Classification

Prof. Gheith Abandah

Reference: Hands-On Machine Learning with Scikit-Learn and
TensorFlow by Aurélien Géron (O’Reilly). Copyright 2017 Aurélien
Géron, 978-1-491-96229-9.

Introduction

* YouTube Video: Machine Learning - Supervised
Learning Classification from Cognitive Class

https://voutu.be/Lf2bCQlktTo

https://youtu.be/Lf2bCQIktTo

Outline

MNIST dataset

Training a binary classifier
Performance measures
Multiclass classification
Multilabel classification

o Uk W E

Exercise

1. MNIST Dataset

Oo0O0AQO0QO0Y

V0 N B B U VA B A

 MNIST is a set of 70,000 2&)12,20?2'397
smaIIirr?ageso.f. SREI3I32233% 32 3 3
matabeom VA UFAad Y44
mldata.org fj"f@ 55)
* Scikit-Learn provides b é 6 6 1 W ‘ b (o (’
download functions. 27 777 3F7TA77 7
g3 FERFSFIP
7977279927957

http://mldata.org/

1.1. Get the Data

>>> from sklearn.datasets import fetch_mldata
>>> mnist = fetch_mldata('MNIST original’)
>>> mnist
{"COL_NAMES': ['label', 'data'],
'DESCR': 'mldata.org dataset: mnist-original’,
'data': array([[06, 0, 0, ..., 0, 0, 0],
[0, 0, O, ..., 0, 0, 0],
[0, @, O, ..., O, 0, O],

]

[0, 0, 0, ..., 0, 0, 0],

[0, 0, 0, ..., 0, 0, 0],

[6, O, O, ..., O, 0, 0]], dtype=uint8),
"target': array([0. 0., ..., 9., 9., 9.}

‘e
D -
L]
‘e

1.2. Extract Features and Labels

>>> X, y = mnist["data"], mnist["target"]
>>> X.shape

(70000, 784)

>>> y.shape

(70000,)

There are 70,000 images, and each image has 784
features. This is because each image is 28x28 pixels,
and each feature simply represents one pixel’s
intensity, from O (white) to 255 (black).

1.3. Examine One Image

%»matplotlib inline
import matplotlib
import matplotlib.pyplot as plt

some_digit = X[36000]
some_digit_image = some_digit.reshape(28, 28)

plt.imshow(some_digit_1image, cmap = matplotlib.cm.binary,
interpolation="nearest")

plt.axis("off")

plt.show()

>>> y[36000]
5.0 €

1.4. Split the Data

* The MNIST dataset is actually already split into a training
set (the first 60,000 images) and a test set (the last 10,000
images).

* You need to shuffle the training set to guarantee that all
cross-validation folds are similar.

X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:
import as
shuffle_index = np.random.permutation(60000

X_train, y_train = X_train[shuffle_index], y_train[shuffle_index]

Outline

Training a binary classifier
Performance measures
Multiclass classification
Multilabel classification

o Uk W

Exercise

2. Training a Binary Classifier

* A binary classifier can classify two classes.

* For example, classifier for the number 5, capable of
distinguishing between two classes, 5 and not-5.

y train_ 5 = (y_train == 5)
y test 5 = (y_test == 5)
True for all 5s, False for all
other digits.
from import SGDClassifier

sgd_clf = SGDClassifier(random_statenﬁ)\ Stochastic Gradient
sgd_clf.fit(X_train, y_train_5) Descent (SGD) classifier

10

2. Training a Binary Classifier

* Note that a better classifier for this problem is the
Random Forest Classifier.

from import RandomForestClassifier

forest_clf = RandomForestClassifier(random_state=42)

forest_clf.fit(X_train, y_train_5)

11

Outline

Performance measures
Multiclass classification
Multilabel classification

o U kW

Exercise

3. Performance Measures

* Accuracy: Ratio of correct predictions
* Confusion matrix

* Precision and recall

* Precision/recall tradeoff

3.1. Accuracy

y pred = clone_clf.predict(X test fold)
n_correct = sum(y_pred == y test fold)
print(n_correct / len(y_pred))

\ Example how to find the

accuracy.

>>> from sklearn.model_selection import cross_val_score
>>> cross_val _score(sgd clf, X _train, y_train_5, cv=3, scoring="accuracy")
array([0.9502 , 0.96565, 0.96495])

\ Using the cross_val score() function
to find the accuracy on three folds

14

3.2. Confusion Matrix | ccsion- —*

I'P+FP

T2

Predicted
Negative Positive

¢ |,

Precision

(e.g., 3outof 4)

e & 7
Positive 5- — 5 5‘ 5
@ P |~ Recal

recall =

I'P+ FN

(e.g., 3 out of 5)

15

3.2. Confusion Matrix

e Scikit Learn has a function for finding the confusion
matrix.

>>> from import confusion_matrix
>>> confusion_matrix(y _train_5, y_train_pred)
array([[53272, 1307],

[1077, 4344]])

* The first row is for the non-5s (the negative class):
» 53,272 correctly classified (true negatives)
* 1,307 wrongly classified (false positives)

* The second row is for the 5s (the positive class):
» 1,077 wrongly classified (false negatives)
* 4,344 correctly classified (true positives)

16

3.3. Precision and Recall

Precision Recall

TP o TP
TP + FP = TP Y EN

precision =

>>> from sklearn.metrics import precision_score, recall score
>>> precision_score(y_train_5, y pred) # == 4344 / (4344 + 1307)

0.76871350203503808
>>> recall _score(y train 5, v train_pred) # == 4344 / (4344 + 1077)

0.79136690647482011

The precision and recall are smaller than the accuracy.
Why? ;

3.4. Precision/Recall Tradeoff

* Increase the decision threshold to improve the
precision when it is bad to have FP.

* Decrease the decision threshold to improve the
recall when it is important not to miss FN.

Precision: 6/8 =75% 4/5 = 80% 3/3=100%
Recall: 6/6 = 100% 4/6 = 67% 3/6 = 50%
| | | B Score
Negative predictions A .-+7 Positive predictions

Various thresholds

18

3.4. Precision/Recall Tradeoff

0.8}
0.6 | . .
- = Precision
— Recall
0.4}
0.2} _-"
O | ! ! ! !]]
—-600000 —400000 —200000 0 200000 400000 600000

Threshold

19

3.4. Precision/Recall Tradeoff

* The function cross_val _predict() can return
decision scores instead of predictions.

y scores = cross_val predict(sgd clf, X train, y train_5, cv=3,
method="decision_ function")

* When using larger decision threshold, we increase
the precision and decrease the recall.

y train_pred 90 = (y_scores > 70000)

>>> precision_score(y_train_5, y train_pred 90)
0.8998702983138781

>>> recall_score(y_train_5, y_train_pred 90)
0.63991883416343853

20

Outline

4. Multiclass classification
5. Multilabel classification
6. Exercise

4. Multiclass Classification

* Multiclass classifiers can distinguish between more
than two classes.

* Some algorithms (such as Random Forest classifiers
or Naive Bayes classifiers) are capable of handling
multiple classes directly.

e Others (such as Support Vector Machine classifiers
or Linear classifiers) are strictly binary classifiers.

* There are two main strategies to perform multiclass
classification using multiple binary classifiers.

4.1. One-versus-All (OvA) Strategy

* For example, classify the digit images into 10
classes (from O to 9) to train 10 binary classifiers,
one for each digit (a O-detector, a 1-detector, a 2-
detector, and so on).

* Then to classify an image, get the decision score
from each classifier for that image and select the
class whose classifier outputs the highest score.

4.2. One-versus-One (OvO)
Strategy

* Train a binary classifier for every pair of digits.

* If there are N classes, need N x (N — 1) / 2 classifiers.
For MNIST, need 45 classifiers.

* To classify an image, run the image through all 45
classifiers and see which class wins the most duels.

* The main advantage of OvO is that each classifier only
needs to be trained on a subset of the training set.

* OvO is preferred for algorithms (such as Support Vector
Machine) that scale poorly with the size of the training
set.

4.3. Scikit Learn Support of
Multiclass Classification

 Scikit-Learn detects when you try to use a binary
classification algorithm for a multiclass
classification task, and it automatically runs OvA
(except for SVM classifiers for which it uses OvO).

>>> sgd_clf.fit(X _train, y _train) # v train, not vy train_ 5
>>> sgd _clf.predict([some_digit])
array([5.1)

>>> forest clf.fit(X _train, y _train)
>>> forest _clf.predict([some _digit])

array([5.])

4.3. Scikit Learn Support of
Multiclass Classification

 Note that the multiclass task is harder than the

binary task.
* Binary task:
>>> from import cross_val_score
>>> cross_val _score(sgd clf, X _train, y_train_5, cv=3, scoring="accuracy")

array([©0.9502 , 0.96565, 0.96495])

e Multiclass task:

>>> cross_val_score(sgd clf, X _train, y_train, cv=3, scoring="accuracy")
array([0.84063187, 0.84899245, 0.86652998])

26

Outline

5. Multilabel classification
6. Exercise

5. Multilabel Classification

e Classifiers that output multiple classes for each
Instance.

y _train_large = (y_train >= 7)
y train_odd = (y _train % 2 == 1)
y multilabel = np.c_[y_train_large, vy _train_odd]

knn_clf = KNeighborsClassifier() «—— Popular algorithm

knn_clf.fit(X _train, y _multilabel)

>>> knn_clf.predict([some_digit])
array([[False, True]], dtype=bool)

28

Summary

MNIST dataset

Training a binary classifier
Performance measures
Multiclass classification
Multilabel classification

o Uk W E

Exercise

Exercise

* Try to build a classifier for the MNIST dataset that
achieves over 97% accuracy on the test set. Hint:
the KNeighborsClassifier works quite well for this
task; you just need to find good hyperparameter
values (try a grid search on the weights and
n_neighbors hyperparameters).

