
Challenges and Preprocessing Recommendations for

MADCAT Dataset of Handwritten Arabic Documents

Gheith A. Abandah

Computer Engineering Department

The University of Jordan

Amman 11942, Jordan

Ahmad S. Al-Hourani

Computer Engineering Department

The University of Jordan

Amman 11942, Jordan

Abstract—In this paper, we analyze the dataset often used in

training and testing Arabic handwritten document recognition

systems, the Multilingual Automatic Document Classification

Analysis and Translation dataset (MADCAT). We report here the

main challenges present in MADCAT that the preprocessing stage

of any recognition algorithm faces and affect the performance of

the systems that use it for training and testing. MADCAT is a

representative dataset of Arabic handwritten documents and

investigating its challenges helps to identify the requirements of

the preprocessing stage. After presenting these challenges, we

review the literature and recommend preprocessing algorithms

suitable to preprocess this dataset for handwritten Arabic word

recognition systems such as JU-OCR2.

Keywords—MADCAT dataset; preprocessing; recognition;

handwritten documents; Arabic

I. INTRODUCTION

There is a need for investigating the problems that one needs
to solve in the preprocessing stage of handwritten Arabic
document recognition systems. We investigate here the
Multilingual Automatic Document Classification Analysis and
Translation (MADCAT) dataset [1]. We report the challenges
that face the preprocessing stage to clean, prepare, and segment
these documents for a handwritten Arabic word recognition
system such as JU-OCR2 [2]. We also select from available
research efficient preprocessing algorithms and recommend a
preprocessing stage suitable for this dataset and such recognition
systems. The details of this study is in [3].

The rest of this paper is structured as follows: Section II
provides a brief description of MADCAT. Section III discusses
the problems found in MADCAT. Section IV discusses
additional problems that preprocessing stages may need to
handle but do not exist in MADCAT. Section V presents the
recommendations from available literature for a preprocessing
stage to build high-performance recognition system. Section VI
provides the conclusions of this paper.

II. MADCAT DATASET

The MADCAT is a five-year research program created by
the Defense Advanced Research Projects Agency (DARPA) that
aims to convert non-English document images to English
transcripts [1]. The National Institute of Standards and
Technology (NIST) conducted the Open Handwriting

Recognition and Translation Evaluation (OpenHaRT)
competition using MADCAT in order to advance state-of-the-
art handwritten Arabic document analysis [4].

The MADCAT dataset was created by the Linguistic Data
Consortium (LDC) in order to standardize the training, testing,
and evaluation set of corpora used by systems and algorithms
used for preprocessing, recognition, and translation of Arabic
documents. The MADCAT dataset was created in a controlled
environment. The documents were written by native Arabs who
are proficient in Arabic [4]. Table I shows the writing conditions
which were used when creating MADCAT [5].

TABLE I. MADCAT WRITING CONDITIONS

Writing Condition Ratio

Utensil
Pen 90%

Pencil 10%

Paper
Unlined 75%

Lined 25%

Speed

Careful 5%

Normal 90%

Fast 5%

The original scripts of the dataset were selected from
authentic Arabic texts from newspapers and news websites. The
dataset specifications are specified in Table II [5].

TABLE II. MADCAT SPECIFICATIONS

Specification
Training Evaluation

Phase 1 Phase 2 Phase 3 Phase 3

Unique pages 2,334 5,773 635 211

Scribes per page up to 5 up to 5 up to 7 3

Tokens per page NC NC ≤ 125 ≤ 125

Total pages 9,693 27,814 4,540 633

Total tokens 758,936 2,964,266 507,689 74,553

Unique scribes 72 230 53 24

Image size 5100×6600 pixels at 600 dpi

III. CHALLENGES PRESENT IN MADCAT

In this section, we describe the challenges present in the
MADCAT dataset.

To appear in the 2018 11th Int’l Congress on Image and Signal Processing, BioMedical Engineering and

Informatics (CISP-BMEI 2018), Oct 11-13, 2018, Beijing, China.

A. Pepper Noise

During the image acquisition and binarization phases, noise
dots may be produced in the scanned documents. The noise dots
concentration varies from one document to another. In some
documents, the noise dots are few or not present as in Fig. 1(a).
In other documents, noise dots may be densely scattered all over
the document where they even could cluster and form larger
bodies as in Fig. 1(b).

(a)

(b)

Fig. 1. (a) Sparse noise distribution. (b) Dense noise distributions.

The smallest text elements are usually much larger than the
largest continuous noise bodies. This can be exploited to
overcome this issue. But care should be taken to account for
various text sizes, writing tip widths, and low resolution.

B. Vertical Lines

Vertical lines can be categorized into two categories
depending on their source. The first, and the more influential, is
the ruled vertical lines; that is, the vertical lines which are
imposed by the nature of the paper used. The number of adjacent
ruled vertical lines range from one to three lines. Furthermore,
ruled vertical lines may intersect with the handwritten text and
distort it as in Fig. 2(a).

(a)

(b)

Fig. 2. (a) Ruled vertical lines affecting text. (b) Noise-generated lines.

The second type includes vertical lines generated during the
image acquisition phase. These lines happen in some scanning
machines that tend to create faint lines in the acquired images.
Another source of the faint lines is the shadow of the edges of
the scanned pages. By nature, these lines are faint and mostly
discontinuous as in Fig. 2(b).

C. External Graphical Elements

The various paper types available in MADCAT introduce
various none textual shapes that need to be filtered prior the
recognition phase. Depending on the paper source and image
acquisition conditions, sample shapes are shown in Fig. 3.

In case these elements are fed to recognition, they may be
erroneously recognized as punctuation marks or separate letters.
Also, these shapes can in some cases distort the vertical and
horizontal histograms of the documents, as in the first and last
examples in Fig. 3. In some extreme cases, these elements may
contain higher black dots density than the main text body. This
needs to be considered when detecting the main text body.

These shapes are usually on the edge of the page where
people do not tend to write text. This creates a significant

distance between the main text body and those elements that can
be utilized to mitigate the effects of those elements on the
segmentation and recognition phases.

Fig. 3. Various undesired graphical elements.

D. Writing Errors

The ground truth in MADCAT identify the errors made by
the scribes when copying the text. These errors should be
identified and removed. Some errors can be easily identified as
clusters of ink or as shapes with too many strikes while others
are harder to find as they only strike out the wrong word with a
single line. Writing errors that are not struck out or scribbled will
only cause wrong recognition of the word and may only be
detected by dictionary word matching or by the context. Fig. 4
shows examples the above mentioned writing errors.

(a)

(b)

Fig. 4. Eriting errors marked by (a) dark area and (b) one strike

E. Ruled Paper

Ruled paper is common for notebooks. Different ruling types
are available like narrow-ruled, college-ruled, law-ruled, and
journal. Many ruled paper types have also vertical lines in
different positions of the page. Ruled pages usually comply with
the following conditions:

 A ruled line, horizontal or vertical, usually extends from
one end of the page all the way to the other.

 Horizontal lines are parallel to each other and
perpendicular to vertical lines. This is always true unless
some distortion occurred to the page in the image
acquisition stage.

 If the page is ruled, handwritten text is aligned to the lines
and suffers no writer skew, even though text could be on
unlined spaces of the page as in Fig. 5.

Fig. 5. Text in the unruled area of a page.

 A close-up of ruled lines show that they are not perfect
rectangles as shown in Fig. 6, it is a rectangle-like shape
with variable widths and many imperfections including
complete line breaks at some points. These
disfigurements are created by the inconsistencies
encountered along the processes of ruled line printing,
capturing, and binarization.

Fig. 6. Close up of a ruled line [6].

The ruled lines are often of same color, thickness and
orientation of text elements and thus can significantly overlap
with text. This, combined with the characteristic horizontal
baseline of Arabic handwriting [7], results that inattentive line
removal generates severe deterioration to words, especially for
algorithms that depend on text thickness as in Ref. [8]. Such
cases are illustrated in the sample of Fig. 7. The effect of ruled
line removal is expected to be minimal when ruled line width is
considerably thinner than the text line width.

Fig. 7. Sample where the ruled line width is close to the text width and

the word baseline is overlaping the ruled lines.

F. Text Lines Overlapping

Irregularity and inconsistency are common traits of
handwriting. Such traits create problems that we do not face in
printed text [9]. Such problem is text lines overlapping. That is
a straight line to separate consecutive text lines cannot be found.
This problem would have a major impact on the performance of
the recognition unless an efficient and deterministic approach is
used to solve it. The effects of lines overlapping include the
following:

 Some word elements like strokes and secondary
components may be mistaken to be belonging to another
text line as in Fig. 8(a).

 Sometimes overlapping produces connected elements
between two consecutive lines as in Fig. 8(b).

(a)

(b)

Fig. 8. Effects of overlapping text lines.

In terms of inter-line spacing, pages can be divided into three
categories:

Distant lines, where all the lines in the pages are visibly
separated and easily discriminated, as in Fig. 9(a).

Crammed lines, where all lines of the page are mingled and
no clear line can separate successive lines, as in Fig. 9(b). This
would require more processing to separate the lines.

Mixed line spacing, where some lines in the page are easily
separable and others are crammed, as in Fig. 9(c).

(a)

(b)

(c)

Fig. 9. Different types of line spacing.

G. Intra-word Spaces

Arabic is cursive in nature, however, some letters in Arabic
are never connected from the left, causing many words to break
at single or multiple positions creating the intra-word spaces
[10]. As a standard in writing, inter-word space should be
significantly larger than the intra-word space. This is usually the
case but that is not always followed in handwriting. In some
cases, intra-word space is significant and in some cases, it even
surpasses its inter-word counterpart as in Fig. 10(a).

(a)

(b)

(c)

Fig. 10. Intra-word space examples.

If a letter is composed of multiple strokes, which are written
separately, the scribe may generate discontinuities in the single
letter creating intra-word space at the letter level as in Fig. 10(b).
This also needs to be identified and segmented properly.

Some words are composed of several parts that the number
of separate parts cannot be determined sharply. The word in
Fig. 10(c) is composed of eight horizontally aligned parts.

The ability to distinguish complete words without breaking
them down improves the segmentation and helps in building a
more meaningful document later after recognition.

H. Slant

Slant, as shown in Fig. 11, is the inclination of the downward
strokes in handwriting. It originates from the scribes writing
style. The two samples shown are of opposite slants. This has an
impact on the validity of the extracted features, especially the
characteristic angles in letters, of the handwritten text and the
consequent sequence processing and recognition applied to
features matrices [11]. Slant can be preprocessed before feeding
word images to the recognition system or can be solved by the
recognition system itself. It is noticed that slant is not frequent
in MADCAT. In some documents, slant only exists in parts of
the document.

(a)

(b)

Fig. 11. Slant examples.

I. Skew

Skew of handwritten text is the angular deviation of the text
from the horizontal line as shown in Fig. 12. Skew has
significant impact especially on the Arabic recognition system
because many systems use baseline estimation algorithms that
are not robust against skew. Wrong estimation of the baseline
leads to wrong feature detection and hence erroneous detection
of letters and words.

(a)

(b)

Fig. 12. Types of skew.

After inspecting MADCAT, we noticed that skew can be
categorized as follows:

1. Skew from image acquisition phase, or image skew
where all lines share a relative skew angle as in Fig. 12(a).

2. Skew from writer, or writer skew where not all lines
have the same skew angle as shown in Fig. 12(b).

Hence, the total skew is the vector sum of image skew and
writer skew components. Image skew is simpler and can be
corrected using collective algorithms that analyze the whole text
body. Writer skew, on the other hand, is more complex and
requires approaches that process each line or line component in
the text body to detect and correct the skew of each line or each
part of the line separately.

It was also noticed that if the paper is lined, then ruled lines
orientation can determine the image skew and the document is
free of writer skew.

J. Bleed-through Text

A single sheet of paper is not a completely opaque object due
to its nature and thickness. In some cases, a problem arises when
multiple pages are stacked one over another or when
transcriptions exist on both sides of the paper sheet. Traces of
the transcription on faces other than the one being scanned may
appear like a bleed-through text as in Fig. 13. Fortunately, the
density of bleed-through text is much less than the original text
and thus may be treated as noise.

Fig. 13. Bleed-through text.

K. Varying Text Body

Images provided in MADACAT have almost the same
resolution of around 5100×6600 at 600 dpi. However, text body
highly varies in size, font height and size, line density, and
reference position. In some cases, text starts immediately from
the right or top edges of the image with no margins.

L. Irrelevant Text or Numerals (Non-Arabic Characters)

We noticed that some documents have some side notes or
some irrelevant alphanumeric characters distant from the main
text body as in Fig. 14. These characters have no reference in the
corresponding ground truth files. Thus, they should be dropped,
especially when written in foreign languages.

Fig. 14. Irrelevant text example.

M. Short Text Lines

The last line in a paragraph often ends before the end of the
line. Some lines have only one or two words. This may affect
line segmentation algorithms that assume that the line starts and
ends at the edges of the page or text body (i.e., all lines are equal
in length or a line is considered as such if it exceeds some length
threshold).

N. Line Thickness Variations/Manipulations

The line thickness varies significantly from document writer
to another and from document to another. In lined pages, the text
stroke line can be thinner than the ruled line. This should be
taken into consideration when designing the recognition stage or
ruled line removal algorithm.

IV. NONEXISTING PROBLEMS AND UNREQUIRED

PREPROCESSING OPERATIONS

Some problems and preprocessing operations are ignored
either because they were not found in MADCAT or because they
are treated in the selected recognition system. These problems
and preprocessing operations are:

 Binarization: MADCAT is already binarized.

 Height normalization: MADCAT resolution is
sufficient for recognition and no height normalization is
required.

 Multiple text bodies: MADCAT documents have
single plain text body each.

V. STUDY OF AVAILABLE SOLUTIONS & RECOMMENDATIONS

Many solutions related to the problems mentioned above
were thoroughly reviewed and assessed in [3]. We focus on the
main problems that can cause significant performance
deterioration for JU-OCR2 [2]. The following subsections
summarize the main criteria of solution elimination and the
recommended algorithms for the main two problems of
handwritten documents, ruled lines and segmentation.

A. Ruled Line Removal

In order to evaluate an algorithm, one should first identify
the requirements needed from that algorithm. In our case study,
it is JU-OCR2 [2]. This posed some requirements from the line
removal algorithm in addition to the requirements induced by
the nature of the problem itself; ruled lines. The main
requirements are:

 In case ruled lines are present, the algorithm should be
able to handle them without distorting the text characters.

 The algorithm should be able to handle different grades
of line degradation, refer to Fig. 6.

 The algorithm should not have effect on unlined pages;
this can mainly be achieved in case a proper and
non-destructive detection algorithm is utilized.

 The algorithm should handle horizontal and vertical
ruled lines. Nevertheless, this is not mandatory because
some simple techniques exist which expand the

capability of the algorithms to process horizontal ruled
lines to vertical ruled lines. For example, the image can
be rotated 90 degrees and reprocessed by the same
algorithm.

After review of current literature, most algorithms have
reported competitive results, thus we base the selection of the
line removal algorithm on the areas of coverage in the field of
line removal.

The two finalists of the high-performance algorithms were
the ones proposed in [12] and [13]. The algorithm proposed in
[12] offers a wide spectrum of features and still maintained high
performance. The features range from de-skewing for lined
pages to robustness against broken ruled lines. It has no effect
on unlined pages when handling of vertical and horizontal lines.

B. Segmentation

The requirements of the segmentation algorithm are:

 Perform line and word segmentation. JU-OCR2 only
recognizes single words.

 Handle consecutive lines overlapping and handle
touching lines and split components stretching between
two consecutive lines.

 Properly handle crammed lines where lines are close to
each other as illustrated in Fig. 9(c).

 Assign diacritics and secondary components to their
corresponding lines/words.

For our case study, we needed an algorithm that can handle
both line and word segmentation in order to cater to the needs of
our selected recognition algorithm. We can either use a single
algorithm that processes both or we can use two algorithms that
each handles a stage.

Some algorithms were not considered due to the absence of
performance evaluation data as in [14], [15], and [16]. Other
algorithms were tailored for other languages like Oriya [17] and
thus were excluded.

The algorithms in [18], [19] and [20] were excluded because
they disregarded some of the real-life handwritten text properties
as touching lines, varying text line length, non-uniform text line
shape or the assignment of diacritics to their respective lines.
This could greatly deteriorate the performance of the algorithm
when using MADCAT.

The line segmentation algorithm proposed in [21] was
selected as it satisfies all the requirements above for line
segmentation, robust against skew types, and is more suited to
Arabic texts.

As for word segmentation, we chose the most effective yet
simple algorithm we found [21] as most of the problems were
addressed in the line segmentation stage. We selected the
algorithm proposed in [22] because it outperformed its peer that
was proposed in [23].

We recommend the preprocessing system outlined in
Fig. 15. It addresses most of the issues in Section III.

Fig. 15. The proposed flow diagram of the preprocessing system.

VI. CONCLUSIONS

Prior to designing a handwritten document preprocessing or
recognition system, one must examine and identify the problems
they would face that may affect the performance. Also, knowing
the problems helps form a comprehensive solution that handles
them all.

The MADCAT dataset contains many performance-
impacting challenges including pepper noise, vertical lines,
bleed-through text, external graphical elements, writing errors,
text lines overlapping, intra-word spaces, slant, skew, varying
text body, irrelevant non-Arabic text, short text lines, and line
thickness and writer style variations.

However, we have not found some other challenges that
were found in literature in MADCAT. Examples include
multiple text bodies and binarization. Nevertheless, one should
still take these challenges into consideration when attempting to
build a handwritten document preprocessing system or a
comprehensive recognition system.

REFERENCES

[1] S. Strassel, “Linguistic resources for Arabic handwriting recognition,”
Proc. 2nd Int’l Conf. on Arabic Language Resources and Tools, Cairo,
Egypt, 2009.

[2] G. Abandah, F. Jamour, and E. Qaralleh, “Recognizing handwritten
Arabic words using grapheme segmentation and recurrent neural
networks,” Proc. Int’l J. Document Analysis and Recognition (IJDAR),
vol. 17, no. 3, pp. 275–291, 2014.

[3] A. Al-Hourani, Preprocessing and Segmentation of Handwritten Arabic
Documents for Writer-Independent Automatic Recognition, Masters
Thesis, The University of Jordan, 2017.

[4] A. Tong, et al. “NIST 2013 open handwriting recognition and translation
(OpenHaRT'13) evaluation,” Proc. 11th IAPR Int’l Workshop on
Document Analysis Systems (DAS), 2014.

[5] Linguistic Data Consortium, “LDC Data Resources for OpenHaRT-13,”
https://www.nist.gov/sites/default/files/documents/itl/iad/mig/OpenHaR
T2013_WorkshopPres_LDC.pdf

[6] J. Kumar and D. Doermann, “Fast rule-line removal using integral images
and support vector machines,” Proc. Int’l Conf. Document Analysis and
Recognition (ICDAR), pp. 584–588, 2011.

[7] G. Abandah and F. Khundakjie, “Issues concerning code system for
Arabic letters,” Dirasat Eng. Scies J., vol. 31, no. 1, pp. 165–177, 2004.

[8] Z. Shi, S. Setlur, and V. Govindaraju, “Removing rule-lines from binary
handwritten Arabic document images using directional local profile,”
Proc. 20th Int’l Conf. Pattern Recognition (ICPR), pp. 1916–1919, 2010.

[9] G. Abandah and M. Khedher, “Printed and handwritten Arabic optical
character recognition – Initial study,” A report on research supported by
The Higher Council of Science and Technology, Jordan, 2004.

[10] T. Malas, S. Taifour, and G. Abandah, “Toward optimal Arabic keyboard
layout using genetic algorithm.” Proc. 9th Int’l Middle Eastern Multiconf.
on Simulation and Modeling (MESM), pp. 50–54, 2008.

[11] G. Abandah and F. Jamour, “Recognizing handwritten Arabic script
through efficient skeleton-based grapheme segmentation algorithm,”
Proc. 10th Int’l Conf. Intelligent Systems Design and Applications, pp.
977–982, 2010.

[12] H. Cao, R. Prasad, and P. Natarajan, “A stroke regeneration method for
cleaning rule-lines in handwritten document images,” Proc. Int’l
Workshop on Multilingual OCR, 2009.

[13] K. Arvind, J. Kumar, and A. Ramakrishnan, “Line removal and
restoration of handwritten strokes,” Proc. Int’l Conf. Computational
Intelligence and Multimedia Applications, pp. 208–214, 2007.

[14] A. Amin and H. Al-Sadoun, “A new segmentation technique of Arabic
text,” Proc. 11th IAPR Int’l Conf. Pattern Recognition, vol. II. Conf. B:
Pattern Recognition Methodology and Systems, pp. 441–445, 1992.

[15] X. Du, W. Pan, and T. Bui, “Text line segmentation in handwritten
documents using Mumford–Shah model,” Pattern Recognition, vol. 42,
no. 12, pp. 3136–3145, 2009.

[16] C. Boiangiu, M. Tanase, and R. Ioanitescu, “Handwritten documents text
line segmentation based on information energy,” Int’l J. Computers
Communications & Control, vol. 9, no. 1, pp. 8–15, 2014.

[17] N. Tripathy and U. Pal, “Handwriting segmentation of unconstrained
Oriya text,” Sadhana, vol. 31, no. 6, pp. 755–769, 2006.

[18] R. Manmatha and N. Srimal, “Scale space technique for word
segmentation in handwritten documents,” Proc. Int’l Conf. Scale-Space
Theories in Computer Vision, pp. 22–33, 1999.

[19] M. Bulacu, R. Koert, L. Schomaker, and T. Zant, “Layout analysis of
handwritten historical documents for searching the archive of the Cabinet
of the Dutch Queen,” Proc. 9th Int’l Conf. Document Analysis and
Recognition (ICDAR), vol. I, pp. 357–361, 2007.

[20] A. Al-Dmour and F. Fraij, “Segmenting Arabic handwritten documents
into text lines and words,” Int’l J. Advancements in Computing
Technology, vol. 6, no. 3, pp. 109–119, 2014.

[21] J. Kumar, W. Abd-Almageed, L. Kang, and D. Doermann, “Handwritten
Arabic text line segmentation using affinity propagation,” Proc.9th IAPR
Int’l Workshop on Document Analysis Systems, pp. 135–142, 2010.

[22] J. AlKhateeb, J. Jiang, J. Ren, and S. Ipson, “Interactive knowledge
discovery for baseline estimation and word segmentation in handwritten
Arabic text,” Recent Advances in Technology InTech, 2009.

[23] S. Srihari, H. Srinivasan, C. Huang, and S. Shetty, “Spotting words in
Latin, Devanagari and Arabic scripts,” Vivek-Bombay-, vol. 16, no.3, pp.
2, 2006.

