0907432 Computer Design (Fall 2015) <u>Final Exam</u>

رقم الشعبة: 1

الرقم التسلسلي:

الاسم:

Instructions: Time **100** minutes. Open book and notes exam. No electronics. Please answer all problems in the space provided and limit your answer to the space provided. Every question is for 5 marks. No questions are allowed.

Q1. Assume that you have the classical five-stage pipeline processor that resolves branch instructions in the decode stage. This processor must stall when executing the following sequence of instructions.

add \$s3, \$s1, \$s2 beg \$s3, \$s4, 20

Assume that you want to detect this hazard when the branch instruction is in the decode stage. Draw the logic circuit needed to detect this data hazard.

The solution is:

Q2. Assume that the following code sequence is executed by a dynamic dual-issue pipelined processor. This processor uses reservation stations, reorder buffer, and two common data busses to execute the instructions out of order. The fetch stage takes one cycle and the issue stage takes one cycle. The integer latency is 1 cycle, the memory latency is 2 cycles (1 cycle for address calculation and 1 cycle for data memory access), and the floating-point latency is 3 cycles. The processor has one address calculation unit, one memory access unit, one integer ALU unit, and one floating-point unit. Using the multi-cycle pipeline diagram below, specify the execution of these instructions in this processor pipeline.

	1	2	3	4	5	6	7	8	9	10	11	12	13
l.d \$f2, 0(\$s1)	F	Ι	A	Μ	W	С							
l.d \$f4, 0(\$s2)	F	Ι		A	Μ	W	С						
add.d \$f6, \$f4, \$f2		F	Ι				E	E	E	W	С		
s.d \$f2, 0(\$s3)		F	Ι		Α						С		
s.d \$f6, 0(\$s2)			F	Ι		A						С	

Q5. The following figure shows the parity bits, data bits, and field coverage in a Hamming ECC code for eight data bits. Assume that you have a memory module that uses this ECC code and that the binary sequence **111001000111** is read from the memory and it has a single bit error. What is the original eight data bits?

Bit positi	on	1	2	3	4	5	6	7	8	9	10	11	12
Encoded data	bits	p1	p2	d1	p4	d2	d3	d4	p8	d5	d6	d7	d8
	p1	Х		Х		Х		Х		Х		Х	
Parity	p2		Х	Х			Х	Х			Х	Х	
coverage	p4				Х	Х	Х	Х					Х
	p8								Х	Х	Х	Х	Х

```
Solution:
123456789012
111001000111
ppdpdddpdddd
The data bits are 1010 0100
p1 = xor(1 \ 1 \ 0 \ 0 \ 1) = 1
p2 = xor(1 \ 1 \ 1 \ 0 \ 1 \ 1) = 1
p4 = xor(0 \ 0 \ 1 \ 0 \ 1) = 0
p8 = xor(0 \ 0 \ 1 \ 1 \ 1) = 1
The error code is 1011 -> error in bit 11.
So the data is 1010 0101
```

Q6. The following table summarizes the cache hierarchy specifications of the Intel Nehalem Core i7-920 processor. Remember that this processor has four cores. What is the total cache capacity in KB on this processor chip?

	L1 cache organization	Split instruction and data caches				
	L1 cache size	32 KiB each for instructions/data per core				
	L1 cache associativity	4-way (I), 8-way (D) set associative				
	L1 replacement	Approximated LRU				
	L1 block size	64 bytes				
	L1 write policy	Write-back, No-write-allocate				
	L1 hit time (load-use)	4 clock cycles, pipelined				
	L2 cache organization	Unified (instruction and data) per core				
	L2 cache size	256 KiB (0.25 MiB)				
	L2 cache associativity	8-way set associative				
	L2 replacement	Approximated LRU				
	L2 block size	64 bytes				
	L2 write policy	Write-back, Write-allocate				
	L2 hit time	10 clock cycles				
per core = $32 + 32 + 256$	L3 cache organization	Unified (instruction and data)				
	L3 cache size	8 MiB, shared				
	L3 cache associativity	16-way set associative				
8 * 1024	L3 replacement	Approximated LRU				
	L3 block size	64 bytes				
	L3 write policy	Write-back, Write-allocate				
	L3 hit time	35 clock cycles				

Characteristic Intel Nehalem

Solution:

Size of private caches = 320 KB**Total Size = 4 * 320 +** = 1280 + 8192= 9472 KB

Q9. What is the average memory access time for the memory hierarchy that has the specifications shown in the following table?

Memory Level	Hit time	Miss rate
L1 cache	2 cycle	10%
L2 cache	10 cycles	2%
L3 cache	20 cycles	1%
Main memory	300 cycles	0%

The solution is:

 $\begin{aligned} AMAT_{L3} &= 20 + 0.01 \times 300 = 23 \text{ cycles} \\ AMAT_{L2} &= 10 + 0.02 \times 23 = 10.46 \text{ cycles} \\ AMAT_{L1} &= 2 + 0.10 \times 10.46 = \underline{3.046 \text{ cycles}} \end{aligned}$

Q10. Convert the following C code segment to a shared memory parallel program. Assume that the processor ID is in the variable Pn, the number of processors is in the variable threads, and N is perfectly divisible by threads.

for (i=0; i<N; i++)
z[i] = x[i] - y[i];</pre>

The solution is:

for (i=(N/threads)*Pn; i<(N/threads)*(Pn+1); i++)
z[i] = x[i] - y[i];</pre>

<Good Luck>