
1 Copyright © 2019, Elsevier Inc. All rights Reserved

Chapter 2

Memory Hierarchy Design

Adapted by Prof. Gheith Abandah

Computer Architecture
A Quantitative Approach, Sixth Edition

2

Contents

 Introduction

 Memory Technology and Optimizations

 Ten Advanced Optimizations of Cache

Performance

 Virtual Memory and Virtual Machines

 ARM Cortex-A53 and Intel Core i7 6700

 Fallacies and Pitfalls

Copyright © 2019, Elsevier Inc. All rights Reserved

3

Contents

 Introduction

 Memory Performance Gap

 Memory Hierarchy

 Memory Hierarchy Design

 Memory Hierarchy Basics

 Direct-Mapped Caches

 Associative Caches

 Cache Writing Strategies

 Cache Misses

 Six Basic Cache Optimizations

Copyright © 2019, Elsevier Inc. All rights Reserved

4 Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Performance Gap
In

tro
d
u
c
tio

n

5 Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Hierarchy

 Programmers want unlimited amounts of memory with
low latency

 Fast memory technology is more expensive per bit than
slower memory

 Solution: organize memory system into a hierarchy
 Entire addressable memory space available in largest, slowest

memory

 Incrementally smaller and faster memories, each containing a
subset of the memory below it, proceed in steps up toward the
processor

 Temporal and spatial locality insures that nearly all
references can be found in smaller memories
 Gives the allusion of a large, fast memory being presented to the

processor

In
tro

d
u
c
tio

n

6 Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Hierarchy
In

tro
d
u
c
tio

n

7 Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Hierarchy Design

 Memory hierarchy design becomes more crucial
with recent multi-core processors:
 Aggregate peak bandwidth grows with # cores:

 Intel Core i7 can generate two references per core per clock

 Four cores and 3.2 GHz clock

 25.6 billion 64-bit data references/second +

 12.8 billion 128-bit instruction references/second

 = 409.6 GB/s!

 DRAM bandwidth is only 8% of this (34.1 GB/s)

 Requires:
 Multi-port, pipelined caches

 Two levels of cache per core

 Shared third-level cache on chip

In
tro

d
u
c
tio

n

8 Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Hierarchy Design

 High-end microprocessors have >10 MB on-chip
cache
 Consumes large amount of area and power budget

In
tro

d
u
c
tio

n

9 Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Hierarchy Basics

 When a word is not found in the cache, a miss
occurs:
 Fetch word from lower level in hierarchy, requiring a

higher latency reference

 Lower level may be another cache or the main
memory

 Also fetch the other words contained within the block
 Takes advantage of spatial locality

 Place block into cache in any location within its set,
determined by address

 block address MOD number of sets in cache

In
tro

d
u
c
tio

n

10

Direct Mapped Cache

Copyright © 2019, Elsevier Inc. All rights Reserved

11

Direct Mapped Cache, Large Blocks

Copyright © 2019, Elsevier Inc. All rights Reserved

12 Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Hierarchy Basics

 Associative Caches
 Direct-mapped cache => one block per set

 N-way set associative => n blocks per set

 Fully associative => one set. All blocks in one set

In
tro

d
u
c
tio

n

13

Four-Way Associative Cache

Copyright © 2019, Elsevier Inc. All rights Reserved

14 Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Hierarchy Basics

 Writing to cache: two strategies
 Write-through

 Immediately update lower levels of hierarchy

 Write-back
 Only update lower levels of hierarchy when an updated block

is replaced

 Both strategies use write buffer to make writes
asynchronous

In
tro

d
u
c
tio

n

15

Write-Back Direct Mapped Cache

Copyright © 2019, Elsevier Inc. All rights Reserved

16 Copyright © 2019, Elsevier Inc. All rights Reserved

Cache Misses

 Miss rate
 Fraction of cache access that result in a miss

 Causes of misses
 Compulsory

 First reference to a block

 Capacity
 Blocks discarded and later retrieved

 Conflict
 Program makes repeated references to multiple addresses

from different blocks that map to the same location in the
cache

In
tro

d
u
c
tio

n

17 Copyright © 2019, Elsevier Inc. All rights Reserved

Cache Misses

 Speculative and multithreaded processors may
execute other instructions during a miss
 Reduces performance impact of misses

In
tro

d
u
c
tio

n

18 Copyright © 2019, Elsevier Inc. All rights Reserved

Six Basic Cache Optimizations

1. Larger block size
 Reduces compulsory misses

 Increases capacity and conflict misses, increases miss penalty

In
tro

d
u
c
tio

n

19 Copyright © 2019, Elsevier Inc. All rights Reserved

Six Basic Cache Optimizations
2. Larger total cache capacity to reduce miss rate

 Increases hit time, increases power consumption

3. Higher associativity
 Reduces conflict misses

 Increases hit time, increases power consumption

In
tro

d
u
c
tio

n

20 Copyright © 2019, Elsevier Inc. All rights Reserved

Six Basic Cache Optimizations

4. Higher number of cache levels
 Reduces overall memory access time

 Example 1: Find the average memory access time for a
memory hierarchy of one cache and a main memory
given the following:
 Hit time = 1 cycle

 Miss rate = 5%

 Miss penalty = 200 cycles

 Example 2: Repeat Example 1 when an L2 is added with
the following specs:
 Hit time = 10 cycles

 Miss rate = 2%

 Miss penalty = 250 cycles

In
tro

d
u
c
tio

n

21 Copyright © 2019, Elsevier Inc. All rights Reserved

Six Basic Cache Optimizations

5. Giving priority to read misses over writes
 Reduces miss penalty

6. Avoiding address translation in cache indexing
 Reduces hit time

In
tro

d
u
c
tio

n

22

Contents

 Introduction

 Memory Technology and Optimizations

 Ten Advanced Optimizations of Cache

Performance

 Virtual Memory and Virtual Machines

 ARM Cortex-A53 and Intel Core i7 6700

 Fallacies and Pitfalls

Copyright © 2019, Elsevier Inc. All rights Reserved

23

Contents

 Memory Technology and Optimizations

 Introduction

 Memory Technology

 SRAM

 DRAM

 Memory Optimizations

 Stacked/Embedded DRAMs

 Flash Memory

 Memory Dependability

Copyright © 2019, Elsevier Inc. All rights Reserved

24 Copyright © 2019, Elsevier Inc. All rights Reserved

Introduction

 Performance metrics
 Latency is concern of cache

 Bandwidth is concern of multiprocessors and I/O

 Access time
 Time between read request and when desired word

arrives

 Cycle time
 Minimum time between unrelated requests to memory

 SRAM memory has low latency, use for
cache

 Organize DRAM chips into many banks for
high bandwidth, use for main memory

M
e
m

o
ry

 T
e
c
h
n
o
lo

g
y
 a

n
d
 O

p
tim

iz
a
tio

n
s

25 Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Technology

 SRAM
 Requires low power to retain bit

 Requires 6 transistors/bit

M
e
m

o
ry

 T
e
c
h
n
o
lo

g
y
 a

n
d
 O

p
tim

iz
a
tio

n
s

26 Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Technology

 DRAM
 Must be re-written after being read

 Must also be periodically refreshed
 Every ~ 8 ms (roughly 5% of time)

 Each row can be refreshed simultaneously

 One transistor/bit

 Address lines are multiplexed:
 Upper half of address: row access strobe (RAS)

 Lower half of address: column access strobe (CAS)

M
e
m

o
ry

 T
e
c
h
n
o
lo

g
y
 a

n
d
 O

p
tim

iz
a
tio

n
s

27

Classic DRAM

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 27

28 Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Optimizations

 Amdahl:
 Memory capacity should grow linearly with processor speed

 Unfortunately, memory capacity and speed has not kept
pace with processors

 Some optimizations:
 Multiple accesses to same row

 Synchronous DRAM

 Added clock to DRAM interface

 Burst mode with critical word first

 Wider interfaces

 Double data rate (DDR)

 Multiple banks on each DRAM device

M
e
m

o
ry

 T
e
c
h
n
o
lo

g
y
 a

n
d
 O

p
tim

iz
a
tio

n
s

29

Micron DDR-SDRAM

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 29

30 Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Optimizations

 DDR:
 DDR2

 Lower power (2.5 V -> 1.8 V)

 Higher clock rates (266 MHz, 333 MHz, 400 MHz)

 DDR3
 1.5 V

 800 MHz

 DDR4
 1-1.2 V

 1333 MHz

 GDDR5 is graphics memory based on DDR3

M
e
m

o
ry

 T
e
c
h
n
o
lo

g
y
 a

n
d
 O

p
tim

iz
a
tio

n
s

31 Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Optimizations
M

e
m

o
ry

 T
e
c
h
n
o
lo

g
y
 a

n
d
 O

p
tim

iz
a
tio

n
s

DDR-SDRAM Chips

32 Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Optimizations
M

e
m

o
ry

 T
e
c
h
n
o
lo

g
y
 a

n
d
 O

p
tim

iz
a
tio

n
s

DDR-SDRAM DIMMs

33 Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Optimizations

 Reducing power in SDRAMs:
 Lower voltage

 Low power mode (ignores clock, continues to
refresh)

 Graphics memory:
 Achieve 2-5 X bandwidth per DRAM vs. DDR3

 Wider interfaces (32 vs. 16 bit)

 Higher clock rate
 Possible because they are attached via soldering instead of

socketed DIMM modules

M
e
m

o
ry

 T
e
c
h
n
o
lo

g
y
 a

n
d
 O

p
tim

iz
a
tio

n
s

34 Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Power Consumption
M

e
m

o
ry

 T
e
c
h
n
o
lo

g
y
 a

n
d
 O

p
tim

iz
a
tio

n
s

35

Stacked/Embedded DRAMs

 Stacked DRAMs in same package as

processor

 High Bandwidth Memory (HBM)

Copyright © 2019, Elsevier Inc. All rights Reserved

M
e
m

o
ry

 T
e
c
h
n
o
lo

g
y
 a

n
d
 O

p
tim

iz
a
tio

n
s

36 Copyright © 2019, Elsevier Inc. All rights Reserved

Flash Memory

 Type of EEPROM

 Types: NAND (denser) and NOR (faster)

 NAND Flash:
 Reads are sequential, reads entire page (.5 to 4

KiB)

 25 us for first byte, 40 MiB/s for subsequent bytes

 SDRAM: 40 ns for first byte, 4.8 GB/s for
subsequent bytes

 2 KiB transfer: 75 μs vs 500 ns for SDRAM, 150X
slower

 300 to 500X faster than magnetic disk

M
e
m

o
ry

 T
e
c
h
n
o
lo

g
y
 a

n
d
 O

p
tim

iz
a
tio

n
s

37 Copyright © 2019, Elsevier Inc. All rights Reserved

NAND Flash Memory

 Must be erased (in blocks) before being
overwritten

 Nonvolatile, can use as little as zero power

 Limited number of write cycles (~100,000)

 $2/GiB, compared to $20-40/GiB for SDRAM
and $0.09 GiB for magnetic disk

 Phase-Change/Memrister Memory
 Possibly 10X improvement in write performance

and 2X improvement in read performance

M
e
m

o
ry

 T
e
c
h
n
o
lo

g
y
 a

n
d
 O

p
tim

iz
a
tio

n
s

38 Copyright © 2019, Elsevier Inc. All rights Reserved

Memory Dependability

 Memory is susceptible to cosmic rays

 Soft errors: dynamic errors
 Detected and fixed by error correcting codes

(ECC)

 Hard errors: permanent errors
 Use spare rows to replace defective rows

 Chipkill: a RAID-like error recovery technique

M
e
m

o
ry

 T
e
c
h
n
o
lo

g
y
 a

n
d
 O

p
tim

iz
a
tio

n
s

39

Contents

 Introduction

 Memory Technology and Optimizations

 Ten Advanced Optimizations of Cache

Performance

 Virtual Memory and Virtual Machines

 ARM Cortex-A53 and Intel Core i7 6700

 Fallacies and Pitfalls

Copyright © 2019, Elsevier Inc. All rights Reserved

40

Contents

 Ten Advanced Optimizations of Cache

Performance
 Reduce hit time

 (1) Small and simple first-level caches

 (2) Way prediction

 Increase bandwidth
 (3) Pipelined, (3) multibanked, or (4) non-blocking caches

 Reduce miss penalty
 (5) Critical word first, (6) merging write buffers

 Reduce miss rate
 (7) Compiler optimizations

 Reduce miss penalty or miss rate via parallelization
 (8) Hardware or (9) compiler prefetching

 (10) Using HBM to Extend Memory Hierarchy

Copyright © 2019, Elsevier Inc. All rights Reserved

41 Copyright © 2019, Elsevier Inc. All rights Reserved

Advanced Optimizations

 Reduce hit time
 Small and simple first-level caches

 Way prediction

 Increase bandwidth
 Pipelined caches, multibanked caches, non-blocking caches

 Reduce miss penalty
 Critical word first, merging write buffers

 Reduce miss rate
 Compiler optimizations

 Reduce miss penalty or miss rate via parallelization
 Hardware or compiler prefetching

A
d
v
a
n
c
e
d
 O

p
tim

iz
a
tio

n
s

42 Copyright © 2019, Elsevier Inc. All rights Reserved

(1) L1 Hit Time

Access time vs. size and associativity

A
d
v
a
n
c
e
d
 O

p
tim

iz
a
tio

n
s

43 Copyright © 2019, Elsevier Inc. All rights Reserved

(2) Way Prediction

 To improve hit time, predict the way to pre-set
mux
 Misprediction gives longer hit time

 Prediction accuracy
 > 90% for two-way

 > 80% for four-way

 I-cache has better accuracy than D-cache

 First used on MIPS R10000 in mid-90s

 Used on ARM Cortex-A8

 Extend to predict block as well
 “Way selection”

 Increases misprediction penalty

A
d
v
a
n
c
e
d
 O

p
tim

iz
a
tio

n
s

44 Copyright © 2019, Elsevier Inc. All rights Reserved

(3) Pipelined Caches

 Pipeline cache access to improve bandwidth
 Examples:

 Pentium: 1 cycle

 Pentium Pro – Pentium III: 2 cycles

 Pentium 4 – Core i7: 4 cycles

 Increases branch misprediction penalty

 Makes it easier to increase associativity

A
d
v
a
n
c
e
d
 O

p
tim

iz
a
tio

n
s

45 Copyright © 2019, Elsevier Inc. All rights Reserved

(3) Multibanked Caches

 Organize cache as independent banks to
support simultaneous access
 ARM Cortex-A8 supports 1-4 banks for L2

 Intel i7 supports 4 banks for L1 and 8 banks for L2

 Interleave banks according to block address

A
d
v
a
n
c
e
d
 O

p
tim

iz
a
tio

n
s

46 Copyright © 2019, Elsevier Inc. All rights Reserved

(4) Nonblocking Caches

 Allow hits before previous misses complete
 “Hit under miss”

 “Hit under multiple miss”

 L2 must support this

 In general, processors can hide L1 miss penalty but
not L2 miss penalty

A
d
v
a
n
c
e
d
 O

p
tim

iz
a
tio

n
s

47 Copyright © 2019, Elsevier Inc. All rights Reserved

Reduce Miss Penalty

 (5) Critical word first
 Request missed word from memory first

 Send it to the processor as soon as it arrives

 (5) Early restart
 Request words in normal order

 Send missed work to the processor as soon as it
arrives

 Effectiveness of these strategies depends on
block size and likelihood of another access to
the portion of the block that has not yet been
fetched

A
d
v
a
n
c
e
d
 O

p
tim

iz
a
tio

n
s

48 Copyright © 2019, Elsevier Inc. All rights Reserved

(6) Merging Write Buffer

 When storing to a block that is already pending in the
write buffer, update write buffer

 Reduces stalls due to full write buffer

 Do not apply to I/O addresses

A
d
v
a
n
c
e
d
 O

p
tim

iz
a
tio

n
s

No write

buffering

Write buffering

49 Copyright © 2019, Elsevier Inc. All rights Reserved

(7) Compiler Optimizations

 Loop Interchange
 Swap nested loops to access memory in

sequential order

 Blocking
 Instead of accessing entire rows or columns,

subdivide matrices into blocks

 Requires more memory accesses but improves
locality of accesses

A
d
v
a
n
c
e
d
 O

p
tim

iz
a
tio

n
s

50

Blocking

Copyright © 2019, Elsevier Inc. All rights Reserved

for (i = 0; i < N; i = i + 1)

 for (j = 0; j < N; j = j + 1)

 {

 r = 0;

 for (k = 0; k < N; k = k + 1)

 r = r + y[i][k]*z[k][j];

 x[i][j] = r;

};

51

Blocking

Copyright © 2019, Elsevier Inc. All rights Reserved

for (jj = 0; jj < N; jj = jj + B)

 for (kk = 0; kk < N; kk = kk + B)

 for (i = 0; i < N; i = i + 1)

 for (j = jj; j < min(jj + B,N); j = j + 1)

 {

 r = 0;

 for (k = kk; k < min(kk + B,N); k = k + 1)

 r = r + y[i][k]*z[k][j];

 x[i][j] = x[i][j] + r;

};

52 Copyright © 2019, Elsevier Inc. All rights Reserved

(8) Hardware Prefetching

 Fetch two blocks on miss (include next
sequential block)

A
d
v
a
n
c
e
d
 O

p
tim

iz
a
tio

n
s

Pentium 4 Pre-fetching

53 Copyright © 2019, Elsevier Inc. All rights Reserved

(9) Compiler Prefetching

 Insert prefetch instructions before data is
needed

 Non-faulting: prefetch doesn’t cause
exceptions

 Register prefetch
 Loads data into register

 Cache prefetch
 Loads data into cache

 Combine with loop unrolling and software
pipelining

A
d
v
a
n
c
e
d
 O

p
tim

iz
a
tio

n
s

54 Copyright © 2019, Elsevier Inc. All rights Reserved

(10) Use HBM to Extend Hierarchy

 128 MiB to 1 GiB

 Smaller blocks require substantial tag storage

 Larger blocks are potentially inefficient

 One approach (L-H):
 Each SDRAM row is a block index

 Each row contains set of tags and 29 data
segments

 29-set associative

 Hit requires a CAS

A
d
v
a
n
c
e
d
 O

p
tim

iz
a
tio

n
s

55 Copyright © 2019, Elsevier Inc. All rights Reserved

Use HBM to Extend Hierarchy

 Another approach (Alloy cache):
 Mold tag and data together

 Use direct mapped

 Both schemes require two DRAM accesses
for misses
 Two solutions:

 Use map to keep track of blocks

 Predict likely misses

A
d
v
a
n
c
e
d
 O

p
tim

iz
a
tio

n
s

56 Copyright © 2019, Elsevier Inc. All rights Reserved

Use HBM to Extend Hierarchy
A

d
v
a
n
c
e
d
 O

p
tim

iz
a
tio

n
s

57 Copyright © 2019, Elsevier Inc. All rights Reserved

Summary
A

d
v
a
n
c
e
d
 O

p
tim

iz
a
tio

n
s

58

Contents

 Introduction

 Memory Technology and Optimizations

 Ten Advanced Optimizations of Cache

Performance

 Virtual Memory and Virtual Machines

 ARM Cortex-A53 and Intel Core i7 6700

 Fallacies and Pitfalls

Copyright © 2019, Elsevier Inc. All rights Reserved

59

Virtual Memory Review

Copyright © 2019, Elsevier Inc. All rights Reserved

60

Virtual Memory Review

Copyright © 2019, Elsevier Inc. All rights Reserved

61 Copyright © 2019, Elsevier Inc. All rights Reserved

Virtual Memory

 Protection via virtual memory
 Keeps processes in their own memory space

 Role of architecture
 Provide user mode and supervisor mode

 Protect certain aspects of CPU state

 Provide mechanisms for switching between user
mode and supervisor mode

 Provide mechanisms to limit memory accesses

 Provide TLB to translate addresses

V
irtu

a
l M

e
m

o
ry

 a
n
d
 V

irtu
a
l M

a
c
h
in

e
s

62

Virtual Machines Review

Copyright © 2019, Elsevier Inc. All rights Reserved

63 Copyright © 2019, Elsevier Inc. All rights Reserved

Virtual Machines

 Supports isolation and security

 Sharing a computer among many unrelated users

 Enabled by raw speed of processors, making the
overhead more acceptable

 Allows different ISAs and operating systems to be
presented to user programs
 “System Virtual Machines”

 SVM software is called “virtual machine monitor” or
“hypervisor”

 Individual virtual machines run under the monitor are called
“guest VMs”

V
irtu

a
l M

e
m

o
ry

 a
n
d
 V

irtu
a
l M

a
c
h
in

e
s

64 Copyright © 2019, Elsevier Inc. All rights Reserved

Requirements of VMM

 Guest software should:
 Behave on as if running on native hardware

 Not be able to change allocation of real system
resources

 VMM should be able to “context switch”
guests

 Hardware must allow:
 System and user processor modes

 Privileged subset of instructions for allocating
system resources

V
irtu

a
l M

e
m

o
ry

 a
n
d
 V

irtu
a
l M

a
c
h
in

e
s

65

Contents

 Introduction

 Memory Technology and Optimizations

 Ten Advanced Optimizations of Cache

Performance

 Virtual Memory and Virtual Machines

 ARM Cortex-A53 and Intel Core i7 6700

 Fallacies and Pitfalls

Copyright © 2019, Elsevier Inc. All rights Reserved

66

ARM Cortex-A53

Copyright © 2019, Elsevier Inc. All rights Reserved

The memory hierarchy of the Cortex A53 includes

multilevel TLBs and caches

L1 D$ 2- or 4-way set associative

67

A53 L1 I-TLB (10) & L1 I$ (32 KiB)

Copyright © 2019, Elsevier Inc. All rights Reserved

64 KiB page size

68

A53 L1 D-TLB & D$, L2 TLB & $

Copyright © 2019, Elsevier Inc. All rights Reserved

L1 D-TLB (10)

D$ (32 KiB)

L2 TLB (512)

L2 $ (1 MiB, 16-way)

69

A53 SPECInt2006 Performance

Copyright © 2019, Elsevier Inc. All rights Reserved

70

A53 SPECInt2006 Performance

Copyright © 2019, Elsevier Inc. All rights Reserved

71

Intel Core i7 6700 – TLBs

Copyright © 2019, Elsevier Inc. All rights Reserved

72

Intel Core i7 6700 – Caches

Copyright © 2019, Elsevier Inc. All rights Reserved

73

i7 L1 and L2 TLBs and L1 Caches

Copyright © 2019, Elsevier Inc. All rights Reserved

74

i7 L2 and L3 (8 MiB) Caches

Copyright © 2019, Elsevier Inc. All rights Reserved

75

i7 SPECInt2006 L1 Performance

Copyright © 2019, Elsevier Inc. All rights Reserved

76

i7 SPECInt2006 L2 Performance

Copyright © 2019, Elsevier Inc. All rights Reserved

77

Contents

 Introduction

 Memory Technology and Optimizations

 Ten Advanced Optimizations of Cache

Performance

 Virtual Memory and Virtual Machines

 ARM Cortex-A53 and Intel Core i7 6700

 Fallacies and Pitfalls

Copyright © 2019, Elsevier Inc. All rights Reserved

78

Fallacies

 F: Predicting cache performance of one

program from another

Copyright © 2019, Elsevier Inc. All rights Reserved

79

Pitfalls

 P: Simulating enough instructions to get

accurate performance measures of the

memory hierarchy

 P: Not delivering high memory bandwidth

in a cache-based system

Copyright © 2019, Elsevier Inc. All rights Reserved

