
Reinforcement Learning

Prof. Gheith Abandah

Reference: Hands-On Machine Learning with Scikit-Learn and
TensorFlow by Aurélien Géron (O’Reilly), 2017, 978-1-491-96229-9.

1

Introduction

• YouTube Video: An introduction to Reinforcement
Learning from Arxiv Insights

https://youtu.be/JgvyzIkgxF0

2

https://youtu.be/JgvyzIkgxF0

Outline

1. Introduction

2. Policy Search

3. OpenAI Gym

4. Neural Network Policy

5. The Credit Assignment Problem

6. Policy Gradient Algorithm

7. Exercises

3

1. Introduction – History

• RL started in 1950s
• 1992: IBM’s TD-Gammon, a

Backgammon playing program.
• 2013: DeepMind demonstrated a

system that learns to play Atari
games from scratch.

• Use deep learning with raw pixels as
inputs and without any prior
knowledge of the rules of the games.

• 2014: Google bought DeepMind for
$500M.

• 2016: AlphaGo beats Lee Sedol.

4

1. Introduction – Definition

• In Reinforcement Learning, a software agent makes
observations and takes actions within an
environment, and in return it receives rewards.

• Its objective is to learn to act in a way that will
maximize its expected long-term rewards.

• In short, the agent acts in the environment and
learns by trial and error to maximize its pleasure
and minimize its pain.

5

1. Introduction – Examples

6

2. Policy Search
• The algorithm used by the software agent to

determine its actions is called its policy.

• The policy can be deterministic or stochastic.

• Policy search techniques: Brute force, Genetic
algorithm, Policy Gradient (PG), Temporal
Difference (TD) Learning, Q-Learning.

7

3. OpenAI Gym

• OpenAI gym is a toolkit that provides simulated
environments (Atari games, board games, 2D and
3D physical simulations, …).

• OpenAI is a nonprofit AI research company funded
in part by Elon Musk.

8

Cart position, cart speed, pole angle,
pole velocity

3. OpenAI Gym

• render() can also return the rendered image as a
NumPy array.

9

3. OpenAI Gym – Balancing the
pole

10

The possible actions are integers 0 and 1, which
represent accelerating left (0) or right (1).

3. OpenAI Gym – Balancing the pole

11

Accelerates left when the pole is leaning left and
accelerates right when the pole is leaning right.

4. Neural Network Policy

12

Picking a random action
based on the probability
given by the neural
network lets the agent find
the right balance between
exploring new actions and
exploiting the actions that
are known to work well.

4. Neural Network Policy

13

1. Define the neural network architecture. The
number of inputs is the size of the observation
space, four hidden units, and one output
probability (the probability of going left).

4. Neural Network Policy

14

2. Build a Multi-Layer Perceptron. The output layer
uses the logistic (sigmoid) activation function in
order to output a probability from 0.0 to 1.0. If
there were more than two possible actions, there
would be one output neuron per action, and use
the softmax activation function instead.

4. Neural Network Policy

15

3. The multinomial() function picks one
random action: outputs probability of being 0,
1 - outputs of being 1.

5. The Credit Assignment Problem
• Rewards are typically sparse and delayed.

• Credit assignment problem: when the agent gets a
reward, it is hard for it to know which actions
should get credited (or blamed) for it.

• Evaluate an action based on the sum of all the
rewards that come after it, usually applying a
discount rate r at each step.

16

6. Policy Gradient Algorithm

• Optimize the parameters of a policy by following the gradients
toward higher rewards.

1. Let the neural network policy play the game several times and
at each step compute the gradients that would make the
chosen action even more likely.

2. Every several episodes, compute each action’s score (using the
credit assignment method).

3. If an action’s score is positive, it means that the action was
good and you want to apply the gradients to make the action
more likely in the future. However, if the score is negative, it
means the action was bad and you want to apply the opposite
gradients. The solution is simply to multiply each gradient
vector by the corresponding action’s score.

4. Compute the mean of all the resulting gradient vectors, and
use it to perform a Gradient Descent step.

17

Summary

1. Introduction

2. Policy Search

3. OpenAI Gym

4. Neural Network Policy

5. The Credit Assignment Problem

6. Policy Gradient Algorithm

7. Exercises

18

Exercises

From Chapter 16, solve exercises:
• 1
• 2
• 5

19

