Loads that load from a constant pool
= Instruction that produces a value from a small set of values

= Not incorporated into modern processors

» Similar idea--address aliasing prediction--is
used on some processors to determine if two
stores or a load and a store reference the
same address to allow for reordering

>
o
<
)
o
>
=
o
c
D
n
==
o
-
=]
7,
—
-
c
o
=,
o
-
O
@
=
@
]
<
)
-
o
2
g
@D
o
=
Q
=,
o
-

contents

= Instruction-Level Parallelism: Concepts and Challenges

s Basic Compiler Techniques for Exposing ILP

= Reducing Branch Costs with Advanced Branch Prediction
s Overcoming Data Hazards with Dynamic Scheduling

= Dynamic Scheduling: Examples and Algorithms

s Hardware-Based Speculation

s Exploiting ILP Using Multiple Issue and Static Scheduling

s Exploiting ILP Using Dynamic Scheduling, Multiple Issue, and
Speculation

s Advanced Technigques for Instruction Delivery and Speculation

= Multithreading: Exploiting Thread-Level Parallelism to Improve
Uniprocessor Throughput

m Thelinteli7 6700 and ARM Cortex-A53

s Fallacies and Pitfalls

Multithreaded Approaches

~—> Superscalar

+— Time (processor cycle

Fine-Grained Coarse-Grained Multipro|cessing Multithreadin

Simultaneous

NN N
WIW NN
N N
Iﬁ N
WIW I N
NN NN
WINN WINN AN
NN N
N N
I NN
N
Thread 1 Thread 3 Thread 5
Thread 2 Thread 4 ldle slot

Intel Core 17 SMT Evaluation

2.00 -
2 B Speedup —— Energy efficiency
©
3 1.75 -
c
2
o
i3
S
= 1.50
c
@
=]
-
@
©
g 1.254
@
=
i\ VNI
: 1.00_ k " k h ‘
= N/
w
~

O-Ts T T I'.\. T T I%I T T T T \ T T N T T T T T T@ 1

‘JGC‘F@& @-Q{\:Jé) Q?C‘# i {:‘\) '@'&,@* Q"'.'-"'.Q‘-'"
SIS > F P > & FESEEF SN
< \,o"z' > S F eﬁ? Q'@ e@§po°§o@° % Q, @@‘@qﬁ 6‘&\}-:%'29 7
N4 \& N @ 9
Q < >

contents

= Instruction-Level Parallelism: Concepts and Challenges

s Basic Compiler Techniques for Exposing ILP

= Reducing Branch Costs with Advanced Branch Prediction
s Overcoming Data Hazards with Dynamic Scheduling

= Dynamic Scheduling: Examples and Algorithms

s Hardware-Based Speculation

s Exploiting ILP Using Multiple Issue and Static Scheduling

s Exploiting ILP Using Dynamic Scheduling, Multiple Issue, and
Speculation

s Advanced Technigques for Instruction Delivery and Speculation

s Multithreading: Exploiting Thread-Level Parallelism to Improve
Uniprocessor Throughput

m Thelinteli7 6700 and ARM Cortex-A53

s Fallacies and Pitfalls

contents

s The Intel 17 6700 and ARM Cortex-A53

» ARM Cortex-A53

= Qverview
= Branch Prediction
=« Performance

s Intel Core 17 6700

= Overview
= Corei7 920 vs 6700

ARM Cortex-A53 Overview

s Dual-issue, statically scheduled superscalar with
dynamic issue detection.

m 8 stages for integer instructions (F1, F2, D1, D2,
D3/ISS, EX1, EX2, WB).

s 10 stages for FP instructions (F1, F2, D1, D2,
D3, F1, F2, F3, F4, F5).

= Pipeline stalls due to:
s Functional hazards: two Instrs. same unit

=« Data hazards: two dependent instrs
= Control hazards: branch misprediction

ARM Cortex-A53 Overview

F1 F2 F3 F4 Iss Ex1 Ex2 Wr
Integer execute and load-store
Instruction fetch & predict
- e ALU pipe 0 -
Integer it
AGU I register (— PIT .
+ " file > pipe >
TLB > Hkg?ﬂf
. predictor
Instruction -
- A MAC pipe g (TT
cache Indirect Writeback
» predictor N Divide pipe "
Issue - Load pipe »
- Store pipe -
Instruction Decode Floating Point execute
NEON MUL/DIVISQRT pipe
[, Eary | [ISEOY | Main | | Late register
decode queue decode decode file ALU pipe
D1 D2 D3 F1 F2 F3 F4 F5

MI<

MORGAN KAUFMANN

A53 Branch Prediction

s The Iinstruction fetch unit has

= Single entry Branch Target Instruction Cache (gives
the next two target instrs), no delay

= Hybrid Predictor: Global predictor with branch history
registers and a 3072-entry branch history table, 2-
cycle delay

= Indirect Predictor: 256-entry Branch Target Address
Cache, 3-cycle delay.

= Return Address stack: 8 entries, 3-cycle delay.
= Branch decisions are made in ALU Pipe 0.
= Misprediction penalty is 8 cycles.

AS53 Misprediction, SPECInt2006

1 B

1 B

L TR B

1 B

1 B R e

1R B e e RSt

Branch misprediction rate

R T e R
e O

P |

NEEERREREREE I ------ I"““
0% =
gcc

hmmer h264ref libquantum perlbench sjeng bzip2 gobmk xalancbmk

-

astar omnetpp mcf

MI<

MORGAN KAUFMANN

A53 Performance (CPI)

10

-
1

O Memory hierarchy stalls
------ O Pipeline stalls
B deal CPI

Ll 1

hmmer h264ref libquantum perlbench sjeng bzip2

1

astar omnetpp mcf

MORGAN KAUFMANN

Intel Core 17 6700 Overview

s Out-of-order speculative superscalar, degree 4.

= 14 stages

= Instruction Fetch: Fetches 16 bytes, has branch
prediction and return address stack.

= 16-entry instruction buffer for predecoded, fused
macro-ops

= 4 macro-ops decoders (one for complex instrs).

= 64-entry micro-op buffer with loop stream detection
and fusion.

= Instruction issue with register renaming to 224-ROB
and 97-RS.

s 6 functional units

Intel Core 17 6700

rative) |
128-Entry | 32 KB Inst. cache (8-way associative) |
inst TLB |« ¥
(8-way) Pre-decode+macro-op
fusion, fetch buffer
R :
'nsfka:'cdhlnn Instruction queue
hardware |= - - - =
Complex Simple Simple Simple

Mioro || M&CTO-0p | | macro-op | | macro-0p || macro-op

_m'-‘gg decoder decoder decoder decoder
——§ [[[

| 64-Entry micro-op loop stream detect buffer |

| Register alias table and allocator |
Retirement]
register file | ™~ 224-Entry reorder buffer |
]
- 97-Entry reservation station |
[} 1 v 1 1 1
ALU ALU Load Store Store ALU
shift shift address | |address data shift
) , v 1 1 !
SSE SSE SSE
shuffle shuffle Memory order buffer shuffle
ALU ALU (72 load; 56 stores pending) ALU
| | |
128-bit 128-bit 128-bit
FMUL FMUL Store FMUL
FDIV FDIV sl FDIV
1 I T
T o7 Y
1536-Entry unified | ™| 64-Entry data TLB || 32-KB dual-ported data 256 KB unified 12
L2 TLB (12-way) [—=| (4-way associative) || cache (8-way associative) cache (4-way)
v 4
Uncore arbiter (handles scheduling and

8 MB all core shared and inclusive L3
clock/power state differences)

M< cache (16-way associative)

MORGAN KAUFMANN

17 920 (15t Gen.) vs 6700 (6t Gen.)

Resource i7 920 (Nehalem) i7 6700 (Skylake)
Micro-op queue (per thread) 28 64
Reservation stations 36 97
Integer registers NA 180
FP registers NA 168
Outstanding load buffer 48 72
QOutstanding store buffer 32 56

Reorder buffer 128 256

17 920 (15t Gen.) vs 6700 (6t Gen.)

B i7 6700 M7 920

2.67

B S, § ot

1.23

Cycles per instruction

0.59 0.61
...0.47

04

astar bzip2 gce gobmk h264ref hmmer libquantum mcf omnetpp perbench sjeng xalancbmk

MORGAN KAUFMANN

contents

= Instruction-Level Parallelism: Concepts and Challenges

s Basic Compiler Techniques for Exposing ILP

= Reducing Branch Costs with Advanced Branch Prediction
s Overcoming Data Hazards with Dynamic Scheduling

= Dynamic Scheduling: Examples and Algorithms

s Hardware-Based Speculation

s Exploiting ILP Using Multiple Issue and Static Scheduling

s Exploiting ILP Using Dynamic Scheduling, Multiple Issue, and
Speculation

s Advanced Technigques for Instruction Delivery and Speculation

s Multithreading: Exploiting Thread-Level Parallelism to Improve
Uniprocessor Throughput

m Thelntel 17 6700 and ARM Cortex-A53

s Fallacies and Pitfalls

Fallacies and Pitfalls

s F: Processors with lower CPlIs / faster clock rates
will also be faster

sllejiid pue saioe|ied

Implementation Clock SPECCInt2006 SPECCFP2006
Processor technology rate Power base baseline
Intel Pentium 4 670 90 nm 3.8 GHz 115 W 11.5 122
Intel Itanium 2 90 nm 1.66 GHz 104 W 14.5 173

approx. 70 W one
core
Intel 17 920 45 nm 3.3 GHz 130 W total 355 384

approx. 80 W one
core

= Pentium 4 (20 stages) had higher clock, but worse
CPI

a [tanium had same CPI as 17, lower clock than P4

Fallacies and Pitfalls

= P: Sometimes bigger and dumber is better

= Pentium 4 and Itanium were advanced designs, but
could not achieve their peak instruction throughput
because of relatively small caches as compared to i7

sllejiid pue saioe|ied

= P: And sometimes smarter Is better than bigger
and dumber

= TAGE branch predictor outperforms gshare with less
stored predictions

Fallacies and Pitfalls

gee

= P: Believing that
there are large
amounts of ILP
available, if only
we had the right
technigues

sifepid pue saioe|jed

espresso

Benchmarks

fpppp

doduc

tomecatv

1 1] 1 1 1 1 1
0 10 20 30 40 50 60
Instruction issues per cycle

