
1 Copyright © 2019, Elsevier Inc. All rights Reserved 

Chapter 3 

Instruction-Level Parallelism 

and Its Exploitation 

 

 

Adapted by Prof. Gheith Abandah 

Computer Architecture 
A Quantitative Approach, Sixth Edition 



2 

Contents 
 Instruction-Level Parallelism: Concepts and Challenges 

 Basic Compiler Techniques for Exposing ILP 

 Reducing Branch Costs with Advanced Branch Prediction 

 Overcoming Data Hazards with Dynamic Scheduling 

 Dynamic Scheduling: Examples and Algorithms 

 Hardware-Based Speculation 

 Exploiting ILP Using Multiple Issue and Static Scheduling 

 Exploiting ILP Using Dynamic Scheduling, Multiple Issue, and 

Speculation 

 Advanced Techniques for Instruction Delivery and Speculation 

 Multithreading: Exploiting Thread-Level Parallelism to Improve 

Uniprocessor Throughput 

 The Intel i7 6700 and ARM Cortex-A53 

 Fallacies and Pitfalls 

Copyright © 2019, Elsevier Inc. All rights Reserved 



3 

Contents 
 Instruction-Level Parallelism: Concepts and 

Challenges 

 Introduction 

 Pipelining 

 ILP Approaches 

 ILP Challenges 

 Data Dependence 

 Name Dependence 

 Control Dependence 

 

 

Copyright © 2019, Elsevier Inc. All rights Reserved 



4 Copyright © 2019, Elsevier Inc. All rights Reserved 

Introduction 

 Instruction-Level Parallelism (ILP) allows 
overlapping the execution of instructions 
and reduce the execution time. 

 

 Pipelining become universal technique in 
1985 

 Overlaps execution of instructions 

 Exploits “Instruction Level Parallelism” 
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RISC-V Five-Stage Pipeline 

Copyright © 2019, Elsevier Inc. All rights Reserved 

ld   x22,16(x21) 
add  x5,x6,x7 
sub  x21,x21,x22 

Example: 
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ILP Approaches 

 

 Beyond pipelining, there are two main 
approaches: 

 Hardware-based dynamic approaches 
 Used in server and desktop processors 

 Not used as extensively in PMP processors 

 Compiler-based static approaches 
 Not as successful outside of scientific applications 
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ILP Challenges 

 When exploiting instruction-level parallelism, 
goal is to minimize CPI 
 Pipeline CPI = 

 Ideal pipeline CPI + 

 Structural stalls + 

 Data hazard stalls + 

 Control stalls 

 

 Parallelism with basic block is limited 
 Typical size of basic block = 3-6 instructions 

 Must optimize across branches 

 Loop-Level Parallelism 
 Unroll loop statically or dynamically 
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Data Dependence 

 

 Data dependency (Read-after-write, RAW) 
 Instruction j is data dependent on instruction i if 

 Instruction i produces a result that may be used by instruction 
j 

 Instruction j is data dependent on instruction k and instruction 
k is data dependent on instruction i 

 

 Dependent instructions cannot be executed 
simultaneously 
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Data Dependence 

 Dependencies are a property of programs 

 Pipeline organization determines if dependence 
is detected and if it causes a stall 

 

 Data dependence conveys: 
 Possibility of a hazard 

 Order in which results must be calculated 

 Upper bound on exploitable instruction level 
parallelism 

 

 Dependencies that flow through memory 
locations are difficult to detect 
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Example: 

ld   x22,16(x21) 
add  x5,x6,x22 
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Name Dependence 

 Two instructions use the same name but no flow 
of information. 

 Not a true data dependence, but is a problem 
when reordering instructions. 

 Two types: 

1) Antidependence (WAR):  instruction j writes a 
register or memory location that instruction i 
reads. 
 Initial ordering (i before j) must be preserved. 
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Example: 

ld   x22,16(x21) 
add  x21,x6,x7 
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Name Dependence 

2) Output dependence (WAW):  instruction i and 
instruction j write the same register or memory 
location. 
 Ordering must be preserved. 

 

 

 To resolve, use register renaming techniques. 

 

 

 

 Violating the order causes RAW, WAR, or WAW 
hazard. 
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Example: 

ld   x22,16(x21) 
add  x22,x6,x7 

Example: 

ld   x22,16(x21) 
add  x23,x6,x7 
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Control Dependence 

 Ordering of instruction i 
with respect to a branch 
instruction 
 Instruction control 

dependent on a branch 
cannot be moved before the 
branch so that its execution 
is no longer controlled by 
the branch 

 An instruction not control 
dependent on a branch 
cannot be moved after the 
branch so that its execution 
is controlled by the branch 

Example 1: 
 add x1,x2,x3 

 beq x4,x0,L 

 sub x1,x1,x6 

L: … 

 or x7,x1,x8 

 

 

Example 2: 
 add x1,x2,x3 

 beq x12,x0,skip 

 sub x4,x5,x6 

 add x5,x4,x9 

skip: 

 or x7,x8,x9 
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Pipeline Scheduling 

 Separate dependent instruction from the source 
instruction by the pipeline latency of the source 
instruction 

 Example: 
for (i=999; i>=0; i=i-1) 

  x[i] = x[i] + s; 
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4 cycles in FP Unit 
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Pipeline Scheduling 

Loop: fld    f0,0(x1) 

  stall 

  fadd.d f4,f0,f2 

  stall 

  stall 

  fsd    f4,0(x1) 

  addi   x1,x1,-8 

  bne    x1,x2,Loop 
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Loop: fld    f0,0(x1) 

  addi   x1,x1,-8 

  fadd.d f4,f0,f2 

  stall 

  stall 

  fsd    f4,0(x1)  
 bne    x1,x2,Loop 

Loop: fld    f0,0(x1) 

  fadd.d f4,f0,f2 

  fsd    f4,0(x1) 

  addi   x1,x1,-8 

  bne    x1,x2,Loop 
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Loop Unrolling 

 Replicate loop body to expose more parallelism 

 Reduces loop-control overhead 

 Use different registers per replication 

 Called “register renaming” 

 Avoid loop-carried anti-dependencies and out put 

dependencies. 

 Steps: 

1. Replicate the loop instructions n times 

2. Remove unneeded loop overhead 

3. Modify instructions 

4. Rename registers 

5. Schedule instructions 
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Loop Unrolling 
 Unroll by a factor of 4 (assume # elements is divisible by 4) 

 Eliminate unnecessary instructions, modify instructions, and 
rename registers. 
 

Loop: fld    f0,0(x1) 

  fadd.d f4,f0,f2 

  fsd    f4,0(x1)    //drop addi & bne 

  fld    f6,-8(x1) 

  fadd.d f8,f6,f2 

  fsd    f8,-8(x1)   //drop addi & bne 

  fld    f10,-16(x1) 

  fadd.d f12,f10,f2 

  fsd    f12,-16(x1) //drop addi & bne 

  fld    f14,-24(x1) 

  fadd.d f16,f14,f2 

  fsd    f16,-24(x1) 

  addi   x1,x1,-32 

  bne    x1,x2,Loop 
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 Note:  number 
of live registers 
vs. original loop 
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Loop Unrolling/Pipeline Scheduling 

 Pipeline schedule the unrolled loop: 
 

Loop: fld    f0,0(x1) 

  fld    f6,-8(x1) 

  fld    f10,-16(x1) 

  fld    f14,-24(x1) 

  fadd.d f4,f0,f2 

  fadd.d f8,f6,f2 

  fadd.d f12,f10,f2 

  fadd.d f16,f14,f2 

  fsd    f4,0(x1) 

  fsd    f8,-8(x1) 

  fsd    f12,-16(x1) 

  addi   x1,x1,-32 

  fsd    f16,-24(x1) 

  bne    x1,x2,Loop 
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 14 cycles 

 3.5 cycles per element 
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Strip Mining 

 Unknown number of loop iterations? 
 Number of iterations = n 

 Goal:  Make k copies of the loop body 

 Generate pair of loops: 
 First executes n mod k times 

 Second executes n / k times 

 “Strip mining” 
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Basic 2-Bit Predictor 

Chapter 4 — The Processor — 23 

 Uses Branch History Table (BHT) with n = 2 

 Table size = n × 2k bits 

 For each branch, predict taken or not taken 
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Basic 2-Bit Predictor 

 Only change prediction on two successive 

mispredictions 
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Correlating Predictor 

 Multiple 2-bit 
predictors for each 
branch 

 One for each possible 
combination of 
outcomes of 
preceding m branches 
 (m,n) predictor:  

behavior from last m 
branches to choose 
from 2m n-bit 
predictors 

 Size = n × 2k × 2m bits 
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Basic vs Correlating Predictors 
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Correlating gshare Predictor 
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Tournament Predictor 

 Combine correlating predictor with local predictor 
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Local vs. Correlating vs. Tournament 
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Tagged Hybrid Predictors 

 Need to have predictor for each branch 
and history 

 Problem:  this implies huge tables 

 Solution: 
 Use hash tables, whose hash value is based on 

branch address and branch history 

 Longer histories may lead to increased chance of 
hash collision, so use multiple tables with 
increasingly shorter histories 
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Tagged Hybrid Predictors 
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Tagged Hybrid Predictors 
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Introduction 

 Rearrange order of instructions to reduce stalls 
while maintaining data flow 

 

 Advantages: 
 Compiler doesn’t need to have knowledge of 

microarchitecture 

 Handles cases where dependencies are unknown at 
compile time 

 

 Disadvantage: 
 Substantial increase in hardware complexity 

 Complicates exceptions 
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Introduction 

 Dynamic scheduling implies: 
 Out-of-order execution 

 Out-of-order completion 

 

 Example 1: 

fdiv.d f0,f2,f4 

fadd.d f10,f0,f8 

fsub.d f12,f8,f14 

 

 fsub.d is not dependent, issue before fadd.d 
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Introduction 

 Example 2: 

fdiv.d f0,f2,f4 

fmul.d f6,f0,f8 

fadd.d f0,f10,f14 

 

 fadd.d is not dependent, but the antidependence 

makes it impossible to issue earlier without register 

renaming 
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Register Renaming 

 Example 3: 

 

 fdiv.d f0,f2,f4 

 fadd.d f6,f0,f8 

 fsd    f6,0(x1) 

 fsub.d f8,f10,f14 

 fmul.d f6,f10,f8 

 

 Name dependence with f6 

antidependence 

antidependence 
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Register Renaming 

 Example 3: 

 

 fdiv.d f0,f2,f4 

 fadd.d S,f0,f8 

 fsd    S,0(x1) 

 fsub.d T,f10,f14 

 fmul.d f6,f10,T 

 

 Now only RAW hazards remain, which can be strictly 

ordered 
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Tomasulo’s Algorithm 

 Tracks when operands are available 

 Introduces register renaming in hardware 
 Minimizes WAW and WAR hazards 

 

 Register renaming is provided by reservation 
stations (RS) 
 Contains: 

 The instruction 

 Buffered operand values (when available) 

 Reservation station number where the instruction providing 
the operand values is located 
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Tomasulo’s Algorithm 

 RS fetches and buffers an operand as soon as it 
becomes available (not necessarily involving register file) 

 Pending instructions designate the RS that will provide 
their input 
 Result values broadcast on a result bus, called the common data 

bus (CDB) 

 Only the last output updates the register file 

 As instructions are issued, the register specifiers are 
renamed with the reservation station 

 May be more reservation stations than registers 

 Load and store buffers 
 Contain data and addresses, act like reservation stations 
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Tomasulo’s Algorithm 
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Tomasulo’s Algorithm Stages 

 Fetch (F) 

 Get instructions from the instruction memory to the instruction queue. 

 Issue (I) 

 Get next instruction from FIFO queue. 

 If available RS, issue the instruction to the RS with operand values if 
available from the register file (RF). 

 If operand values not available, stall the instruction. 

 Execute (E) 

 When operand becomes available, store it in any reservation stations 
waiting for it. 

 When all operands are ready, issue the instruction. 

 Loads and store maintained in program order through effective address. 

 No instruction allowed to initiate execution until all branches that 
proceed it in program order have completed. 

 Write result 

 Write result on CDB into RSs, RF, and store buffers 

 (Stores must wait until address and value are received) 
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Example of FP Operations 

  

 fld    f6,32(x2) 

 fld    f2,44(x3) 

 fmul.d f0,f2,f4 

 fsub.d f8,f2,f6 

 fdiv.d f0,f0,f6 

 fadd.d f6,f8,f2 

 

 

 Latencies: 

 Load 1 cycle (A) 

Address Calculation 

and 1 cycle (M) 

Memory Access 

 Add 2 cycles 

 Mul 6 cycles 

 Div 12 cycles 
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Information Tables Status 
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Loop Example 

 

Loop: fld    f0,0(x1) 

   fmul.d f4,f0,f2 

   fsd    f4,0(x1) 

   addi   x1,x1,-8 

   bne    x1,x2,Loop  

         // branches if x1 ≠ x2 
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Information Tables Status 
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Status when all instrs. have issued 

but only the loads have executed. 
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Introduction 

 Execute instructions along predicted execution 
paths but only commit the results if prediction 
was correct. 

 Instruction commit:  allowing an instruction to 
update the register file when instruction is no 
longer speculative. 

 Need an additional piece of hardware to prevent 
any irrevocable action until an instruction 
commits. 
 I.e. updating state 
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Reorder Buffer (ROB) 

 Reorder buffer – holds the result of instruction 
between completion and commit 

 

 Four fields: 
 Instruction type:  branch/store/register 

 Destination field:  register number 

 Value field:  output value 

 Ready field:  completed execution? 

 

 Modify reservation stations: 
 Operand source is now reorder buffer instead of 

reservation stations. 
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Reorder Buffer 
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Stages with Reorder Buffer 

 Fetch (F) 

 Issue (I): 
 Allocate RS and ROB, read available operands 

 Execute (E): 
 Begin execution when operand values are available 

 Write result (W): 
 Write result and ROB tag on CDB 

 Commit (C): 
 When ROB reaches head of ROB, update RF. 

 When a mispredicted branch reaches head of ROB, 
discard all entries. 
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Commit Stage 

 Register values and memory values are not 
written until an instruction commits 

 

 On misprediction: 
 Speculated entries in ROB are cleared 

 

 Exceptions: 
 Not recognized until it is ready to commit 
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Example of FP Operations 

  

 fld    f6,32(x2) 

 fld    f2,44(x3) 

 fmul.d f0,f2,f4 

 fsub.d f8,f2,f6 

 fdiv.d f0,f0,f6 

 fadd.d f6,f8,f2 

 

 

 Latencies: 

 Load 1 cycle (A) 

Address Calculation 

and 1 cycle (M) 

Memory Access 

 Add 2 cycles 

 Mul 6 cycles 

 Div 12 cycles 
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Information Tables Status 
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Status when all the multiply 

instruction is ready to commit. 

Assumes 

fdiv.d writes 

to f10 
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Loop Example 

Using pipeline diagrams, show the execution of 

two iterations of this loop assuming the branch is 

predicted taken and is resolved as not taken. 

 

Loop: fld    f0,0(x1) 

   fmul.d f4,f0,f2 

   fsd    f4,0(x1) 

   addi   x1,x1,-8 

   bne    x1,x2,Loop  

         // branches if x1 ≠ x2 
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Introduction 

 To achieve CPI < 1, need to complete multiple 
instructions per clock 

 

 Solutions: 
 Statically scheduled superscalar processors 

 Dynamically scheduled superscalar processors 

 VLIW (very long instruction word) processors 
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VLIW Processors 

 Package multiple operations into one instruction 

 

 Example VLIW processor: 
 One integer instruction (or branch) 

 Two independent floating-point operations 

 Two independent memory references 

 

 Must be enough parallelism in code to fill the 
available slots 
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VLIW Processors 

 Disadvantages: 
 Statically finding parallelism 

 Code size 

 No hazard detection hardware 

 Binary code compatibility 
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Introduction 

 Modern microarchitectures: 

 Dynamic scheduling + multiple issue + speculation 

 

 Two approaches: 

 Assign reservation stations and update pipeline 

control table in half clock cycles 

 Only supports 2 instructions/clock 

 Design logic to handle any possible dependencies 

between the instructions 

 

 Issue logic is the bottleneck in dynamically 

scheduled superscalars 
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 Examine all the dependencies among the 
instructions in the bundle 

 

 If dependencies exist in bundle, encode them in 
reservation stations 

 

 Also need multiple completion/commit 

 

 To simplify RS allocation: 
 Limit the number of instructions of a given class that 

can be issued in a “bundle”, i.e. one FP, one integer, 
one load, one store 
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Using pipeline diagrams, show the execution of 

three iterations of this loop assuming superscaler 

degree of 2. 

 

Loop: 

 ld   x2,0(x1)   //x2=array element 

 addi x2,x2,1   //increment x2 

 sd   x2,0(x1)   //store result 

 addi x1,x1,8   //increment pointer 

 bne  x2,x3,Loop  //branch if not last 
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 Need high instruction bandwidth 
 Branch-Target Buffers (BTB) 

 Next PC prediction buffer, indexed by current PC 
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 Optimization: 

 Larger branch-target buffer 

 Add target instruction into buffer to deal with longer 

decoding time required by larger buffer 

 “Branch folding” 
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 Most unconditional branches come from 

function returns 

 The same procedure can be called from 

multiple sites 

 Causes the buffer to potentially forget about the 

return address from previous calls 

 Create return address buffer organized as a 

stack 
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Integrated Instruction Fetch Unit 

 

 Design monolithic unit that performs: 

 Branch prediction 

 Instruction prefetch 

 Fetch ahead 

 Instruction memory access and buffering 

 Deal with crossing cache lines 
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 Instead of virtual registers from reservation stations and reorder 

buffer, create a single register pool 

 Contains visible registers and virtual registers 

 Use hardware-based map to rename registers during issue 

 WAW and WAR hazards are avoided 

 Speculation recovery occurs by copying during commit 

 Still need a ROB-like queue to update table in order 

 Simplifies commit: 

 Record that mapping between architectural register and physical register 

is no longer speculative 

 Free up physical register used to hold older value 

 In other words:  SWAP physical registers on commit 

 Physical register de-allocation is more difficult 

 Simple approach:  deallocate virtual register when next instruction writes 

to its mapped architecturally-visibly register 
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 Combining instruction issue with register renaming: 

 Issue logic pre-reserves enough physical registers for the 

bundle 

 Issue logic finds dependencies within bundle, maps registers 

as necessary 

 Issue logic finds dependencies between current bundle and 

already in-flight bundles, maps registers as necessary 
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 How much to speculate 

 Mis-speculation degrades performance and power 

relative to no speculation 

 May cause additional misses (cache, TLB) 

 Prevent speculative code from causing higher 

costing misses (e.g. L2) 

 Speculating through multiple branches 

 Complicates speculation recovery 

 Speculation and energy efficiency 

 Note:  speculation is only energy efficient when it 

significantly improves performance 
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 Value prediction 

 Uses: 

 Loads that load from a constant pool 

 Instruction that produces a value from a small set of values 

 Not incorporated into modern processors 

 Similar idea--address aliasing prediction--is 

used on some processors to determine if two 

stores or a load and a store reference the 

same address to allow for reordering 
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Multithreaded Approaches 
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ARM Cortex-A53 Overview 

 Dual-issue, statically scheduled superscalar with 

dynamic issue detection. 

 8 stages for integer instructions (F1, F2, D1, D2, 

D3/ISS, EX1, EX2, WB). 

 10 stages for FP instructions (F1, F2, D1, D2, 

D3, F1, F2, F3, F4, F5). 

 Pipeline stalls due to: 

 Functional hazards: two instrs. same unit 

 Data hazards: two dependent instrs 

 Control hazards: branch misprediction 
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A53 Branch Prediction 

 The instruction fetch unit has 

 Single entry Branch Target Instruction Cache (gives 

the next two target instrs), no delay 

 Hybrid Predictor: Global predictor with branch history 

registers and a 3072-entry branch history table, 2-

cycle delay 

 Indirect Predictor: 256-entry Branch Target Address 

Cache, 3-cycle delay. 

 Return Address stack: 8 entries, 3-cycle delay. 

 Branch decisions are made in ALU Pipe 0. 

 Misprediction penalty is 8 cycles. 
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A53 Misprediction, SPECint2006 
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A53 Performance (CPI) 
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Intel Core i7 6700 Overview 

 Out-of-order speculative superscalar, degree 4. 

 14 stages 

 Instruction Fetch: Fetches 16 bytes, has branch 

prediction and return address stack. 

 16-entry instruction buffer for predecoded, fused 

macro-ops 

 4 macro-ops decoders (one for complex instrs). 

 64-entry micro-op buffer with loop stream detection 

and fusion. 

 Instruction issue with register renaming to 224-ROB 

and 97-RS. 

 6 functional units 
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Intel Core i7 6700 
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i7 920 (1st Gen.) vs 6700 (6th Gen.) 
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i7 920 (1st Gen.) vs 6700 (6th Gen.) 
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Fallacies and Pitfalls 

 F: Processors with lower CPIs / faster clock rates 

will also be faster 

 

 

 

 

 

 Pentium 4 (20 stages) had higher clock, but worse 

CPI 

 Itanium had same CPI as i7, lower clock than P4 
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Fallacies and Pitfalls 

 P: Sometimes bigger and dumber is better 

 Pentium 4 and Itanium were advanced designs, but 

could not achieve their peak instruction throughput 

because of relatively small caches as compared to i7 

 

 P: And sometimes smarter is better than bigger 

and dumber 

 TAGE branch predictor outperforms gshare with less 

stored predictions 
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Fallacies and Pitfalls 

 P: Believing that 

there are large 

amounts of ILP 

available, if only 

we had the right 

techniques 
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