0907779 Machine Learning (Fall 2018) <u>Midterm Exam</u>		
	الاسم:	
P1. Br	iefly give an answer to each of the following three questions.	
1)	[6 points] In supervised learning, what is the main difference between classification and regression?	
	Classification is for predicting type and regression is for predicting value	
2)	What is the main purpose of clustering? To determine the intrinsic grouping in a set of unlabeled data.	
3)	Is the support vector machine classifier instance based or model based? Model based.	
36, #	rite a python code that prints the squares of all even numbers from 0 to 20, i.e., it should print 0, 4, 16,, 400. [4 points] your code goes here or x in range(21): if (x % 2) == 0: print(x * x)	

P3. Write a Python function that prints the sum of an arbitrary number of arguments, e.g., calling it with my_sum(1, 2.5) should print 3.5 and calling it with my_sum(1, 2.5, 3) should print 6.5. Moreover, this function should accept an optional argument no_frac that truncates the fractional part of the sum, e.g., calling it with my sum(1, 2.5, 3.6, no frac=True) should print 7.0.

[5 points]

```
# your code goes here

def my_sum(*args, no_frac=False):
    sum = 0
    for arg in args:
        sum = sum + arg
    if no_frac:
        print(sum // 1)
    else:
        print(sum)
```

P4. Given the information in the box blow and the shown Python code, what is the result of each of the following print statements?

[6 points]

```
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

train_set, test_set = train_test_split(data, test_size=0.2)

X_train = train_set.drop("y", axis=1)
y_train = train_set["y"].copy()

scaler = StandardScaler()
scaler.fit(X_train)
X_train_scaled = scaler.transform(X_train)
```

Print Statement	Result
<pre>print(len(train_set))</pre>	1600
<pre>print(X_train_scaled["x1"].mean())</pre>	0.0
<pre>print(X_train_scaled["x2"].std())</pre>	1.0

P5. Given the information in the box blow, complete the following Python code to train an SVM Regressor using the two features to predict the response y using the scaled train set and save the trained model to a file named svm model.pkl.

[4 points]

```
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVR
from sklearn.externals import joblib

X_train = data.drop("y", axis=1)
y_train = data["y"].copy()

scaler = StandardScaler()
scaler.fit(X_train)
X_train_scaled = scaler.transform(X_train)

# your code goes here

svm_reg = SVR()
svm_reg.fit(X_train_scaled, y_train)

joblib.dump(svm_reg, "svm_model.pkl")
```

P6. Complete the following Python code to train a random forest classifier on the training set, predict the classes of the test set, and print the precision and recall scores.

[5 points]

```
from sklearn.datasets import fetch_mldata
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import precision_score, recall_score

mnist = fetch_mldata('MNIST original')
X, y = mnist["data"], mnist["target"]
X_train, X_test = X[:60000], X[60000:]
y_train, y_test = X[:60000], X[60000:]

# your code goes here

forest_clf = RandomForestClassifier (random_state=42)
forest_clf.fit(X_train, y_train)

y_pred = forest_clf.predict(X_test)

print(precision_score(y_train, y_pred))
print(recall_score(y_train, y_pred))
```

<Good Luck>