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Memory Hierarchy 

 Programmers want unlimited amounts of memory with 
low latency 

 Fast memory technology is more expensive per bit than 
slower memory 

 Solution:  organize memory system into a hierarchy 
 Entire addressable memory space available in largest, slowest 

memory 

 Incrementally smaller and faster memories, each containing a 
subset of the memory below it, proceed in steps up toward the 
processor 

 Temporal and spatial locality insures that nearly all 
references can be found in smaller memories 
 Gives the allusion of a large, fast memory being presented to the 

processor 
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Memory Hierarchy Design 

 Memory hierarchy design becomes more crucial 
with recent multi-core processors: 
 Aggregate peak bandwidth grows with # cores: 

 Intel Core i7 can generate two references per core per clock 

 Four cores and 3.2 GHz clock 

 25.6 billion 64-bit data references/second + 

 12.8 billion 128-bit instruction references/second 

 = 409.6 GB/s! 

 DRAM bandwidth is only 8% of this (34.1 GB/s) 

 Requires: 
 Multi-port, pipelined caches 

 Two levels of cache per core 

 Shared third-level cache on chip 
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Memory Hierarchy Design 

 High-end microprocessors have >10 MB on-chip 
cache 
 Consumes large amount of area and power budget 
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Memory Hierarchy Basics 

 When a word is not found in the cache, a miss 
occurs: 
 Fetch word from lower level in hierarchy, requiring a 

higher latency reference 

 Lower level may be another cache or the main 
memory 

 Also fetch the other words contained within the block 
 Takes advantage of spatial locality 

 Place block into cache in any location within its set, 
determined by address 

 block address MOD number of sets in cache 
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Memory Hierarchy Basics 

 Associative Caches 
 Direct-mapped cache => one block per set 

 N-way set associative => n blocks per set 

 Fully associative => one set. All blocks in one set 
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Memory Hierarchy Basics 

 

 Writing to cache:  two strategies 
 Write-through 

 Immediately update lower levels of hierarchy 

 Write-back 
 Only update lower levels of hierarchy when an updated block 

is replaced 

 Both strategies use write buffer to make writes 
asynchronous 
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Cache Misses 

 Miss rate 
 Fraction of cache access that result in a miss 

 

 Causes of misses 
 Compulsory 

 First reference to a block 

 Capacity 
 Blocks discarded and later retrieved 

 Conflict 
 Program makes repeated references to multiple addresses 

from different blocks that map to the same location in the 
cache 
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Cache Misses 

 

 

 

 

 

 Speculative and multithreaded processors may 
execute other instructions during a miss 
 Reduces performance impact of misses 
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Six Basic Cache Optimizations 

1. Larger block size 
 Reduces compulsory misses 

 Increases capacity and conflict misses, increases miss penalty 
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Six Basic Cache Optimizations 
2. Larger total cache capacity to reduce miss rate 

 Increases hit time, increases power consumption 

3. Higher associativity 
 Reduces conflict misses 

 Increases hit time, increases power consumption 
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Six Basic Cache Optimizations 

4. Higher number of cache levels 
 Reduces overall memory access time 

 Example 1: Find the average memory access time for a 
memory hierarchy of one cache and a main memory 
given the following: 
 Hit time = 1 cycle 

 Miss rate = 5% 

 Miss penalty = 200 cycles 

 

 Example 2: Repeat Example 1 when an L2 is added with 
the following specs: 
 Hit time = 10 cycles 

 Miss rate = 2% 

 Miss penalty = 250 cycles 
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Six Basic Cache Optimizations 

5. Giving priority to read misses over writes 
 Reduces miss penalty 

 

6. Avoiding address translation in cache indexing 
 Reduces hit time 
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Introduction 

 Performance metrics 
 Latency is concern of cache 

 Bandwidth is concern of multiprocessors and I/O 

 Access time 
 Time between read request and when desired word 

arrives 

 Cycle time 
 Minimum time between unrelated requests to memory 

 

 SRAM memory has low latency, use for 
cache 

 Organize DRAM chips into many banks for 
high bandwidth, use for main memory 
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Memory Technology 

 SRAM 
 Requires low power to retain bit 

 Requires 6 transistors/bit 
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Memory Technology 

 DRAM 
 Must be re-written after being read 

 Must also be periodically refreshed 
 Every ~ 8 ms (roughly 5% of time) 

 Each row can be refreshed simultaneously 

 One transistor/bit 

 Address lines are multiplexed: 
 Upper half of address:  row access strobe (RAS) 

 Lower half of address:  column access strobe (CAS) 
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Classic DRAM 
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Memory Optimizations 

 Amdahl: 
 Memory capacity should grow linearly with processor speed 

 Unfortunately, memory capacity and speed has not kept 
pace with processors 

 

 Some optimizations: 
 Multiple accesses to same row 

 Synchronous DRAM 

 Added clock to DRAM interface 

 Burst mode with critical word first 

 Wider interfaces 

 Double data rate (DDR) 

 Multiple banks on each DRAM device 
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Micron DDR-SDRAM  
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Memory Optimizations 

 DDR: 
 DDR2 

 Lower power (2.5 V -> 1.8 V) 

 Higher clock rates (266 MHz, 333 MHz, 400 MHz) 

 DDR3 
 1.5 V 

 800 MHz 

 DDR4 
 1-1.2 V 

 1333 MHz 

 

 GDDR5 is graphics memory based on DDR3 
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Memory Optimizations 
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Memory Optimizations 
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Memory Optimizations 

 Reducing power in SDRAMs: 
 Lower voltage 

 Low power mode (ignores clock, continues to 
refresh) 

 

 Graphics memory: 
 Achieve 2-5 X bandwidth per DRAM vs. DDR3 

 Wider interfaces (32 vs. 16 bit) 

 Higher clock rate 
 Possible because they are attached via soldering instead of 

socketed DIMM modules 
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Memory Power Consumption 
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Stacked/Embedded DRAMs 

 Stacked DRAMs in same package as 

processor 

 High Bandwidth Memory (HBM) 
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Flash Memory 

 Type of EEPROM 

 Types:  NAND (denser) and NOR (faster) 

 NAND Flash: 
 Reads are sequential, reads entire page (.5 to 4 

KiB) 

 25 us for first byte, 40 MiB/s for subsequent bytes 

 SDRAM:  40 ns for first byte, 4.8 GB/s for 
subsequent bytes 

 2 KiB transfer: 75 μs vs 500 ns for SDRAM, 150X 
slower 

 300 to 500X faster than magnetic disk 

M
e
m

o
ry

 T
e
c
h
n
o
lo

g
y
 a

n
d
 O

p
tim

iz
a
tio

n
s
 



37 Copyright © 2019, Elsevier Inc. All rights Reserved 

NAND Flash Memory 

 Must be erased (in blocks) before being 
overwritten 

 Nonvolatile, can use as little as zero power 

 Limited number of write cycles (~100,000) 

 $2/GiB, compared to $20-40/GiB for SDRAM 
and $0.09 GiB for magnetic disk 

 

 Phase-Change/Memrister Memory 
 Possibly 10X improvement in write performance 

and 2X improvement in read performance 
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Memory Dependability 

 Memory is susceptible to cosmic rays 

 Soft errors:  dynamic errors 
 Detected and fixed by error correcting codes 

(ECC) 

 Hard errors:  permanent errors 
 Use spare rows to replace defective rows 

 

 Chipkill:  a RAID-like error recovery technique 
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Advanced Optimizations 

 Reduce hit time 
 Small and simple first-level caches 

 Way prediction 

 Increase bandwidth 
 Pipelined caches, multibanked caches, non-blocking caches 

 Reduce miss penalty 
 Critical word first, merging write buffers 

 Reduce miss rate 
 Compiler optimizations 

 Reduce miss penalty or miss rate via parallelization 
 Hardware or compiler prefetching 
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(1) L1 Hit Time 

Access time vs. size and associativity 
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(2) Way Prediction 

 To improve hit time, predict the way to pre-set 
mux 
 Misprediction gives longer hit time 

 Prediction accuracy 
 > 90% for two-way 

 > 80% for four-way 

 I-cache has better accuracy than D-cache 

 First used on MIPS R10000 in mid-90s 

 Used on ARM Cortex-A8 

 Extend to predict block as well 
 “Way selection” 

 Increases misprediction penalty 
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(3) Pipelined Caches 

 Pipeline cache access to improve bandwidth 
 Examples: 

 Pentium:  1 cycle 

 Pentium Pro – Pentium III:  2 cycles 

 Pentium 4 – Core i7:  4 cycles 

 Increases branch misprediction penalty 

 Makes it easier to increase associativity 
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(3) Multibanked Caches 

 Organize cache as independent banks to 
support simultaneous access 
 ARM Cortex-A8 supports 1-4 banks for L2 

 Intel i7 supports 4 banks for L1 and 8 banks for L2 

 

 Interleave banks according to block address 
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(4) Nonblocking Caches 

 Allow hits before previous misses complete 
 “Hit under miss” 

 “Hit under multiple miss” 

 L2 must support this 

 In general, processors can hide L1 miss penalty but 
not L2 miss penalty 
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Reduce Miss Penalty 

 (5) Critical word first 
 Request missed word from memory first 

 Send it to the processor as soon as it arrives 

 (5) Early restart 
 Request words in normal order 

 Send missed work to the processor as soon as it 
arrives 

 

 Effectiveness of these strategies depends on 
block size and likelihood of another access to 
the portion of the block that has not yet been 
fetched 
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(6) Merging Write Buffer 

 When storing to a block that is already pending in the 
write buffer, update write buffer 

 Reduces stalls due to full write buffer 

 Do not apply to I/O addresses 
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(7) Compiler Optimizations 

 Loop Interchange 
 Swap nested loops to access memory in 

sequential order 

 

 

 

 

 Blocking 
 Instead of accessing entire rows or columns, 

subdivide matrices into blocks 

 Requires more memory accesses but improves 
locality of accesses 
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Blocking 
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for (i = 0; i < N; i = i + 1) 

  for (j = 0; j < N; j = j + 1) 

  { 

    r = 0; 

    for (k = 0; k < N; k = k + 1) 

      r = r + y[i][k]*z[k][j]; 

    x[i][j] = r; 

}; 
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Blocking 
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for (jj = 0; jj < N; jj = jj + B) 

  for (kk = 0; kk < N; kk = kk + B) 

    for (i = 0; i < N; i = i + 1) 

      for (j = jj; j < min(jj + B,N); j = j + 1) 

      { 

        r = 0; 

        for (k = kk; k < min(kk + B,N); k = k + 1) 

          r = r + y[i][k]*z[k][j]; 

        x[i][j] = x[i][j] + r; 

}; 
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(8) Hardware Prefetching 

 Fetch two blocks on miss (include next 
sequential block) 
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(9) Compiler Prefetching 

 Insert prefetch instructions before data is 
needed 

 Non-faulting:  prefetch doesn’t cause 
exceptions 

 

 Register prefetch 
 Loads data into register 

 Cache prefetch 
 Loads data into cache 

 

 Combine with loop unrolling and software 
pipelining 
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(10) Use HBM to Extend Hierarchy 

 128 MiB to 1 GiB 

 Smaller blocks require substantial tag storage 

 Larger blocks are potentially inefficient 

 

 One approach (L-H): 
 Each SDRAM row is a block index 

 Each row contains set of tags and 29 data 
segments 

 29-set associative 

 Hit requires a CAS 
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Use HBM to Extend Hierarchy 

 Another approach (Alloy cache): 
 Mold tag and data together 

 Use direct mapped 

 

 Both schemes require two DRAM accesses 
for misses 
 Two solutions: 

 Use map to keep track of blocks 

 Predict likely misses 
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Use HBM to Extend Hierarchy 
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Summary 
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Virtual Memory 

 Protection via virtual memory 
 Keeps processes in their own memory space 

 

 Role of architecture 
 Provide user mode and supervisor mode 

 Protect certain aspects of CPU state 

 Provide mechanisms for switching between user 
mode and supervisor mode 

 Provide mechanisms to limit memory accesses 

 Provide TLB to translate addresses 
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Virtual Machines Review 
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Virtual Machines 

 Supports isolation and security 

 Sharing a computer among many unrelated users 

 Enabled by raw speed of processors, making the 
overhead more acceptable 

 

 Allows different ISAs and operating systems to be 
presented to user programs 
 “System Virtual Machines” 

 SVM software is called “virtual machine monitor” or 
“hypervisor” 

 Individual virtual machines run under the monitor are called 
“guest VMs” 
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Requirements of VMM 

 Guest software should: 
 Behave on as if running on native hardware 

 Not be able to change allocation of real system 
resources 

 VMM should be able to “context switch” 
guests 

 Hardware must allow: 
 System and user processor modes 

 Privileged subset of instructions for allocating 
system resources 
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ARM Cortex-A53 
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The memory hierarchy of the Cortex A53 includes 

multilevel TLBs and caches 

L1 D$ 2- or 4-way set associative 
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64 KiB page size 
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A53 L1 D-TLB & D$, L2 TLB & $ 
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L1 D-TLB (10) 

D$ (32 KiB) 

L2 TLB (512) 

L2 $ (1 MiB, 16-way) 
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A53 SPECInt2006 Performance 
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A53 SPECInt2006 Performance 
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Intel Core i7 6700 – TLBs  
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Intel Core i7 6700 – Caches  
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i7 L1 and L2 TLBs and L1 Caches 
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i7 L2 and L3 (8 MiB) Caches 
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i7 SPECInt2006 L2 Performance 
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Fallacies 

 F: Predicting cache performance of one 

program from another 
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Pitfalls 

 

 P: Simulating enough instructions to get 

accurate performance measures of the 

memory hierarchy 

 P: Not delivering high memory bandwidth 

in a cache-based system 
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