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Abstract—In this paper, we analyze the dataset often used in 

training and testing Arabic handwritten document recognition 

systems, the Multilingual Automatic Document Classification 

Analysis and Translation dataset (MADCAT). We report here the 

main challenges present in MADCAT that the preprocessing stage 

of any recognition algorithm faces and affect the performance of 

the systems that use it for training and testing. MADCAT is a 

representative dataset of Arabic handwritten documents and 

investigating its challenges helps to identify the requirements of 

the preprocessing stage. After presenting these challenges, we 

review the literature and recommend preprocessing algorithms 

suitable to preprocess this dataset for handwritten Arabic word 

recognition systems such as JU-OCR2. 
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I.  INTRODUCTION 

There is a need for investigating the problems that one needs 
to solve in the preprocessing stage of handwritten Arabic 
document recognition systems. We investigate here the 
Multilingual Automatic Document Classification Analysis and 
Translation (MADCAT) dataset [1]. We report the challenges 
that face the preprocessing stage to clean, prepare, and segment 
these documents for a handwritten Arabic word recognition 
system such as JU-OCR2 [2]. We also select from available 
research efficient preprocessing algorithms and recommend a 
preprocessing stage suitable for this dataset and such recognition 
systems. The details of this study is in [3]. 

The rest of this paper is structured as follows: Section II 
provides a brief description of MADCAT. Section III discusses 
the problems found in MADCAT. Section IV discusses 
additional problems that preprocessing stages may need to 
handle but do not exist in MADCAT. Section V presents the 
recommendations from available literature for a preprocessing 
stage to build high-performance recognition system. Section VI 
provides the conclusions of this paper. 

II. MADCAT DATASET 

The MADCAT is a five-year research program created by 
the Defense Advanced Research Projects Agency (DARPA) that 
aims to convert non-English document images to English 
transcripts [1]. The National Institute of Standards and 
Technology (NIST) conducted the Open Handwriting 

Recognition and Translation Evaluation (OpenHaRT) 
competition using MADCAT in order to advance state-of-the-
art handwritten Arabic document analysis [4]. 

The MADCAT dataset was created by the Linguistic Data 
Consortium (LDC) in order to standardize the training, testing, 
and evaluation set of corpora used by systems and algorithms 
used for preprocessing, recognition, and translation of Arabic 
documents. The MADCAT dataset was created in a controlled 
environment. The documents were written by native Arabs who 
are proficient in Arabic [4]. Table I shows the writing conditions 
which were used when creating MADCAT [5]. 

TABLE I.  MADCAT WRITING CONDITIONS 

Writing Condition Ratio 

Utensil 
Pen 90% 

Pencil 10% 

Paper 
Unlined 75% 

Lined 25% 

Speed 

Careful 5% 

Normal 90% 

Fast 5% 

 

The original scripts of the dataset were selected from 
authentic Arabic texts from newspapers and news websites. The 
dataset specifications are specified in Table II [5]. 

TABLE II.  MADCAT SPECIFICATIONS 

Specification 
Training Evaluation 

Phase 1 Phase 2 Phase 3 Phase 3 

Unique pages 2,334 5,773 635 211 

Scribes per page up to 5 up to 5 up to 7 3 

Tokens per page NC NC ≤ 125 ≤ 125 

Total pages 9,693 27,814 4,540 633 

Total tokens 758,936 2,964,266 507,689 74,553 

Unique scribes 72 230 53 24 

Image size 5100×6600 pixels at 600 dpi 

III. CHALLENGES PRESENT IN MADCAT 

In this section, we describe the challenges present in the 
MADCAT dataset. 
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A. Pepper Noise 

During the image acquisition and binarization phases, noise 
dots may be produced in the scanned documents. The noise dots 
concentration varies from one document to another. In some 
documents, the noise dots are few or not present as in Fig. 1(a). 
In other documents, noise dots may be densely scattered all over 
the document where they even could cluster and form larger 
bodies as in  Fig. 1(b).  

 
(a) 

 
(b) 

Fig. 1. (a) Sparse noise distribution. (b) Dense noise distributions. 

The smallest text elements are usually much larger than the 
largest continuous noise bodies. This can be exploited to 
overcome this issue. But care should be taken to account for 
various text sizes, writing tip widths, and low resolution. 

B. Vertical Lines 

Vertical lines can be categorized into two categories 
depending on their source. The first, and the more influential, is 
the ruled vertical lines; that is, the vertical lines which are 
imposed by the nature of the paper used. The number of adjacent 
ruled vertical lines range from one to three lines. Furthermore, 
ruled vertical lines may intersect with the handwritten text and 
distort it as in Fig. 2(a). 

 
(a) 

 
(b) 

Fig. 2. (a) Ruled vertical lines affecting text. (b) Noise-generated lines. 

The second type includes vertical lines generated during the 
image acquisition phase. These lines happen in some scanning 
machines that tend to create faint lines in the acquired images. 
Another source of the faint lines is the shadow of the edges of 
the scanned pages. By nature, these lines are faint and mostly 
discontinuous as in Fig. 2(b). 

C. External Graphical Elements  

The various paper types available in MADCAT introduce 
various none textual shapes that need to be filtered prior the 
recognition phase. Depending on the paper source and image 
acquisition conditions, sample shapes are shown in Fig. 3. 

In case these elements are fed to recognition, they may be 
erroneously recognized as punctuation marks or separate letters. 
Also, these shapes can in some cases distort the vertical and 
horizontal histograms of the documents, as in the first and last 
examples in Fig. 3. In some extreme cases, these elements may 
contain higher black dots density than the main text body. This 
needs to be considered when detecting the main text body. 

These shapes are usually on the edge of the page where 
people do not tend to write text. This creates a significant 

distance between the main text body and those elements that can 
be utilized to mitigate the effects of those elements on the 
segmentation and recognition phases. 

     
Fig. 3. Various undesired graphical elements. 

D. Writing Errors 

The ground truth in MADCAT identify the errors made by 
the scribes when copying the text. These errors should be 
identified and removed. Some errors can be easily identified as 
clusters of ink or as shapes with too many strikes while others 
are harder to find as they only strike out the wrong word with a 
single line. Writing errors that are not struck out or scribbled will 
only cause wrong recognition of the word and may only be 
detected by dictionary word matching or by the context. Fig. 4 
shows examples the above mentioned writing errors. 

 
(a) 

 
(b) 

Fig. 4. Eriting errors marked by (a) dark area and (b) one strike 

E. Ruled Paper 

Ruled paper is common for notebooks. Different ruling types 
are available like narrow-ruled, college-ruled, law-ruled, and 
journal. Many ruled paper types have also vertical lines in 
different positions of the page. Ruled pages usually comply with 
the following conditions: 

 A ruled line, horizontal or vertical, usually extends from 
one end of the page all the way to the other. 

 Horizontal lines are parallel to each other and 
perpendicular to vertical lines. This is always true unless 
some distortion occurred to the page in the image 
acquisition stage. 

 If the page is ruled, handwritten text is aligned to the lines 
and suffers no writer skew, even though text could be on 
unlined spaces of the page as in Fig. 5. 

 
Fig. 5. Text in the unruled area of a page. 



 A close-up of ruled lines show that they are not perfect 
rectangles as shown in Fig. 6, it is a rectangle-like shape 
with variable widths and many imperfections including 
complete line breaks at some points. These 
disfigurements are created by the inconsistencies 
encountered along the processes of ruled line printing, 
capturing, and binarization. 

 
Fig. 6. Close up of a ruled line [6]. 

The ruled lines are often of same color, thickness and 
orientation of text elements and thus can significantly overlap 
with text. This, combined with the characteristic horizontal 
baseline of Arabic handwriting [7], results that inattentive line 
removal generates severe deterioration to words, especially for 
algorithms that depend on text thickness as in Ref. [8]. Such 
cases are illustrated in the sample of Fig. 7. The effect of ruled 
line removal is expected to be minimal when ruled line width is 
considerably thinner than the text line width. 

 
Fig. 7. Sample where the ruled line width is close to the text width and 

the word baseline is overlaping the ruled lines. 

F. Text Lines Overlapping 

Irregularity and inconsistency are common traits of 
handwriting. Such traits create problems that we do not face in 
printed text [9]. Such problem is text lines overlapping. That is 
a straight line to separate consecutive text lines cannot be found. 
This problem would have a major impact on the performance of 
the recognition unless an efficient and deterministic approach is 
used to solve it. The effects of lines overlapping include the 
following: 

 Some word elements like strokes and secondary 
components may be mistaken to be belonging to another 
text line as in Fig. 8(a). 

 Sometimes overlapping produces connected elements 
between two consecutive lines as in Fig. 8(b). 

 
(a) 

 
(b) 

Fig. 8. Effects of overlapping text lines. 

In terms of inter-line spacing, pages can be divided into three 
categories: 

Distant lines, where all the lines in the pages are visibly 
separated and easily discriminated, as in Fig. 9(a). 

Crammed lines, where all lines of the page are mingled and 
no clear line can separate successive lines, as in Fig. 9(b). This 
would require more processing to separate the lines. 

Mixed line spacing, where some lines in the page are easily 
separable and others are crammed, as in Fig. 9(c). 

 
(a) 

 
(b) 

 
(c) 

Fig. 9. Different types of line spacing. 

G. Intra-word Spaces 

Arabic is cursive in nature, however, some letters in Arabic 
are never connected from the left, causing many words to break 
at single or multiple positions creating the intra-word spaces 
[10]. As a standard in writing, inter-word space should be 
significantly larger than the intra-word space. This is usually the 
case but that is not always followed in handwriting. In some 
cases, intra-word space is significant and in some cases, it even 
surpasses its inter-word counterpart as in Fig. 10(a). 

 
(a) 

 
(b) 

 
(c) 

Fig. 10. Intra-word space examples. 

If a letter is composed of multiple strokes, which are written 
separately, the scribe may generate discontinuities in the single 
letter creating intra-word space at the letter level as in Fig. 10(b). 
This also needs to be identified and segmented properly. 

Some words are composed of several parts that the number 
of separate parts cannot be determined sharply. The word in 
Fig. 10(c) is composed of eight horizontally aligned parts. 

The ability to distinguish complete words without breaking 
them down improves the segmentation and helps in building a 
more meaningful document later after recognition. 



H. Slant 

Slant, as shown in Fig. 11, is the inclination of the downward 
strokes in handwriting. It originates from the scribes writing 
style. The two samples shown are of opposite slants. This has an 
impact on the validity of the extracted features, especially the 
characteristic angles in letters, of the handwritten text and the 
consequent sequence processing and recognition applied to 
features matrices [11]. Slant can be preprocessed before feeding 
word images to the recognition system or can be solved by the 
recognition system itself. It is noticed that slant is not frequent 
in MADCAT. In some documents, slant only exists in parts of 
the document. 

 
(a) 

 
(b) 

Fig. 11. Slant examples. 

I. Skew 

Skew of handwritten text is the angular deviation of the text 
from the horizontal line as shown in Fig. 12. Skew has 
significant impact especially on the Arabic recognition system 
because many systems use baseline estimation algorithms that 
are not robust against skew. Wrong estimation of the baseline 
leads to wrong feature detection and hence erroneous detection 
of letters and words. 

 
(a) 

 
(b) 

Fig. 12. Types of skew. 

After inspecting MADCAT, we noticed that skew can be 
categorized as follows:  

1. Skew from image acquisition phase, or image skew 
where all lines share a relative skew angle as in Fig. 12(a). 

2. Skew from writer, or writer skew where not all lines 
have the same skew angle as shown in Fig. 12(b). 

Hence, the total skew is the vector sum of image skew and 
writer skew components. Image skew is simpler and can be 
corrected using collective algorithms that analyze the whole text 
body. Writer skew, on the other hand, is more complex and 
requires approaches that process each line or line component in 
the text body to detect and correct the skew of each line or each 
part of the line separately. 

It was also noticed that if the paper is lined, then ruled lines 
orientation can determine the image skew and the document is 
free of writer skew. 

J. Bleed-through Text 

A single sheet of paper is not a completely opaque object due 
to its nature and thickness. In some cases, a problem arises when 
multiple pages are stacked one over another or when 
transcriptions exist on both sides of the paper sheet. Traces of 
the transcription on faces other than the one being scanned may 
appear like a bleed-through text as in Fig. 13. Fortunately, the 
density of bleed-through text is much less than the original text 
and thus may be treated as noise. 

 

Fig. 13. Bleed-through text. 

K. Varying Text Body 

Images provided in MADACAT have almost the same 
resolution of around 5100×6600 at 600 dpi. However, text body 
highly varies in size, font height and size, line density, and 
reference position. In some cases, text starts immediately from 
the right or top edges of the image with no margins. 

L. Irrelevant Text or Numerals (Non-Arabic Characters) 

We noticed that some documents have some side notes or 
some irrelevant alphanumeric characters distant from the main 
text body as in Fig. 14. These characters have no reference in the 
corresponding ground truth files. Thus, they should be dropped, 
especially when written in foreign languages. 

 

Fig. 14. Irrelevant text example. 



M. Short Text Lines 

The last line in a paragraph often ends before the end of the 
line. Some lines have only one or two words. This may affect 
line segmentation algorithms that assume that the line starts and 
ends at the edges of the page or text body (i.e., all lines are equal 
in length or a line is considered as such if it exceeds some length 
threshold). 

N. Line Thickness Variations/Manipulations 

The line thickness varies significantly from document writer 
to another and from document to another. In lined pages, the text 
stroke line can be thinner than the ruled line. This should be 
taken into consideration when designing the recognition stage or 
ruled line removal algorithm. 

IV. NONEXISTING PROBLEMS AND UNREQUIRED 

PREPROCESSING OPERATIONS 

Some problems and preprocessing operations are ignored 
either because they were not found in MADCAT or because they 
are treated in the selected recognition system. These problems 
and preprocessing operations are: 

 Binarization: MADCAT is already binarized. 

 Height normalization: MADCAT resolution is 
sufficient for recognition and no height normalization is 
required. 

 Multiple text bodies: MADCAT documents have 
single plain text body each. 

V. STUDY OF AVAILABLE SOLUTIONS & RECOMMENDATIONS 

Many solutions related to the problems mentioned above 
were thoroughly reviewed and assessed in [3]. We focus on the 
main problems that can cause significant performance 
deterioration for JU-OCR2 [2]. The following subsections 
summarize the main criteria of solution elimination and the 
recommended algorithms for the main two problems of 
handwritten documents, ruled lines and segmentation. 

A.    Ruled Line Removal 

In order to evaluate an algorithm, one should first identify 
the requirements needed from that algorithm. In our case study, 
it is JU-OCR2 [2]. This posed some requirements from the line 
removal algorithm in addition to the requirements induced by 
the nature of the problem itself; ruled lines. The main 
requirements are: 

 In case ruled lines are present, the algorithm should be 
able to handle them without distorting the text characters. 

 The algorithm should be able to handle different grades 
of line degradation, refer to Fig. 6. 

 The algorithm should not have effect on unlined pages; 
this can mainly be achieved in case a proper and 
non-destructive detection algorithm is utilized. 

 The algorithm should handle horizontal and vertical 
ruled lines. Nevertheless, this is not mandatory because 
some simple techniques exist which expand the 

capability of the algorithms to process horizontal ruled 
lines to vertical ruled lines. For example, the image can 
be rotated 90 degrees and reprocessed by the same 
algorithm. 

After review of current literature, most algorithms have 
reported competitive results, thus we base the selection of the 
line removal algorithm on the areas of coverage in the field of 
line removal. 

The two finalists of the high-performance algorithms were 
the ones proposed in [12] and [13]. The algorithm proposed in 
[12] offers a wide spectrum of features and still maintained high 
performance. The features range from de-skewing for lined 
pages to robustness against broken ruled lines. It has no effect 
on unlined pages when handling of vertical and horizontal lines. 

B.    Segmentation 

The requirements of the segmentation algorithm are: 

 Perform line and word segmentation. JU-OCR2 only 
recognizes single words. 

 Handle consecutive lines overlapping and handle 
touching lines and split components stretching between 
two consecutive lines. 

 Properly handle crammed lines where lines are close to 
each other as illustrated in Fig. 9(c).  

 Assign diacritics and secondary components to their 
corresponding lines/words. 

For our case study, we needed an algorithm that can handle 
both line and word segmentation in order to cater to the needs of 
our selected recognition algorithm. We can either use a single 
algorithm that processes both or we can use two algorithms that 
each handles a stage. 

Some algorithms were not considered due to the absence of 
performance evaluation data as in [14], [15], and [16]. Other 
algorithms were tailored for other languages like Oriya [17] and 
thus were excluded. 

The algorithms in [18], [19] and [20] were excluded because 
they disregarded some of the real-life handwritten text properties 
as touching lines, varying text line length, non-uniform text line 
shape or the assignment of diacritics to their respective lines. 
This could greatly deteriorate the performance of the algorithm 
when using MADCAT. 

The line segmentation algorithm proposed in [21] was 
selected as it satisfies all the requirements above for line 
segmentation, robust against skew types, and is more suited to 
Arabic texts. 

As for word segmentation, we chose the most effective yet 
simple algorithm we found [21] as most of the problems were 
addressed in the line segmentation stage. We selected the 
algorithm proposed in [22] because it outperformed its peer that 
was proposed in [23]. 

We recommend the preprocessing system outlined in 
Fig. 15. It addresses most of the issues in Section III. 



 

Fig. 15. The proposed flow diagram of the preprocessing system. 

VI. CONCLUSIONS 

Prior to designing a handwritten document preprocessing or 
recognition system, one must examine and identify the problems 
they would face that may affect the performance. Also, knowing 
the problems helps form a comprehensive solution that handles 
them all. 

The MADCAT dataset contains many performance-
impacting challenges including pepper noise, vertical lines, 
bleed-through text, external graphical elements, writing errors, 
text lines overlapping, intra-word spaces, slant, skew, varying 
text body, irrelevant non-Arabic text, short text lines, and line 
thickness and writer style variations. 

However, we have not found some other challenges that 
were found in literature in MADCAT. Examples include 
multiple text bodies and binarization. Nevertheless, one should 
still take these challenges into consideration when attempting to 
build a handwritten document preprocessing system or a 
comprehensive recognition system. 
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