End-to-End Machine Learning Project

Prof. Gheith Abandah

Reference: *Hands-On Machine Learning with Scikit-Learn and TensorFlow* by Aurélien Géron (O'Reilly). Copyright 2017 Aurélien Géron, 978-1-491-96229-9.

The 7 Steps of Machine Learning

• YouTube Video: *The 7 Steps of Machine Learning* from Google Cloud Platform

https://youtu.be/nKW8Ndu7Mjw

Caution: Alcohol is forbidden in the Islamic religion and causes addiction and has negative effects on health.

Outline

- 1. Look at the big picture
- 2. Get the data
- 3. Discover and visualize the data to gain insights
- 4. Prepare the data for Machine Learning algorithms
- 5. Select a model and train it
- 6. Fine-tune your model
- 7. Present your solution
- 8. Launch, monitor, and maintain your system
- 9. Exercises

Working with Real Data

- Popular open data repositories:
 - UC Irvine Machine Learning Repository
 - <u>Kaggle datasets</u>
 - <u>Amazon's AWS datasets</u>
- Meta portals (they list open data repositories):
 - <u>http://dataportals.org/</u>
 - http://opendatamonitor.eu/
 - http://quandl.com/
- Other pages listing many popular open data repositories:
 - <u>Wikipedia's list of Machine Learning datasets</u>
 - <u>Quora.com question</u>
 - Datasets subreddit
- Abandah has handwritten Arabic samples and diacritized Arabic text.

1. Look at the Big Picture: CA Housing Data

1.1. Frame the Problem

Is it supervised, unsupervised, or Reinforcement Learning? Is it a classification task, a regression task, or something else? Should you use batch learning or online learning techniques? Instance-based or Model-based learning?

1.1. Frame the Problem

Is it **supervised**, unsupervised, or Reinforcement Learning? Is it a classification task, a **regression** task, or something else? Should you use **batch** learning or online learning techniques? **Instance-based** or **Model-based** learning?

1.2. Select a Performance Measure

• Root Mean Square Error (RMSE)

RMSE(
$$\mathbf{X}$$
, h) = $\sqrt{\frac{1}{m} \sum_{i=1}^{m} \left(h\left(\mathbf{x}^{(i)}\right) - y^{(i)}\right)^2}$

- *m* is the number of samples
- x⁽ⁱ⁾ is the feature vector of Sample
 i
- $y^{(i)}$ is the label or desired output
- X is a matrix containing all the feature values

1.2. Select a Performance Measure

Mean Absolute Error

$$MAE(\mathbf{X}, h) = \frac{1}{m} \sum_{i=1}^{m} \left| h(\mathbf{x}^{(i)}) - y^{(i)} \right|$$

MAE is better than RMSE when there are outlier samples.

Outline

- 1. Look at the big picture
- 2. Get the data
- 3. Discover and visualize the data to gain insights
- 4. Prepare the data for Machine Learning algorithms
- 5. Select a model and train it
- 6. Fine-tune your model
- 7. Present your solution
- 8. Launch, monitor, and maintain your system
- 9. Exercises

2. Get the Data

 If you didn't do it before, it is time now to download the Jupyter notebooks of the textbook from

https://github.com/ageron/handson-ml

- Start Jupyter notebook and open <u>Chapter 2</u> <u>notebook</u>.
- Hint: If you get kernel connection problem, try
 C:\>jupyter notebook -port 8889
- The following slides summarize the code used in this notebook.

2. Get the Data

- 1. Download the housing.tgz file from Github using urllib.request.urlretrieve() from the six.moves package
- 2. Extract the data from this compressed tar file using tarfile.open() and extractall(). The data will be in the CSV file housing.csv
- 3. Read the CSV file into a Pandas DataFrame called *housing* using pandas.read_csv()

2.1. Take a Quick Look at the Data Structure

- Display the top five rows using the DataFrame's head() method
- The info() method is useful to get a quick description of the data
- To find categories and repetitions of some column use housing.['key'].value_counts()
- The describe() method shows a summary of the numerical attributes.
- Show histogram using the hist() method and matplotlib.pyplot.show()

2.2. Create a Test Set

- Split the available data randomly to:
 - Training set (80%)
 - Test set (20%)
- The example defines a function called split_train_test() for illustration.
- Scikit-Learn has train_test_split().
- Scikit-Learn also has StratifiedShuffleSplit() that does stratified sampling.
- **Stratification** ensures that the test samples are representative of the target categories.

2.2.1. Create a Test Set: Userdefined function

import numpy as np

def split_train_test(data, test_ratio):
 shuffled_indices = np.random.permutation(len(data))
 test_set_size = int(len(data) * test_ratio)
 test_indices = shuffled_indices[:test_set_size]
 train_indices = shuffled_indices[test_set_size:]
 return data.iloc[train_indices], data.iloc[test_indices]

You can then use this function like this:

>>> train_set, test_set = split_train_test(housing, 0.2)
>>> print(len(train_set), "train +", len(test_set), "test")
16512 train + 4128 test

2.2.2. Create a Test Set: Using Scikit-Learn functions

from sklearn.model_selection import train_test_split

train_set, test_set = train_test_split(housing, test_size=0.2, random_state=42)

Stratification is usually done on the target class.

from sklearn.model_selection import StratifiedShuffleSplit

split = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=42)
for train_index, test_index in split.split(housing, housing["income_cat"]):
 strat_train_set = housing.loc[train_index]
 strat_test_set = housing.loc[test_index]

Outline

- 1. Look at the big picture
- 2. Get the data
- 3. Discover and visualize the data to gain insights
- 4. Prepare the data for Machine Learning algorithms
- 5. Select a model and train it
- 6. Fine-tune your model
- 7. Present your solution
- 8. Launch, monitor, and maintain your system
- 9. Exercises

Discover and Visualize the Data to Gain Insights

Visualize geographical data using

```
housing.plot(kind="scatter", x="longitude", y="latitude", alpha=0.4,
    s=housing["population"]/100, label="population",
    c="median_house_value", cmap=plt.get_cmap("jet"), colorbar=True,
)
plt.legend()
```

alpha: Transparency, s: size, c: color, cmap: blue to red

3.1. Looking for Correlations

Compute the standard correlation coefficient (also called Pearson's r) between every pair of attributes using corr_matrix = housing.corr()

$$r = rac{\sum_{i=1}^n (x_i - ar{x})(y_i - ar{y})}{\sqrt{\sum_{i=1}^n (x_i - ar{x})^2} \sqrt{\sum_{i=1}^n (y_i - ar{y})^2}}$$

<pre>>>> corr_matrix["median_house_value"].sort_values(ascending=False)</pre>				
<pre>median_house_value</pre>	1.000000			
median_income	0.687170			
total_rooms	0.135231	total bedrooms	0.047865	
housing_median_age households	0.114220 0.064702	population	-0.026699	
		longitude	-0.047279	
		latitude	-0.142826	21

3.1. Looking for Correlations

 Zero linear correlation (r = 0) does not guarantee independence.

3.2. Pandas Scatter Matrix

from pandas.tools.plotting import scatter_matrix
attributes = ["median_house_value", "median_income"]
scatter_matrix(housing[attributes], figsize=(12, 8))

3.3. Experimenting with Attribute Combinations

• Rooms per household is better than total rooms:

```
housing["rooms_per_household"] = housing["total_rooms"]/housing["households"]
```

```
>>> corr_matrix = housing.corr()
>>> corr_matrix["median_house_value"].sort_values(ascending=False)
median_house_value 1.000000
median_income 0.687170
rooms_per_household 0.199343
total_rooms 0.135231
```

• Similarly, BMI is better than weight or height for medical purposes.

Outline

- 1. Look at the big picture
- 2. Get the data
- 3. Discover and visualize the data to gain insights
- 4. Prepare the data for Machine Learning algorithms
- 5. Select a model and train it
- 6. Fine-tune your model
- 7. Present your solution
- 8. Launch, monitor, and maintain your system
- 9. Exercises

4. Prepare the Data for Machine Learning Algorithms

• Separate the features from the response.

housing = strat_train_set.drop("median_house_value", axis=1)
housing_labels = strat_train_set["median_house_value"].copy()

- Options of handling missing features:
 - 1. Get rid of the corresponding districts
 - 2. Get rid of the whole attribute
 - 3. Set the values to some value (0, mean, median, etc.)

housing.dropna(subset=["total_bedrooms"]) # option 1
housing.drop("total_bedrooms", axis=1) # option 2
median = housing["total_bedrooms"].median()
housing["total_bedrooms"].fillna(median) # option 3

4.1. Handling Missing Features Using Scikit-Learn

• Use Imputer on the numerical features. Need to remove categorical variables before doing the fit. The attribute statistics has the means.

```
from sklearn.preprocessing import Imputer
imputer = Imputer(strategy="median")
housing_num = housing.drop("ocean_proximity", axis=1)
imputer.fit(housing_num)
>>> imputer.statistics_
array([ -118.51 , 34.26 , 29. , 2119. , 433. , 1164. , 408. , 3.5414])
>>> housing_num.median().values
array([ -118.51 , 34.26 , 29. , 2119. , 433. , 1164. , 408. , 3.5414])
X = imputer.transform(housing_num)
```

4.2. Handling Text and Categorical Attributes

- Most machine learning algorithms prefer to work with numbers.
- Need to convert the feature *ocean_proximity* from text to numbers.

4.2. Handling Text and Categorical Attributes

• To ensure encoding neutrality, we can use the onehot encoding.

```
>>> from sklearn.preprocessing import LabelBinarizer
>>> encoder = LabelBinarizer()
>>> housing_cat_1hot = encoder.fit_transform(housing_cat)
>>> housing_cat_1hot
array([[0, 1, 0, 0, 0],
      [0, 1, 0, 0, 0],
      [0, 0, 0, 0, 0],
      [0, 1, 0, 0, 0],
      [0, 1, 0, 0, 0],
      [1, 0, 0, 0, 0],
      [0, 0, 0, 1, 0]])
```

4.3. Custom Transformers

- Scikit-Learn allows you to create your own transformers.
- You can create a transformer to create derived features.
- Create a class and implement three methods: fit() (returning self), transform(), and fit_transform(). Include base classes:
 - *TransformerMixin* to get fit_transform()
 - *BaseEstimator* to get get_params() and set_params()

4.3. Custom Transformers

from sklearn.base import BaseEstimator, TransformerMixin

```
rooms_ix, household_ix = 3, 6
```

```
class CombinedAttributesAdder(BaseEstimator, TransformerMixin):
    def fit(self, X, y=None):
        return self # nothing else to do
    def transform(self, X, y=None):
        rooms_per_household = X[:, rooms_ix] / X[:, household_ix]
        return np.c_[X, rooms_per_household]
```

attr_adder = CombinedAttributesAdder()
housing_extra_attribs = attr_adder.transform(housing.values)

4.4. Feature Scaling

- ML algorithms generally don't perform well when the input numerical attributes have very different scales.
- Scaling techniques:
 - Min-max scaling

 $x' = rac{x-\min(x)}{\max(x)-\min(x)}$ $x' = rac{x-ar{x}}{\sigma}$

• Standardization.

4.5. Transformation Pipelines

from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler

```
num_pipeline = Pipeline([
    ('imputer', Imputer(strategy="median")),
    ('attribs_adder', CombinedAttributesAdder()),
    ('std_scaler', StandardScaler()),
])
```

housing_num_tr = num_pipeline.fit_transform(housing_num)

4.6. Pipeline Unions

```
from sklearn.pipeline import FeatureUnion
num attribs = list(housing num)
cat_attribs = ["ocean_proximity"]
num pipeline = Pipeline([
        ('selector', DataFrameSelector(num_attribs)),
        ('imputer', Imputer(strategy="median")),
        ('attribs_adder', CombinedAttributesAdder()),
        ('std_scaler', StandardScaler()),])
cat pipeline = Pipeline([
        ('selector', DataFrameSelector(cat_attribs)),
        ('label binarizer', LabelBinarizer()),])
full_pipeline = FeatureUnion(transformer_list=[
        ("num_pipeline", num_pipeline),
        ("cat_pipeline", cat_pipeline),])
>>> housing_prepared = full_pipeline.fit_transform(housing)
```

Outline

- 1. Look at the big picture
- 2. Get the data
- 3. Discover and visualize the data to gain insights
- 4. Prepare the data for Machine Learning algorithms
- 5. Select a model and train it
- 6. Fine-tune your model
- 7. Present your solution
- 8. Launch, monitor, and maintain your system
- 9. Exercises

5. Select and Train a Model

Let us start by training a simple linear regressor.
 from sklearn.linear_model import LinearRegression

lin_reg = LinearRegression()
lin_reg.fit(housing_prepared, housing_labels)

• Try it out on five instances from the training set.

>>> some_data = housing.iloc[:5] 50% off
>>> some_labels = housing_labels.iloc[:5] 50% off
>>> some_data_prepared = full_pipeline.transform(some_data)
>>> print("Predictions:\t", lin_reg.predict(some_data_prepared))
Predictions: [303104. 44800. 308928. 294208. 368704.]
>>> print("Labels:\t\t", list(some_labels))
Labels: [359400.0, 69700.0, 302100.0, 301300.0, 351900.0]

5.1. Evaluate the Model on the Entire Training Set

• Use RMSE

```
>>> from sklearn.metrics import mean_squared_error
>>> housing_predictions = lin_reg.predict(housing_prepared)
>>> lin_mse = mean_squared_error(housing_labels, housing_predictions)
>>> lin_rmse = np.sqrt(lin_mse)
>>> lin_rmse
68628.413493824875
This is not a satisfactory result as the
median_housing_values range
between $120,000 and $265,000.
```

5.2. Try the Decision Tree Regressor

from sklearn.tree import DecisionTreeRegressor

```
tree_reg = DecisionTreeRegressor()
tree_reg.fit(housing_prepared, housing_labels)
```

5.3. Better Evaluation Using Cross-Validation

 Segment the training data into 10 sets and repeat training and evaluation 10 times.

```
from sklearn.model_selection import cross_val_score
scores = cross_val_score(tree_reg, housing_prepared, housing_labels,
                         scoring="neg_mean_squared_error", cv=10)
rmse_scores = np.sqrt(-scores)
>>> def display_scores(scores):
        print("Scores:", scores)
. . .
        print("Mean:", scores.mean())
. . .
        print("Standard deviation:", scores.std())
>>> display scores(rmse scores)
Scores: [ 74678.4916885 64766.2398337 ... ]
                                                  Worse than Linear
Mean: 71199.4280043 	
                                                      Regressor
Standard deviation: 3202.70522793
                                                                 39
```

5.4. Try the Random Forests Regressor

• Repeating training and evaluation:

```
>>> from sklearn.ensemble import RandomForestRegressor
>>> forest_reg = RandomForestRegressor()
>>> forest_reg.fit(housing_prepared, housing_labels)
>>> [...]
>>> forest_rmse
22542.396440343684
>>> display_scores(forest_rmse_scores)
Scores: [ 53789.2879722 50256.19806622 ... ]
Mean: 52634.1919593 	Best Accuracy
Standard deviation: 1576.20472269
```

Outline

- 1. Look at the big picture
- 2. Get the data
- 3. Discover and visualize the data to gain insights
- 4. Prepare the data for Machine Learning algorithms
- 5. Select a model and train it
- 6. Fine-tune your model
- 7. Present your solution
- 8. Launch, monitor, and maintain your system
- 9. Exercises

6. Fine-Tune Your Model

- Fine-tune your system by fiddling with:
 - The hyperparameters
 - Removing and adding features
 - Changing feature preprocessing techniques
- Can experiment manually. But it is best to automate this process using Scikit-Learn:
 - GridSearchCV
 - or RandomizedSearchCV

6.1. Grid Search

 Can automate exploring a search space of 3 × 4 + 2 × 3 = 12 + 6 = 18

from sklearn.model_selection import GridSearchCV

```
param_grid = [
    {'n_estimators': [3, 10, 30], 'max_features': [2, 4, 6, 8]},
    {'bootstrap': [False], 'n_estimators': [3, 10], 'max_features': [2, 3, 4]},
]
```

```
forest_reg = RandomForestRegressor()
```

grid_search.fit(housing_prepared, housing_labels)

6.2 Examine the Results of Your Grid Search

• Can examine the best hyperparameters using:

>>> grid_search.best_params_
{'max_features': 6, 'n_estimators': 30}

• Can examine all search results using:

```
>>> cvres = grid_search.cv_results_
... for mean_score, params in zip(cvres["mean_test_score"], cvres["params"]):
... print(np.sqrt(-mean_score), params)
...
64912.0351358 {'max_features': 2, 'n_estimators': 3}
55535.2786524 {'max_features': 2, 'n_estimators': 10}
...
49958.9555932 {'max_features': 6, 'n_estimators': 30}
Best Tuned Accuracy
44
```

6.2 Evaluate Your System on the Test Set

- The final model is the best estimator found by the grid search.
- To evaluate it on the test set, transform the test features, predict using transformed features, and evaluate accuracy.

```
final_model = grid_search.best_estimator_
X_test = strat_test_set.drop("median_house_value", axis=1)
y_test = strat_test_set["median_house_value"].copy()
X_test_prepared = full_pipeline.transform(X_test)
final_predictions = final_model.predict(X_test_prepared)
final_mse = mean_squared_error(y_test, final_predictions)
final_rmse = np.sqrt(final_mse) # => evaluates to 48,209.6
```

6.3 Save Your Best Model for the Production System

from sklearn.externals import joblib

joblib.dump(my_model, "my_model.pkl")
and later...
my_model_loaded = joblib.load("my_model.pkl")

Outline

- 1. Look at the big picture
- 2. Get the data
- 3. Discover and visualize the data to gain insights
- 4. Prepare the data for Machine Learning algorithms
- 5. Select a model and train it
- 6. Fine-tune your model
- 7. Present your solution
- 8. Launch, monitor, and maintain your system
- 9. Exercises

7. Present Your Solution

- Present your solution highlighting:
 - What you have learned
 - What worked and what did not
 - What assumptions were made
 - What your system's limitations are
- Document everything, and create nice presentations with:
 - Clear visualizations
 - Easy-to-remember statements, e.g., "the median income is the number one predictor of housing prices".

8. Launch, Monitor, and Maintain Your System

- Prepare your production program that uses your best trained model and launch it.
- Monitor the accuracy of your system. Also monitor the input data.
- Retrain your system periodically using fresh data.

Summary

- 1. Look at the big picture
- 2. Get the data
- 3. Discover and visualize the data to gain insights
- 4. Prepare the data for Machine Learning algorithms
- 5. Select a model and train it
- 6. Fine-tune your model
- 7. Present your solution
- 8. Launch, monitor, and maintain your system
- 9. Exercises

Exercise

 Try a Support Vector Machine regressor (sklearn.svm.SVR), with various hyperparameters such as kernel="linear" (with various values for the C hyperparameter) or kernel="rbf" (with various values for the C and gamma hyperparameters). Don't worry about what these hyperparameters mean for now. How does the best SVR predictor perform?