
Neural Networks

Prof. Gheith Abandah

Reference: Hands-On Machine Learning with Scikit-Learn and 
TensorFlow by Aurélien Géron (O’Reilly). Copyright 2017 Aurélien
Géron, 978-1-491-96229-9.

1



Introduction

• YouTube Video: But what *is* a Neural Network? 
from 3Blue1Brown

https://youtu.be/aircAruvnKk

2

https://youtu.be/aircAruvnKk


Outline

1. Introduction

2. The perceptron

3. Multi-layer perceptron

4. TensorFlow’s high-level API

5. DNN using plain TensorFlow

6. Fine-tuning neural network hyperparameters

7. Exercises

3



1. Introduction

• Artificial neural 
networks (ANNs) are 
inspired by the brain’s 
architecture.

• First suggested in 1943. 
Is now flourishing due 
to the availability of:
• Data

• Computing power

• Better algorithms

4



2. The Perceptron

• The Perceptron is a 
simple ANN, invented in 
1957 and can perform 
linear binary classification 
or regression.

• Common step functions:

5

Linear threshold unit (LTU)



2. The Perceptron

• The Perceptron has an 
input layer with bias
and output layer.

• With multiple output 
nodes, it can perform 
multiclass classification.

• Hebbian learning “Cells 
that fire together, wire 
together.”

6



2. The Perceptron

• Scikit-Learn provides a perceptron class.

7



2. The Perceptron

• The perceptron cannot solve non-linear problems 
such as the XOR problem.

• The Multi-Layer Perceptron (MLP) can.

8



Outline

1. Introduction

2. The perceptron

3. Multi-layer perceptron

4. TensorFlow’s high-level API

5. DNN using plain TensorFlow

6. Fine-tuning neural network hyperparameters

7. Exercises

9



3. Multi-Layer Perceptron (MLP)

• An MLP is composed of 
a (pass-through) input 
layer, one or more 
layers of LTUs, called 
hidden layers, and a 
final layer of LTUs called 
the output layer.

• When an ANN has two 
or more hidden layers, 
it is called a deep neural 
network (DNN).

10



3. Multi-Layer Perceptron (MLP)

• Trained using the 
backpropagation training 
algorithm.
• For each training instance 

the algorithm first makes 
a prediction (forward 
pass), measures the error,

• then goes through each 
layer in reverse to 
measure the error 
contribution from each 
connection (reverse pass),

• and finally slightly tweaks 
the connection weights to 
reduce the error (Gradient 
Descent step).

11



3. Multi-Layer Perceptron (MLP)

• Common activation functions: 
logistic, hyperbolic tangent, 
and rectified linear unit.

12



3. Multi-Layer Perceptron (MLP)

• For classification, the 
output layer uses the 
softmax function.

• The output of each 
neuron corresponds to 
the estimated 
probability of the 
corresponding class.

13



Outline

1. Introduction

2. The perceptron

3. Multi-layer perceptron

4. TensorFlow’s high-level API

5. DNN using plain TensorFlow

6. Fine-tuning neural network hyperparameters

7. Exercises

14



4. TensorFlow’s High-Level API

15

Creates FeatureColumn objects

The new API is tf.estimator.DNNClassifier



Outline

1. Introduction

2. The perceptron

3. Multi-layer perceptron

4. TensorFlow’s high-level API

5. DNN using plain TensorFlow

6. Fine-tuning neural network hyperparameters

7. Exercises

16



5. DNN Using Plain TensorFlow

• Construction Phase

1. Define the parameters and place holder nodes.

17



5. DNN Using Plain TensorFlow

2. Construct the two hidden layers and the output 
layer using the fully_connected function. ReLU
activation function is used by default.

18



5. DNN Using Plain TensorFlow

3. Define loss function and training operation.

19Mean that targets are in top 1 output.



5. DNN Using Plain TensorFlow

• Execution Phase

1. Initialize variables, construct a saver object, and 
define parameters.

20



5. DNN Using Plain TensorFlow

2. Train the model.

21



5. DNN Using Plain TensorFlow

• Using the Neural Network

22



6. Fine-Tuning Neural Network 
Hyperparameters

• Number of Hidden Layers

• Number of Neurons per Hidden Layer

• Activation Functions

23



Summary

1. Introduction

2. The perceptron

3. Multi-layer perceptron

4. TensorFlow’s high-level API

5. DNN using plain TensorFlow

6. Fine-tuning neural network hyperparameters

7. Exercises

24



Exercises

From Chapter 10, solve exercises:
• 5
• 6
• 9

25


