
1 Copyright © 2019, Elsevier Inc. All rights Reserved

Chapter 3

Instruction-Level Parallelism

and Its Exploitation

Adapted by Prof. Gheith Abandah

Computer Architecture
A Quantitative Approach, Sixth Edition

2

Contents
 Instruction-Level Parallelism: Concepts and Challenges

 Basic Compiler Techniques for Exposing ILP

 Reducing Branch Costs with Advanced Branch Prediction

 Overcoming Data Hazards with Dynamic Scheduling

 Dynamic Scheduling: Examples and Algorithms

 Hardware-Based Speculation

 Exploiting ILP Using Multiple Issue and Static Scheduling

 Exploiting ILP Using Dynamic Scheduling, Multiple Issue, and

Speculation

 Advanced Techniques for Instruction Delivery and Speculation

 Multithreading: Exploiting Thread-Level Parallelism to Improve

Uniprocessor Throughput

 The Intel i7 6700 and ARM Cortex-A53

 Fallacies and Pitfalls

Copyright © 2019, Elsevier Inc. All rights Reserved

3

Contents
 Instruction-Level Parallelism: Concepts and

Challenges

 Introduction

 Pipelining

 ILP Approaches

 ILP Challenges

 Data Dependence

 Name Dependence

 Control Dependence

Copyright © 2019, Elsevier Inc. All rights Reserved

4 Copyright © 2019, Elsevier Inc. All rights Reserved

Introduction

 Instruction-Level Parallelism (ILP) allows
overlapping the execution of instructions
and reduce the execution time.

 Pipelining become universal technique in
1985

 Overlaps execution of instructions

 Exploits “Instruction Level Parallelism”

In
tro

d
u
c
tio

n

5

RISC-V Five-Stage Pipeline

Copyright © 2019, Elsevier Inc. All rights Reserved

ld x22,16(x21)
add x5,x6,x7
sub x21,x21,x22

Example:

6 Copyright © 2019, Elsevier Inc. All rights Reserved

ILP Approaches

 Beyond pipelining, there are two main
approaches:

 Hardware-based dynamic approaches
 Used in server and desktop processors

 Not used as extensively in PMP processors

 Compiler-based static approaches
 Not as successful outside of scientific applications

In
tro

d
u
c
tio

n

7 Copyright © 2019, Elsevier Inc. All rights Reserved

ILP Challenges

 When exploiting instruction-level parallelism,
goal is to minimize CPI
 Pipeline CPI =

 Ideal pipeline CPI +

 Structural stalls +

 Data hazard stalls +

 Control stalls

 Parallelism with basic block is limited
 Typical size of basic block = 3-6 instructions

 Must optimize across branches

 Loop-Level Parallelism
 Unroll loop statically or dynamically

In
tro

d
u
c
tio

n

8 Copyright © 2019, Elsevier Inc. All rights Reserved

Data Dependence

 Data dependency (Read-after-write, RAW)
 Instruction j is data dependent on instruction i if

 Instruction i produces a result that may be used by instruction
j

 Instruction j is data dependent on instruction k and instruction
k is data dependent on instruction i

 Dependent instructions cannot be executed
simultaneously

In
tro

d
u
c
tio

n

9 Copyright © 2019, Elsevier Inc. All rights Reserved

Data Dependence

 Dependencies are a property of programs

 Pipeline organization determines if dependence
is detected and if it causes a stall

 Data dependence conveys:
 Possibility of a hazard

 Order in which results must be calculated

 Upper bound on exploitable instruction level
parallelism

 Dependencies that flow through memory
locations are difficult to detect

In
tro

d
u
c
tio

n

Example:

ld x22,16(x21)
add x5,x6,x22

10 Copyright © 2019, Elsevier Inc. All rights Reserved

Name Dependence

 Two instructions use the same name but no flow
of information.

 Not a true data dependence, but is a problem
when reordering instructions.

 Two types:

1) Antidependence (WAR): instruction j writes a
register or memory location that instruction i
reads.
 Initial ordering (i before j) must be preserved.

In
tro

d
u
c
tio

n

Example:

ld x22,16(x21)
add x21,x6,x7

11 Copyright © 2019, Elsevier Inc. All rights Reserved

Name Dependence

2) Output dependence (WAW): instruction i and
instruction j write the same register or memory
location.
 Ordering must be preserved.

 To resolve, use register renaming techniques.

 Violating the order causes RAW, WAR, or WAW
hazard.

In
tro

d
u
c
tio

n

Example:

ld x22,16(x21)
add x22,x6,x7

Example:

ld x22,16(x21)
add x23,x6,x7

12

Control Dependence

 Ordering of instruction i
with respect to a branch
instruction
 Instruction control

dependent on a branch
cannot be moved before the
branch so that its execution
is no longer controlled by
the branch

 An instruction not control
dependent on a branch
cannot be moved after the
branch so that its execution
is controlled by the branch

Example 1:
 add x1,x2,x3

 beq x4,x0,L

 sub x1,x1,x6

L: …

 or x7,x1,x8

Example 2:
 add x1,x2,x3

 beq x12,x0,skip

 sub x4,x5,x6

 add x5,x4,x9

skip:

 or x7,x8,x9

Copyright © 2019, Elsevier Inc. All rights Reserved

In
tro

d
u
c
tio

n

13

Contents
 Instruction-Level Parallelism: Concepts and Challenges

 Basic Compiler Techniques for Exposing ILP

 Reducing Branch Costs with Advanced Branch Prediction

 Overcoming Data Hazards with Dynamic Scheduling

 Dynamic Scheduling: Examples and Algorithms

 Hardware-Based Speculation

 Exploiting ILP Using Multiple Issue and Static Scheduling

 Exploiting ILP Using Dynamic Scheduling, Multiple Issue, and

Speculation

 Advanced Techniques for Instruction Delivery and Speculation

 Multithreading: Exploiting Thread-Level Parallelism to Improve

Uniprocessor Throughput

 The Intel i7 6700 and ARM Cortex-A53

 Fallacies and Pitfalls

Copyright © 2019, Elsevier Inc. All rights Reserved

14

Contents
 Basic Compiler Techniques for Exposing ILP

 Pipeline Scheduling

 Loop Unrolling

Copyright © 2019, Elsevier Inc. All rights Reserved

15 Copyright © 2019, Elsevier Inc. All rights Reserved

Pipeline Scheduling

 Separate dependent instruction from the source
instruction by the pipeline latency of the source
instruction

 Example:
for (i=999; i>=0; i=i-1)

 x[i] = x[i] + s;

C
o
m

p
ile

r T
e
c
h
n
iq

u
e
s

4 cycles in FP Unit

16 Copyright © 2019, Elsevier Inc. All rights Reserved

Pipeline Scheduling

Loop: fld f0,0(x1)

 stall

 fadd.d f4,f0,f2

 stall

 stall

 fsd f4,0(x1)

 addi x1,x1,-8

 bne x1,x2,Loop

C
o
m

p
ile

r T
e
c
h
n
iq

u
e
s

Loop: fld f0,0(x1)

 addi x1,x1,-8

 fadd.d f4,f0,f2

 stall

 stall

 fsd f4,0(x1)
 bne x1,x2,Loop

Loop: fld f0,0(x1)

 fadd.d f4,f0,f2

 fsd f4,0(x1)

 addi x1,x1,-8

 bne x1,x2,Loop

17 Chapter 4 — The Processor — 17

Loop Unrolling

 Replicate loop body to expose more parallelism

 Reduces loop-control overhead

 Use different registers per replication

 Called “register renaming”

 Avoid loop-carried anti-dependencies and out put

dependencies.

 Steps:

1. Replicate the loop instructions n times

2. Remove unneeded loop overhead

3. Modify instructions

4. Rename registers

5. Schedule instructions

18 Copyright © 2019, Elsevier Inc. All rights Reserved

Loop Unrolling
 Unroll by a factor of 4 (assume # elements is divisible by 4)

 Eliminate unnecessary instructions, modify instructions, and
rename registers.

Loop: fld f0,0(x1)

 fadd.d f4,f0,f2

 fsd f4,0(x1) //drop addi & bne

 fld f6,-8(x1)

 fadd.d f8,f6,f2

 fsd f8,-8(x1) //drop addi & bne

 fld f10,-16(x1)

 fadd.d f12,f10,f2

 fsd f12,-16(x1) //drop addi & bne

 fld f14,-24(x1)

 fadd.d f16,f14,f2

 fsd f16,-24(x1)

 addi x1,x1,-32

 bne x1,x2,Loop

C
o
m

p
ile

r T
e
c
h
n
iq

u
e
s

 Note: number
of live registers
vs. original loop

19 Copyright © 2019, Elsevier Inc. All rights Reserved

Loop Unrolling/Pipeline Scheduling

 Pipeline schedule the unrolled loop:

Loop: fld f0,0(x1)

 fld f6,-8(x1)

 fld f10,-16(x1)

 fld f14,-24(x1)

 fadd.d f4,f0,f2

 fadd.d f8,f6,f2

 fadd.d f12,f10,f2

 fadd.d f16,f14,f2

 fsd f4,0(x1)

 fsd f8,-8(x1)

 fsd f12,-16(x1)

 addi x1,x1,-32

 fsd f16,-24(x1)

 bne x1,x2,Loop

C
o
m

p
ile

r T
e
c
h
n
iq

u
e
s

 14 cycles

 3.5 cycles per element

20 Copyright © 2019, Elsevier Inc. All rights Reserved

Strip Mining

 Unknown number of loop iterations?
 Number of iterations = n

 Goal: Make k copies of the loop body

 Generate pair of loops:
 First executes n mod k times

 Second executes n / k times

 “Strip mining”

C
o
m

p
ile

r T
e
c
h
n
iq

u
e
s

21

Contents
 Instruction-Level Parallelism: Concepts and Challenges

 Basic Compiler Techniques for Exposing ILP

 Reducing Branch Costs with Advanced Branch Prediction

 Overcoming Data Hazards with Dynamic Scheduling

 Dynamic Scheduling: Examples and Algorithms

 Hardware-Based Speculation

 Exploiting ILP Using Multiple Issue and Static Scheduling

 Exploiting ILP Using Dynamic Scheduling, Multiple Issue, and

Speculation

 Advanced Techniques for Instruction Delivery and Speculation

 Multithreading: Exploiting Thread-Level Parallelism to Improve

Uniprocessor Throughput

 The Intel i7 6700 and ARM Cortex-A53

 Fallacies and Pitfalls

Copyright © 2019, Elsevier Inc. All rights Reserved

22

Contents
 Reducing Branch Costs with Advanced Branch

Prediction

 Basic 2-Bit Predictor

 Correlating Predictor

 Correlating gshare Predictor

 Tournament Predictor

 Tagged Hybrid Predictors

Copyright © 2019, Elsevier Inc. All rights Reserved

23

Basic 2-Bit Predictor

Chapter 4 — The Processor — 23

 Uses Branch History Table (BHT) with n = 2

 Table size = n × 2k bits

 For each branch, predict taken or not taken

24 Chapter 4 — The Processor — 24

Basic 2-Bit Predictor

 Only change prediction on two successive

mispredictions

25

Correlating Predictor

 Multiple 2-bit
predictors for each
branch

 One for each possible
combination of
outcomes of
preceding m branches
 (m,n) predictor:

behavior from last m
branches to choose
from 2m n-bit
predictors

 Size = n × 2k × 2m bits

Copyright © 2019, Elsevier Inc. All rights Reserved

26 Copyright © 2019, Elsevier Inc. All rights Reserved

Basic vs Correlating Predictors
B

ra
n
c
h
 P

re
d
ic

tio
n

27 Copyright © 2019, Elsevier Inc. All rights Reserved

Correlating gshare Predictor
B

ra
n
c
h
 P

re
d
ic

tio
n

28

Tournament Predictor

 Combine correlating predictor with local predictor

Copyright © 2019, Elsevier Inc. All rights Reserved

29 Copyright © 2019, Elsevier Inc. All rights Reserved

Local vs. Correlating vs. Tournament
B

ra
n
c
h
 P

re
d
ic

tio
n

30 Copyright © 2019, Elsevier Inc. All rights Reserved

Tagged Hybrid Predictors

 Need to have predictor for each branch
and history

 Problem: this implies huge tables

 Solution:
 Use hash tables, whose hash value is based on

branch address and branch history

 Longer histories may lead to increased chance of
hash collision, so use multiple tables with
increasingly shorter histories

B
ra

n
c
h
 P

re
d
ic

tio
n

31 Copyright © 2019, Elsevier Inc. All rights Reserved

Tagged Hybrid Predictors
B

ra
n
c
h
 P

re
d
ic

tio
n

32 Copyright © 2019, Elsevier Inc. All rights Reserved

Tagged Hybrid Predictors
B

ra
n
c
h
 P

re
d
ic

tio
n

33

Contents
 Instruction-Level Parallelism: Concepts and Challenges

 Basic Compiler Techniques for Exposing ILP

 Reducing Branch Costs with Advanced Branch Prediction

 Overcoming Data Hazards with Dynamic Scheduling

 Dynamic Scheduling: Examples and Algorithms

 Hardware-Based Speculation

 Exploiting ILP Using Multiple Issue and Static Scheduling

 Exploiting ILP Using Dynamic Scheduling, Multiple Issue, and

Speculation

 Advanced Techniques for Instruction Delivery and Speculation

 Multithreading: Exploiting Thread-Level Parallelism to Improve

Uniprocessor Throughput

 The Intel i7 6700 and ARM Cortex-A53

 Fallacies and Pitfalls

Copyright © 2019, Elsevier Inc. All rights Reserved

34

Contents
 Overcoming Data Hazards with Dynamic

Scheduling

 Introduction

 Register Renaming

 Tomasulo’s Algorithm

 Tomasulo’s Algorithm Stages

Copyright © 2019, Elsevier Inc. All rights Reserved

35 Copyright © 2019, Elsevier Inc. All rights Reserved

Introduction

 Rearrange order of instructions to reduce stalls
while maintaining data flow

 Advantages:
 Compiler doesn’t need to have knowledge of

microarchitecture

 Handles cases where dependencies are unknown at
compile time

 Disadvantage:
 Substantial increase in hardware complexity

 Complicates exceptions

D
y
n
a
m

ic
 S

c
h
e
d
u
lin

g

36 Copyright © 2019, Elsevier Inc. All rights Reserved

Introduction

 Dynamic scheduling implies:
 Out-of-order execution

 Out-of-order completion

 Example 1:

fdiv.d f0,f2,f4

fadd.d f10,f0,f8

fsub.d f12,f8,f14

 fsub.d is not dependent, issue before fadd.d

D
y
n
a
m

ic
 S

c
h
e
d
u
lin

g

37 Copyright © 2019, Elsevier Inc. All rights Reserved

Introduction

 Example 2:

fdiv.d f0,f2,f4

fmul.d f6,f0,f8

fadd.d f0,f10,f14

 fadd.d is not dependent, but the antidependence

makes it impossible to issue earlier without register

renaming

D
y
n
a
m

ic
 S

c
h
e
d
u
lin

g

38 Copyright © 2019, Elsevier Inc. All rights Reserved

Register Renaming

 Example 3:

 fdiv.d f0,f2,f4

 fadd.d f6,f0,f8

 fsd f6,0(x1)

 fsub.d f8,f10,f14

 fmul.d f6,f10,f8

 Name dependence with f6

antidependence

antidependence

D
y
n
a
m

ic
 S

c
h
e
d
u
lin

g

39 Copyright © 2019, Elsevier Inc. All rights Reserved

Register Renaming

 Example 3:

 fdiv.d f0,f2,f4

 fadd.d S,f0,f8

 fsd S,0(x1)

 fsub.d T,f10,f14

 fmul.d f6,f10,T

 Now only RAW hazards remain, which can be strictly

ordered

D
y
n
a
m

ic
 S

c
h
e
d
u
lin

g

40 Copyright © 2019, Elsevier Inc. All rights Reserved

Tomasulo’s Algorithm

 Tracks when operands are available

 Introduces register renaming in hardware
 Minimizes WAW and WAR hazards

 Register renaming is provided by reservation
stations (RS)
 Contains:

 The instruction

 Buffered operand values (when available)

 Reservation station number where the instruction providing
the operand values is located

D
y
n
a
m

ic
 S

c
h
e
d
u
lin

g

41 Copyright © 2019, Elsevier Inc. All rights Reserved

Tomasulo’s Algorithm

 RS fetches and buffers an operand as soon as it
becomes available (not necessarily involving register file)

 Pending instructions designate the RS that will provide
their input
 Result values broadcast on a result bus, called the common data

bus (CDB)

 Only the last output updates the register file

 As instructions are issued, the register specifiers are
renamed with the reservation station

 May be more reservation stations than registers

 Load and store buffers
 Contain data and addresses, act like reservation stations

D
y
n
a
m

ic
 S

c
h
e
d
u
lin

g

42 Copyright © 2019, Elsevier Inc. All rights Reserved

Tomasulo’s Algorithm
D

y
n
a
m

ic
 S

c
h
e
d
u
lin

g

43 Copyright © 2019, Elsevier Inc. All rights Reserved

Tomasulo’s Algorithm Stages

 Fetch (F)

 Get instructions from the instruction memory to the instruction queue.

 Issue (I)

 Get next instruction from FIFO queue.

 If available RS, issue the instruction to the RS with operand values if
available from the register file (RF).

 If operand values not available, stall the instruction.

 Execute (E)

 When operand becomes available, store it in any reservation stations
waiting for it.

 When all operands are ready, issue the instruction.

 Loads and store maintained in program order through effective address.

 No instruction allowed to initiate execution until all branches that
proceed it in program order have completed.

 Write result

 Write result on CDB into RSs, RF, and store buffers

 (Stores must wait until address and value are received)

D
y
n
a
m

ic
 S

c
h
e
d
u
lin

g

44

Contents
 Instruction-Level Parallelism: Concepts and Challenges

 Basic Compiler Techniques for Exposing ILP

 Reducing Branch Costs with Advanced Branch Prediction

 Overcoming Data Hazards with Dynamic Scheduling

 Dynamic Scheduling: Examples and Algorithms

 Hardware-Based Speculation

 Exploiting ILP Using Multiple Issue and Static Scheduling

 Exploiting ILP Using Dynamic Scheduling, Multiple Issue, and

Speculation

 Advanced Techniques for Instruction Delivery and Speculation

 Multithreading: Exploiting Thread-Level Parallelism to Improve

Uniprocessor Throughput

 The Intel i7 6700 and ARM Cortex-A53

 Fallacies and Pitfalls

Copyright © 2019, Elsevier Inc. All rights Reserved

45

Contents
 Dynamic Scheduling: Examples and Algorithms

 Example of Floating-Point Operations

 Loop Example

Copyright © 2019, Elsevier Inc. All rights Reserved

46

Example of FP Operations

 fld f6,32(x2)

 fld f2,44(x3)

 fmul.d f0,f2,f4

 fsub.d f8,f2,f6

 fdiv.d f0,f0,f6

 fadd.d f6,f8,f2

 Latencies:

 Load 1 cycle (A)

Address Calculation

and 1 cycle (M)

Memory Access

 Add 2 cycles

 Mul 6 cycles

 Div 12 cycles

Copyright © 2019, Elsevier Inc. All rights Reserved

47 Copyright © 2019, Elsevier Inc. All rights Reserved

Information Tables Status
D

y
n
a
m

ic
 S

c
h
e
d
u
lin

g
 Status when all instructions have

issued but only I1 has written.

48 Copyright © 2019, Elsevier Inc. All rights Reserved

Loop Example

Loop: fld f0,0(x1)

 fmul.d f4,f0,f2

 fsd f4,0(x1)

 addi x1,x1,-8

 bne x1,x2,Loop

 // branches if x1 ≠ x2

D
y
n
a
m

ic
 S

c
h
e
d
u
lin

g

49 Copyright © 2019, Elsevier Inc. All rights Reserved

Information Tables Status
D

y
n
a
m

ic
 S

c
h
e
d
u
lin

g

Status when all instrs. have issued

but only the loads have executed.

50

Contents
 Instruction-Level Parallelism: Concepts and Challenges

 Basic Compiler Techniques for Exposing ILP

 Reducing Branch Costs with Advanced Branch Prediction

 Overcoming Data Hazards with Dynamic Scheduling

 Dynamic Scheduling: Examples and Algorithms

 Hardware-Based Speculation

 Exploiting ILP Using Multiple Issue and Static Scheduling

 Exploiting ILP Using Dynamic Scheduling, Multiple Issue, and

Speculation

 Advanced Techniques for Instruction Delivery and Speculation

 Multithreading: Exploiting Thread-Level Parallelism to Improve

Uniprocessor Throughput

 The Intel i7 6700 and ARM Cortex-A53

 Fallacies and Pitfalls

Copyright © 2019, Elsevier Inc. All rights Reserved

51

Contents
 Hardware-Based Speculation

 Introduction

 Reorder Buffer (ROB)

 Stages with Reorder Buffer

 Commit Stage

 Examples

Copyright © 2019, Elsevier Inc. All rights Reserved

52 Copyright © 2019, Elsevier Inc. All rights Reserved

Introduction

 Execute instructions along predicted execution
paths but only commit the results if prediction
was correct.

 Instruction commit: allowing an instruction to
update the register file when instruction is no
longer speculative.

 Need an additional piece of hardware to prevent
any irrevocable action until an instruction
commits.
 I.e. updating state

H
a
rd

w
a
re

-B
a
s
e
d
 S

p
e
c
u
la

tio
n

53 Copyright © 2019, Elsevier Inc. All rights Reserved

Reorder Buffer (ROB)

 Reorder buffer – holds the result of instruction
between completion and commit

 Four fields:
 Instruction type: branch/store/register

 Destination field: register number

 Value field: output value

 Ready field: completed execution?

 Modify reservation stations:
 Operand source is now reorder buffer instead of

reservation stations.

H
a
rd

w
a
re

-B
a
s
e
d
 S

p
e
c
u
la

tio
n

54 Copyright © 2019, Elsevier Inc. All rights Reserved

Reorder Buffer
H

a
rd

w
a
re

-B
a
s
e
d
 S

p
e
c
u
la

tio
n

55 Copyright © 2019, Elsevier Inc. All rights Reserved

Stages with Reorder Buffer

 Fetch (F)

 Issue (I):
 Allocate RS and ROB, read available operands

 Execute (E):
 Begin execution when operand values are available

 Write result (W):
 Write result and ROB tag on CDB

 Commit (C):
 When ROB reaches head of ROB, update RF.

 When a mispredicted branch reaches head of ROB,
discard all entries.

H
a
rd

w
a
re

-B
a
s
e
d
 S

p
e
c
u
la

tio
n

56 Copyright © 2019, Elsevier Inc. All rights Reserved

Commit Stage

 Register values and memory values are not
written until an instruction commits

 On misprediction:
 Speculated entries in ROB are cleared

 Exceptions:
 Not recognized until it is ready to commit

H
a
rd

w
a
re

-B
a
s
e
d
 S

p
e
c
u
la

tio
n

57

Example of FP Operations

 fld f6,32(x2)

 fld f2,44(x3)

 fmul.d f0,f2,f4

 fsub.d f8,f2,f6

 fdiv.d f0,f0,f6

 fadd.d f6,f8,f2

 Latencies:

 Load 1 cycle (A)

Address Calculation

and 1 cycle (M)

Memory Access

 Add 2 cycles

 Mul 6 cycles

 Div 12 cycles

Copyright © 2019, Elsevier Inc. All rights Reserved

58 Copyright © 2019, Elsevier Inc. All rights Reserved

Information Tables Status
H

a
rd

w
a
re

-B
a
s
e
d
 S

p
e
c
u
la

tio
n

Status when all the multiply

instruction is ready to commit.

Assumes

fdiv.d writes

to f10

59 Copyright © 2019, Elsevier Inc. All rights Reserved

Loop Example

Using pipeline diagrams, show the execution of

two iterations of this loop assuming the branch is

predicted taken and is resolved as not taken.

Loop: fld f0,0(x1)

 fmul.d f4,f0,f2

 fsd f4,0(x1)

 addi x1,x1,-8

 bne x1,x2,Loop

 // branches if x1 ≠ x2

D
y
n
a
m

ic
 S

c
h
e
d
u
lin

g

60

Contents
 Instruction-Level Parallelism: Concepts and Challenges

 Basic Compiler Techniques for Exposing ILP

 Reducing Branch Costs with Advanced Branch Prediction

 Overcoming Data Hazards with Dynamic Scheduling

 Dynamic Scheduling: Examples and Algorithms

 Hardware-Based Speculation

 Exploiting ILP Using Multiple Issue and Static Scheduling

 Exploiting ILP Using Dynamic Scheduling, Multiple Issue, and

Speculation

 Advanced Techniques for Instruction Delivery and Speculation

 Multithreading: Exploiting Thread-Level Parallelism to Improve

Uniprocessor Throughput

 The Intel i7 6700 and ARM Cortex-A53

 Fallacies and Pitfalls

Copyright © 2019, Elsevier Inc. All rights Reserved

61

Contents
 Exploiting ILP Using Multiple Issue and Static

Scheduling

 Introduction

 Multiple Issue Approaches

 VLIW Processors

Copyright © 2019, Elsevier Inc. All rights Reserved

62 Copyright © 2019, Elsevier Inc. All rights Reserved

Introduction

 To achieve CPI < 1, need to complete multiple
instructions per clock

 Solutions:
 Statically scheduled superscalar processors

 Dynamically scheduled superscalar processors

 VLIW (very long instruction word) processors

M
u
ltip

le
 Is

s
u
e
 a

n
d
 S

ta
tic

 S
c
h
e
d
u
lin

g

63 Copyright © 2019, Elsevier Inc. All rights Reserved

Multiple Issue Approaches
M

u
ltip

le
 Is

s
u
e
 a

n
d
 S

ta
tic

 S
c
h
e
d
u
lin

g

64 Copyright © 2019, Elsevier Inc. All rights Reserved

VLIW Processors

 Package multiple operations into one instruction

 Example VLIW processor:
 One integer instruction (or branch)

 Two independent floating-point operations

 Two independent memory references

 Must be enough parallelism in code to fill the
available slots

M
u
ltip

le
 Is

s
u
e
 a

n
d
 S

ta
tic

 S
c
h
e
d
u
lin

g

65

VILW Processors

Chapter 4 — The Processor — 65

66 Copyright © 2019, Elsevier Inc. All rights Reserved

VLIW Processors

 Disadvantages:
 Statically finding parallelism

 Code size

 No hazard detection hardware

 Binary code compatibility

M
u
ltip

le
 Is

s
u
e
 a

n
d
 S

ta
tic

 S
c
h
e
d
u
lin

g

67

Contents
 Instruction-Level Parallelism: Concepts and Challenges

 Basic Compiler Techniques for Exposing ILP

 Reducing Branch Costs with Advanced Branch Prediction

 Overcoming Data Hazards with Dynamic Scheduling

 Dynamic Scheduling: Examples and Algorithms

 Hardware-Based Speculation

 Exploiting ILP Using Multiple Issue and Static Scheduling

 Exploiting ILP Using Dynamic Scheduling, Multiple Issue, and

Speculation

 Advanced Techniques for Instruction Delivery and Speculation

 Multithreading: Exploiting Thread-Level Parallelism to Improve

Uniprocessor Throughput

 The Intel i7 6700 and ARM Cortex-A53

 Fallacies and Pitfalls

Copyright © 2019, Elsevier Inc. All rights Reserved

68

Contents
 Exploiting ILP Using Dynamic Scheduling,

Multiple Issue, and Speculation

 Introduction

 Multiple Issue with Speculation

 Example

Copyright © 2019, Elsevier Inc. All rights Reserved

69

Introduction

 Modern microarchitectures:

 Dynamic scheduling + multiple issue + speculation

 Two approaches:

 Assign reservation stations and update pipeline

control table in half clock cycles

 Only supports 2 instructions/clock

 Design logic to handle any possible dependencies

between the instructions

 Issue logic is the bottleneck in dynamically

scheduled superscalars

Copyright © 2019, Elsevier Inc. All rights Reserved

D
y
n
a
m

ic
 S

c
h
e
d
u
lin

g
, M

u
ltip

le
 Is

s
u
e
, a

n
d
 S

p
e
c
u
la

tio
n

70 Copyright © 2019, Elsevier Inc. All rights Reserved

D
y
n
a
m

ic
 S

c
h
e
d
u
lin

g
, M

u
ltip

le
 Is

s
u
e
, a

n
d
 S

p
e
c
u
la

tio
n

Multiple Issue with Speculation

71 Copyright © 2019, Elsevier Inc. All rights Reserved

 Examine all the dependencies among the
instructions in the bundle

 If dependencies exist in bundle, encode them in
reservation stations

 Also need multiple completion/commit

 To simplify RS allocation:
 Limit the number of instructions of a given class that

can be issued in a “bundle”, i.e. one FP, one integer,
one load, one store

D
y
n
a
m

ic
 S

c
h
e
d
u
lin

g
, M

u
ltip

le
 Is

s
u
e
, a

n
d
 S

p
e
c
u
la

tio
n

Multiple Issue with Speculation

72 Copyright © 2019, Elsevier Inc. All rights Reserved

Using pipeline diagrams, show the execution of

three iterations of this loop assuming superscaler

degree of 2.

Loop:

 ld x2,0(x1) //x2=array element

 addi x2,x2,1 //increment x2

 sd x2,0(x1) //store result

 addi x1,x1,8 //increment pointer

 bne x2,x3,Loop //branch if not last

D
y
n
a
m

ic
 S

c
h
e
d
u
lin

g
, M

u
ltip

le
 Is

s
u
e
, a

n
d
 S

p
e
c
u
la

tio
n

Example

73

Example

Copyright © 2019, Elsevier Inc. All rights Reserved

D
y
n
a
m

ic
 S

c
h
e
d
u
lin

g
, M

u
ltip

le
 Is

s
u
e
, a

n
d
 S

p
e
c
u
la

tio
n

74

Contents
 Instruction-Level Parallelism: Concepts and Challenges

 Basic Compiler Techniques for Exposing ILP

 Reducing Branch Costs with Advanced Branch Prediction

 Overcoming Data Hazards with Dynamic Scheduling

 Dynamic Scheduling: Examples and Algorithms

 Hardware-Based Speculation

 Exploiting ILP Using Multiple Issue and Static Scheduling

 Exploiting ILP Using Dynamic Scheduling, Multiple Issue, and

Speculation

 Advanced Techniques for Instruction Delivery and Speculation

 Multithreading: Exploiting Thread-Level Parallelism to Improve

Uniprocessor Throughput

 The Intel i7 6700 and ARM Cortex-A53

 Fallacies and Pitfalls

Copyright © 2019, Elsevier Inc. All rights Reserved

75

Contents
 Advanced Techniques for Instruction Delivery

and Speculation

 Branch-Target Buffer

 Branch Folding

 Return Address Predictor

 Integrated Instruction Fetch Units

 Hardware Register Renaming

 How Much Speculation?

 Value and Address Prediction

Copyright © 2019, Elsevier Inc. All rights Reserved

76 Copyright © 2019, Elsevier Inc. All rights Reserved

 Need high instruction bandwidth
 Branch-Target Buffers (BTB)

 Next PC prediction buffer, indexed by current PC

A
d
v. T

e
c
h
n
iq

u
e
s
 fo

r In
s
tru

c
tio

n
 D

e
liv

e
ry

 a
n
d
 S

p
e
c
u
la

tio
n

Branch-Target Buffer

77 Copyright © 2019, Elsevier Inc. All rights Reserved

 Optimization:

 Larger branch-target buffer

 Add target instruction into buffer to deal with longer

decoding time required by larger buffer

 “Branch folding”

A
d
v. T

e
c
h
n
iq

u
e
s
 fo

r In
s
tru

c
tio

n
 D

e
liv

e
ry

 a
n
d
 S

p
e
c
u
la

tio
n

Branch Folding

78 Copyright © 2019, Elsevier Inc. All rights Reserved

 Most unconditional branches come from

function returns

 The same procedure can be called from

multiple sites

 Causes the buffer to potentially forget about the

return address from previous calls

 Create return address buffer organized as a

stack

A
d
v. T

e
c
h
n
iq

u
e
s
 fo

r In
s
tru

c
tio

n
 D

e
liv

e
ry

 a
n
d
 S

p
e
c
u
la

tio
n

Return Address Predictor

79 Copyright © 2019, Elsevier Inc. All rights Reserved

A
d
v. T

e
c
h
n
iq

u
e
s
 fo

r In
s
tru

c
tio

n
 D

e
liv

e
ry

 a
n
d
 S

p
e
c
u
la

tio
n

Return Address Predictor

80

Integrated Instruction Fetch Unit

 Design monolithic unit that performs:

 Branch prediction

 Instruction prefetch

 Fetch ahead

 Instruction memory access and buffering

 Deal with crossing cache lines

Copyright © 2019, Elsevier Inc. All rights Reserved

A
d
v. T

e
c
h
n
iq

u
e
s
 fo

r In
s
tru

c
tio

n
 D

e
liv

e
ry

 a
n
d
 S

p
e
c
u
la

tio
n

81 Copyright © 2019, Elsevier Inc. All rights Reserved

 Instead of virtual registers from reservation stations and reorder

buffer, create a single register pool

 Contains visible registers and virtual registers

 Use hardware-based map to rename registers during issue

 WAW and WAR hazards are avoided

 Speculation recovery occurs by copying during commit

 Still need a ROB-like queue to update table in order

 Simplifies commit:

 Record that mapping between architectural register and physical register

is no longer speculative

 Free up physical register used to hold older value

 In other words: SWAP physical registers on commit

 Physical register de-allocation is more difficult

 Simple approach: deallocate virtual register when next instruction writes

to its mapped architecturally-visibly register

A
d
v. T

e
c
h
n
iq

u
e
s
 fo

r In
s
tru

c
tio

n
 D

e
liv

e
ry

 a
n
d
 S

p
e
c
u
la

tio
n

Hardware Register Renaming

82 Copyright © 2019, Elsevier Inc. All rights Reserved

 Combining instruction issue with register renaming:

 Issue logic pre-reserves enough physical registers for the

bundle

 Issue logic finds dependencies within bundle, maps registers

as necessary

 Issue logic finds dependencies between current bundle and

already in-flight bundles, maps registers as necessary

A
d
v. T

e
c
h
n
iq

u
e
s
 fo

r In
s
tru

c
tio

n
 D

e
liv

e
ry

 a
n
d
 S

p
e
c
u
la

tio
n

Hardware Register Renaming

83 Copyright © 2019, Elsevier Inc. All rights Reserved

 How much to speculate

 Mis-speculation degrades performance and power

relative to no speculation

 May cause additional misses (cache, TLB)

 Prevent speculative code from causing higher

costing misses (e.g. L2)

 Speculating through multiple branches

 Complicates speculation recovery

 Speculation and energy efficiency

 Note: speculation is only energy efficient when it

significantly improves performance

A
d
v. T

e
c
h
n
iq

u
e
s
 fo

r In
s
tru

c
tio

n
 D

e
liv

e
ry

 a
n
d
 S

p
e
c
u
la

tio
n

How Much Speculation?

84 Copyright © 2019, Elsevier Inc. All rights Reserved

A
d
v. T

e
c
h
n
iq

u
e
s
 fo

r In
s
tru

c
tio

n
 D

e
liv

e
ry

 a
n
d
 S

p
e
c
u
la

tio
n

How Much Speculation?
integer

85 Copyright © 2019, Elsevier Inc. All rights Reserved

 Value prediction

 Uses:

 Loads that load from a constant pool

 Instruction that produces a value from a small set of values

 Not incorporated into modern processors

 Similar idea--address aliasing prediction--is

used on some processors to determine if two

stores or a load and a store reference the

same address to allow for reordering

A
d
v. T

e
c
h
n
iq

u
e
s
 fo

r In
s
tru

c
tio

n
 D

e
liv

e
ry

 a
n
d
 S

p
e
c
u
la

tio
n

Value and Address Prediction

86

Contents
 Instruction-Level Parallelism: Concepts and Challenges

 Basic Compiler Techniques for Exposing ILP

 Reducing Branch Costs with Advanced Branch Prediction

 Overcoming Data Hazards with Dynamic Scheduling

 Dynamic Scheduling: Examples and Algorithms

 Hardware-Based Speculation

 Exploiting ILP Using Multiple Issue and Static Scheduling

 Exploiting ILP Using Dynamic Scheduling, Multiple Issue, and

Speculation

 Advanced Techniques for Instruction Delivery and Speculation

 Multithreading: Exploiting Thread-Level Parallelism to Improve

Uniprocessor Throughput

 The Intel i7 6700 and ARM Cortex-A53

 Fallacies and Pitfalls

Copyright © 2019, Elsevier Inc. All rights Reserved

87

Multithreaded Approaches

Copyright © 2012, Elsevier Inc. All rights reserved.

T
im

e
(p

ro
ce

ss
or

 c
yc

le
) Superscalar Fine-Grained Coarse-Grained Multiprocessing

Simultaneous

Multithreading

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Idle slot

88

Intel Core i7 SMT Evaluation

Copyright © 2019, Elsevier Inc. All rights Reserved

89

Contents
 Instruction-Level Parallelism: Concepts and Challenges

 Basic Compiler Techniques for Exposing ILP

 Reducing Branch Costs with Advanced Branch Prediction

 Overcoming Data Hazards with Dynamic Scheduling

 Dynamic Scheduling: Examples and Algorithms

 Hardware-Based Speculation

 Exploiting ILP Using Multiple Issue and Static Scheduling

 Exploiting ILP Using Dynamic Scheduling, Multiple Issue, and

Speculation

 Advanced Techniques for Instruction Delivery and Speculation

 Multithreading: Exploiting Thread-Level Parallelism to Improve

Uniprocessor Throughput

 The Intel i7 6700 and ARM Cortex-A53

 Fallacies and Pitfalls

Copyright © 2019, Elsevier Inc. All rights Reserved

90

Contents
 The Intel i7 6700 and ARM Cortex-A53

 ARM Cortex-A53

 Overview

 Branch Prediction

 Performance

 Intel Core i7 6700

 Overview

 Core i7 920 vs 6700

Copyright © 2019, Elsevier Inc. All rights Reserved

91

ARM Cortex-A53 Overview

 Dual-issue, statically scheduled superscalar with

dynamic issue detection.

 8 stages for integer instructions (F1, F2, D1, D2,

D3/ISS, EX1, EX2, WB).

 10 stages for FP instructions (F1, F2, D1, D2,

D3, F1, F2, F3, F4, F5).

 Pipeline stalls due to:

 Functional hazards: two instrs. same unit

 Data hazards: two dependent instrs

 Control hazards: branch misprediction

Copyright © 2019, Elsevier Inc. All rights Reserved

92

ARM Cortex-A53 Overview

Copyright © 2019, Elsevier Inc. All rights Reserved

93

A53 Branch Prediction

 The instruction fetch unit has

 Single entry Branch Target Instruction Cache (gives

the next two target instrs), no delay

 Hybrid Predictor: Global predictor with branch history

registers and a 3072-entry branch history table, 2-

cycle delay

 Indirect Predictor: 256-entry Branch Target Address

Cache, 3-cycle delay.

 Return Address stack: 8 entries, 3-cycle delay.

 Branch decisions are made in ALU Pipe 0.

 Misprediction penalty is 8 cycles.

Copyright © 2019, Elsevier Inc. All rights Reserved

94

A53 Misprediction, SPECint2006

Copyright © 2019, Elsevier Inc. All rights Reserved

95

A53 Performance (CPI)

Copyright © 2019, Elsevier Inc. All rights Reserved

96

Intel Core i7 6700 Overview

 Out-of-order speculative superscalar, degree 4.

 14 stages

 Instruction Fetch: Fetches 16 bytes, has branch

prediction and return address stack.

 16-entry instruction buffer for predecoded, fused

macro-ops

 4 macro-ops decoders (one for complex instrs).

 64-entry micro-op buffer with loop stream detection

and fusion.

 Instruction issue with register renaming to 224-ROB

and 97-RS.

 6 functional units

Copyright © 2019, Elsevier Inc. All rights Reserved

97

Intel Core i7 6700

Copyright © 2019, Elsevier Inc. All rights Reserved

98

i7 920 (1st Gen.) vs 6700 (6th Gen.)

Copyright © 2019, Elsevier Inc. All rights Reserved

99

i7 920 (1st Gen.) vs 6700 (6th Gen.)

Copyright © 2019, Elsevier Inc. All rights Reserved

100

Contents
 Instruction-Level Parallelism: Concepts and Challenges

 Basic Compiler Techniques for Exposing ILP

 Reducing Branch Costs with Advanced Branch Prediction

 Overcoming Data Hazards with Dynamic Scheduling

 Dynamic Scheduling: Examples and Algorithms

 Hardware-Based Speculation

 Exploiting ILP Using Multiple Issue and Static Scheduling

 Exploiting ILP Using Dynamic Scheduling, Multiple Issue, and

Speculation

 Advanced Techniques for Instruction Delivery and Speculation

 Multithreading: Exploiting Thread-Level Parallelism to Improve

Uniprocessor Throughput

 The Intel i7 6700 and ARM Cortex-A53

 Fallacies and Pitfalls

Copyright © 2019, Elsevier Inc. All rights Reserved

101

Fallacies and Pitfalls

 F: Processors with lower CPIs / faster clock rates

will also be faster

 Pentium 4 (20 stages) had higher clock, but worse

CPI

 Itanium had same CPI as i7, lower clock than P4

Copyright © 2019, Elsevier Inc. All rights Reserved

F
a

lla
c
ie

s
 a

n
d
 P

itfa
lls

102

Fallacies and Pitfalls

 P: Sometimes bigger and dumber is better

 Pentium 4 and Itanium were advanced designs, but

could not achieve their peak instruction throughput

because of relatively small caches as compared to i7

 P: And sometimes smarter is better than bigger

and dumber

 TAGE branch predictor outperforms gshare with less

stored predictions

Copyright © 2019, Elsevier Inc. All rights Reserved

F
a

lla
c
ie

s
 a

n
d
 P

itfa
lls

103

Fallacies and Pitfalls

 P: Believing that

there are large

amounts of ILP

available, if only

we had the right

techniques

Copyright © 2019, Elsevier Inc. All rights Reserved

F
a

lla
c
ie

s
 a

n
d
 P

itfa
lls

