Recommender Systems

Prof. Gheith Abandah

Reference: Artificial Intelligence with Python, by Prateek Joshi, Packt
Publishing, 2017.

Introduction

* YouTube Video: Recommendation Systems - Learn
Python for Data Science #3 by Siraj Raval

https://youtu.be/9gBCIOR-msAk

https://youtu.be/9gBC9R-msAk
https://youtu.be/9gBC9R-msAk
https://youtu.be/9gBC9R-msAk
https://youtu.be/9gBC9R-msAk
https://youtu.be/9gBC9R-msAk
https://youtu.be/9gBC9R-msAk
https://youtu.be/9gBC9R-msAk

Outline

Introduction

The MovielLens dataset

Similarity scores

Building a collaborative recommendation system
Open source Python packages

o Uk W E

Summary

1. Introduction

* A Recommender System predicts the likelihood
that a user would prefer an item and it
recommends items to the user.

* Examples:
* Facebook — “People You May Know”
Netflix — “Other Movies You May Enjoy”
LinkedIn — “Jobs You May Be Interested In”
Amazon — “Customer who bought this item also bought

”

Google — “Visually Similar Images”
* YouTube — “Recommended Videos”

1. Introduction

* Recommender System Types:

1. A collaborative filtering algorithm works by finding a
set of people with preferences or tastes similar to the
target user. Using this smaller set of “similar” people,
it constructs a ranked list of suggestions.

2. Content-based filtering is based on a description of
the item and a profile of the user’s preferences to

recommend items that are similar to those that a user
liked.

3. Hybrid

2. The MovielLens DataSet

* 100,000 ratings (1-5) from 943 users on 1682

movies.

* Includes users data and ratings data

(943, 5) Users (100000, 4) RAtINgs

user_id | age | sex | occupation | zip_code user_id | movie_id | rating | unix_timestamp
0|1 24 |M |technician |[85711 0|196 242 3 881250949
1(2 53 |F |other 94043 1(186 302 3 891717742
2|3 23 |M |writer 32067 2|22 377 1 878887116
34 24 |M [technician |[43537 3244 51 2 880606923
4|5 33 |F |other 15213 41166 346 1 886397596

. Similarity Scores

. Euclidean score (Euclidean distance, lower is

better)

Ay = |) (= y)?
\ =1

. Pearson score (1 is best)

> i1 (i —2)(yi —)

\/21 (@i —) \/Z; 1

4. Building a Collaborative
Recommendation System

* Function to recommend movies for a user

 For each other user:

* Find the Pearson score of commonly rated movies,
ignoring dissimilar users.

* Extract a list of movies that have been rated by this user
but haven't been rated by the input user.

* For each item in this list, keep a track of the weighted
rating based on the similarity score.

* Finally, sort the scores and extract the movie
recommendations.

4. Building a Collaborative
Recommendation System

Get movie recommendations for the Iinput user

Assume the input user 1s in the dataset and there is at lease one
- recommendation

def get recommendations (dataset, input user):

overall scores = {}
similarity scores = {}
for user in [x for x in dataset if x != input user]:
similarity score = pearson score (dataset, input user, user)

if similarity score <= O0:
continue

filtered list = [x for x in dataset[user] if x not in \
dataset [input user] or dataset[input user] [x] == 0]

for item in filtered list:
overall scores.update({item: dataset[user][item] * similarity score})

4. Building a Collaborative
Recommendation System

Generate movie ranks

movie scores = np.array([[score, item]
for item, score in overall scores.items()])

Sort in decreasing order
movie scores = movie scores[np.argsort (movie scores[:, 0])[::-1]]

Extract the movie recommendations
movie recommendations = [movie for , movie in movie scores]

return movie recommendations

5. Open Source Python Packages

e LightFM
* Graphlab
* Crab

* Surprise

e Pyvthon Recsys
* MRec

11

https://github.com/lyst/lightfm
https://www.analyticsvidhya.com/blog/2015/12/started-graphlab-python/
https://www.analyticsvidhya.com/blog/2015/12/started-graphlab-python/
http://muricoca.github.io/crab/
https://github.com/NicolasHug/Surprise
https://github.com/ocelma/python-recsys
https://github.com/ocelma/python-recsys
https://github.com/Mendeley/mrec

Summary

Introduction

The MovielLens dataset

Similarity scores

Building a collaborative recommendation system
Open source Python packages

o Uk W E

Summary

