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ABSTRACT 

Multicore processor architectures have been gaining increasing popularity in 

recent years in high-performance computing (HPC) domain. Many designs are proposed 

and many commercial multicore processors are introduced. It is important to evaluate the 

common design alternatives using representative multithreaded applications. 

Performance evaluation helps the programmers in tuning and developing future parallel 

applications and helps designers in developing multicore architectures that efficiently run 

parallel applications. 

The purpose of this thesis is to evaluate alternative multicore and many-core 

designs, identify strengths and weaknesses in current processors, and identify design 

aspects that have a high positive impact on such processors and areas that need further 

investigation and improvement. This thesis presents a micro-architectural simulation 

using the Sniper simulator, a fast and accurate multicore simulator, to evaluate four 

common Intel server multicore processors (Xeon brand). Two of them are bus-based 

multi-socket architectures: Dunnington/Core2-based and Gainestown/ Nehalem-based 

microarchitectures. The others are network on chip (NoC) based architectures: 2D mesh 

and bidirectional ring interconnection networks. They are Haswell and Xeon Phi based 

processors. They were chosen because they cover a wide range of recent multicore design 

options. 

In this research, we have chosen eight representative parallel applications from 

two benchmark suites: Princeton Application Repository for Shared-Memory Computers 

(PARSEC) and Stanford ParalleL Applications for Shared memory (SPLASH2). We have 

conducted many raw and normalized experiments for the four designs with two problem 

sizes of each of the selected applications. In these experiments, we used a comprehensive 

collection of performance evaluation metrics to facilitate trade-off evaluations. These 

metrics are execution time, average instructions per cycle (IPC), average core utilization, 

and power consumption. Also, we analyzed benchmarks cycles per instructions (CPI) 

cycle stacks changes over time. 

We do a normalized comparison where the multicore design alternatives are put 

on the same technological level with similar component sizes and speeds. The normalized 

comparison better exposes the performance differences due to microarchitecture main 

features; like memory hierarchy organization, network interconnection topology, and 

cache coherent protocols, rather than the underlying technology and component sizes. 

Discussions of raw and normalized experiments and comparative analysis are included in 

this thesis. 
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We found that the normalized Haswell exhibits better execution time (69 ms) and 

system throughput (1.39 IPC) averaged over the eight multithreaded benchmarks for the 

large data set. This relatively high performance is due to its architectural features: private 

level 2 cache, large level 3 shared non-uniform cache access (NUCA), and high-speed 

core-to-core communication through the bidirectional ring NoC. On the other hand, it 

relatively consumes large power (52.3 watts). 

The nXeon Phi architecture shows lower power consumptions (48.14 watts), but 

designers should do further research in developing its memory components. Xeon Phi 

suffers relatively from larger CPI loss in memory intensive applications (1.27 IPC) 

leading to larger execution times (77.25 ms on average). Most of the performance hit is 

from the off-chip DRAM access and smaller on-core units. 

We concluded that the bus-based microarchitectures are no longer able to meet 

the requirements of new HPC workloads due to the obvious weakness in their handling 

of the synchronization and communication overheads, which for sure will increase in 

future many-core architectures. The normalized Gainestown and normalized Dunnington 

have average execution times of 74 ms and 73 ms, respectively, and have average 

throughput of 1.33 IPC and 1.31 IPC, respectively. Also, their power consumptions are 

50.14 and 49.99 watts on average, respectively. 

 

 Finally, we have shown that the Modified Exclusive Shared Invalid Forward 

(MESIF) cache coherence protocol enhances the multicore performance, compared with 

the older MESI protocols. Normalized Dunnington has speedup of 1.028x, normalized 

Gainestown has 1.027x, normalized Xeon Phi has 1.01x, and normalized haswell does 

not benefit from MESIF protocol because it has only one socket and all cores share the 

same NUCA cache.
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1.1 Background and Motivation 

Multicore architecture is the current step in processor evolution; it is a special kind 

of a multiprocessor on a single chip (Olukotun, Kunle, et al. 1996). With this advent of 

multicore processors and their widespread use in the commercial and scientific fields, 

extensive research areas were open. Thousands of researchers are working on multicore 

processor designs.  

Many design options are in front of the designers because of many system 

parameters. Vendors and designers have shown an interest in increasing the number of 

cores and cache sizes. However, this may not be the best performance solution because it 

imposes high communication overheads. Other options exist in choosing the cache 

coherence protocols, cache hierarchy, cache associativity degree, cache write locality, 

chip interconnection networks, and clock speeds. 

 One of the biggest challenges in effectively using the multicore architectures is 

tuning the system parameters to have the optimized performance and to determine which 

option has the largest impact on performance without increasing the energy consumption 

(Abandah, G.A 1998). 

Some scientists try to enhance the performance of multicore processors by 

exploiting thread level parallelism (TLP) in the applications and tuning these applications 

to suit the multicore platforms and achieve better performance. In fact, to take the full 

advantages of multicore architectures, the programmers need to know the characteristics 

of their parallel applications and how they behave on the multicore systems. The 

programmers also need to know enough information about the system’s performance 

characteristics like the system’s strengths and weaknesses (Abandah and Davidson 1998). 

 



3 
 

 

A major challenge with design development phase is the ability to analyze and 

optimize performance for multicore systems. Computer architects need performance 

analysis tools and workload characterization methodologies to understand the behavior 

of existing and future workloads in order to design and optimize future hardware. 

However, the study of parallel applications performance on alternative system 

configurations will support future designs of multicore systems by allowing the designers 

to modify the multicore configurations to achieve higher performance. 

There are various system configurations in multicore processor, that include many 

parameters like the number and speed of processor cores, the number and size of cache 

memory levels (L1, L2, L3, or more), cache type (private or shared), cache coherence 

protocols (MESI, MSI, MESIF, etc.), write-through and write-back techniques, cache 

associativity (Direct or Set associative mapping), and core interconnection networks.  

With the emergence of efficient commercial multicore architectures, it is 

important to find the weaknesses and strengths of the current processors. This involves 

using appropriate metrics to evaluate the performance of multicore processors like 

bandwidth and latency (Eeckhout, et al. 2010). 

It is important to understand how various designs of multicore processors perform 

with the current parallel applications by characterizing such applications on various high-

end multicore alternatives. We need to find out where and when the system is weak or 

strong.  Our study gets its importance from the fact that it characterizes the parallel 

applications on multicore systems depending on the system configuration. This evaluation 

will lead to developing and tuning the multicore parameters to run efficiently on parallel 

applications with higher performance. 
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1.2 Research Contributions 

In this thesis, we have the following contributions:  

 Evaluating and calibrating common multicore systems, by using raw and 

normalized microarchitectural simulations. 

 Comparing the behavior of wide range of multithreaded benchmarks, 

analyzing their behavior due to different microarchitectures and different input 

data sets, and concluding some interesting information about (dis)similarly 

properties of them. 

 Facilitating trade-off evaluations, by using comprehensive and 

representative multicore performance metrics. These metrics are execution 

time, average instructions per cycle (IPC), average core utilization, and power 

consumption. Also, CPI cycle stacks changes over time. 

 Finally, identifying multicore designs strengths and weaknesses, 

concluding system design features that have significant impact on system 

performance, and presenting future work directions.
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1.3 Research Methodology 

The methodology of our thesis consists of the following stages: 

 Investigating and survey for various design options of recent 

multicore processors, in order to select few representative multicore 

design alternatives. 

 Investigating and survey for different multicore simulators, where this 

simulator should be able to efficient simulate different multicore design 

options; can evaluate the performance of these alternatives by determining 

the systems strength and weakness, and must be flexible and easy to 

modify system configurations for normalization issue. 

 Investigating the available benchmarks parallel applications, and 

selecting a representative set of them for further study. These applications 

should be representative and cover several types of multithreaded 

workloads.  

 Implementing raw experiments of each multicore designs, and 

gathering the results of these experiments, then analyzing them, so we can 

determine the best multicore design performance. 

 Implementing normalization experiments, by normalizing the values or 

types of not interested design parameters, so we can determine the real 

impact of any determined performance factors, and the system strength and 

weaknesses. 

 Conclusion and future works, where the conclusion and results analysis 

of this work will be presented and future research direction will be 

discussed. 
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1.4 Thesis Outline 

This thesis contains five chapters that describe the development of the whole 

research work. The rest of the thesis is organized as follows:  

Chapter two presents a survey of some related work. It includes multicore 

processors features, performance evaluation techniques, recent and common multicore 

processors simulators, and multithreaded benchmarks. 

Chapter three summarizes our methodology for common multicore performance 

evaluation, describes case study multicore design alternatives and used multithreaded 

applications, and then, describes Sniper multicore simulator, host machine, setup 

environment, and used performance metrics. 

Chapter four presents the results of raw and normalized comparisons, presents 

performance evaluation and results analysis to measure the impact of multicore processor 

parameters. 

Chapter five presents the main conclusions regarding the thesis’s methodology, 

the strengths and weaknesses points of multicore design alternatives depending on 

simulation results. Additionally, it presents some proposed future work. 

 

 



 
 

 

CHAPTER 2: LITERATURE REVIEW 
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2.1 Introduction  

This chapter presents a survey of some related work. It includes multicore 

processors overview, multicore simulators, multithreaded benchmarks, multicore 

performance evaluation metrics, and a survey of multicore studies in the high 

performance computing (HPC) domain. 

2.2 Multicore Overview 

Multicore processors trend is the new trend in computer architecture domain. It 

can be defined as replicating multiple independent processor cores and implementing 

multiprocessing in a single physical package called a chip. However, if all cores fit into a 

single processor socket then it is called Chip Multi-Processor CMP (Barbic, J. 2007).  The 

first multicore processor is IBM Power 4 in 1996 (Tendler, et al. 2002), which has two 

high-performance microprocessor cores on a single silicon chip. In the past, the trend was 

to add more components and more cababilities on one die. In Fact, manufacturers cannot 

do this forever, because of the limitation of improvements of a single core. Many 

components suffer from communication overheads. Also, it is difficult to make single-

core clock frequencies much higher because of the heat problem, design difficulties, and 

verification. Hence, server farms need expensive air-conditioning.  

On the other hand, most of the new applications are multithreaded, because there 

is a general trend in computer architecture for shifting towards more parallelism: 

instruction level parallelism (ILP) and thread level parallelism (TLP) (Barbic, J. 2007). 

In ILP, the parallelism is at the machine-instruction level; the processor can reorder, 

pipeline instructions, split Instructions into microinstructions, do aggressive branch 

prediction, etc. 
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TLP employs parallelism on a big scale, however, the server can serve each client 

in a separate thread (Web server, database server, etc.). In addition, they employ TLP in 

desktop applications (Blake, G. et al., 2010). Computer researches predicted that 

“Anything that can be threaded today will map efficiently to multicore” (Barbic, J. 2007). 

After the first publication about the multicore processors by Kunle Olukotun et al. 

(1996). Thesse researchers, the pioneers of multicore processors, argued that multicore 

computer processors are likely to make better use of hardware than existing superscalar 

designs, the multicore processors became very hot topic in the computer engineering 

(Barbic, J. 2007).  

Chip designers continue evolution to increase the number of cores, which is 

leading to the many-core architectures. However, a many-core processor is one in which 

the number of cores is large enough that traditional multi-processor techniques are no 

longer efficient. It can be in the range of several tens of cores and is likely to require a 

network on chip (NoC). Many-core architecture is a special type of multicore processors. 

See Figure 2.1 that presents a classification of multicore processors. If all cores are 

identical, the system is called homogeneous multi-core system and if they are not 

identical, it is called heterogeneous multi-core systems. Also, like single-processor 

systems, the cores in multi-core systems may implement architectures such as superscalar, 

very long instruction word (VLIW), vector processing, single instruction multiple data 

(SIMD), or multithreading. An example of many core processors is Intel Xeon Phi 

Knights Corner and Knights Landing processors which contain 60+ cores connected with 

ring topology network or 2D mesh network respectively. Nowadays, Intel introduced a 

max number of 72 cores with 4way simultaneous multi-threading (SMT) on the high-end 

Xeon Phi line processors.
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Interconnect systems in multicore systems have gradually evolved from simple 

busses to more scalable NoC. NoC is a communication centric interconnection approach 

that provides a scalable infrastructure to interconnect multiple cores and sub-systems (i.e., 

memory controllers, I/O ports) in a system on chip (SoC) (Bhople, et al. 2013). Common 

network topologies to interconnect cores include: conventional bus-based, ring, 2-

dimensional mesh as an example of NoC and crossbar networks (Lecler, et al. 2011). The 

bus topology used in processors with front side bus (FSB), which means that several 

resources use the same communication channel (e.g., Intel Nehalem microarchitecture). 

In the ring topology, which was used in high-end Intels desktop and server multicore 

processors, the resources are connected to each other in a ring (ex. Intel corei7 and Xeon 

E5 v3). Every core and resource is connected to its two neighbours, all communication 

with other resources then should pass through the neighbours. In the mesh topology any 

node can communicate with all other nodes in the system. The 2D-mesh topology is a 

type of mesh network in which nodes form a two-dimensional grid where each node is 

connected to the four adjacent notews. The cores at the edges have only two or three 

connections since they do not have more adjacent cores (Bhople, et al. 2013).

Figure 2.1 Multicore processors classifications1. 

http://slideplayer.com/slide/9016026/
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Common cache coherence protocols include Modified Exclusive Shared Invalid 

Forward (MESIF) protocol, which is recently used by Intel’s multicore processors, they 

added forward (F) state to the previous MESI protocol. Advanced Micro Devices (AMD) 

processors use the Modified Owned Exclusive Shared Invalid (MOESI) protocol that 

benefits from the added owned (O) state to the original MESI protocol (Tiwari, A. 2014). 

The two protocols support cache to cache transfers in order to efficiently transfer data 

between caches instead of expecting information from the main memory. The added F 

state in the MESIF is an optimization to the MESI protocol, where a read request for data 

in the "shared" state is serviced by one of the sharers of the data instead of waiting for the 

data to come from the main memory. Where the added O state in the MOESI protocol lets 

the caches to share data which are dirty as long as one of the sharers takes the 

responsibility of owning the data. Requests for the shared data will be satisfied by the 

owner (Tiwari, A. 2014). 

Intel and AMD are the two most common vendors in desktops, workstations, and 

server’s processors. On the other hand, Advanced RISC Machine (ARM) is the leader in 

mobile processors and embedded systems (Furber, S. B. 2000) (Jarus, et al. 2013). Recent 

multicore processors differ in many features; like cache parameters, allocation 

/replacement policies, and write policies. Moreover, the number of levels in the cache 

hierarchy can be two, three, and four with specifications on the type of inclusion policy. 

Even more, multicore processors differ in the configuration of some or all levels of the 

cache hierarchy to be shared or private amongst the multiple threads and cores. 
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2.3 Multicore Simulators 

Computer architecture research is mainly driven by simulation in HPC domain 

(Ricco A. 2013). There are many simulators that are used to evaluate multicore processors 

in the design phase. In this Section, we review the most popular multicore simulators and 

report most of their features. 

The sniper multicore simulator1 is an open source and licensed execution-driven 

simulator. It is based on the interval core model and the Graphite simulation 

infrastructure, so it is a fast and accurate simulation. It is fast because it is based on a Pin 

on-the-fly instrumentation tool. It allows a range of flexible simulation options like in-

order and out-of-order (OoO) cores when exploring different homogeneous and 

heterogeneous multi-core architectures. It supports time simulation for multithreaded and 

multi-programmed workloads and shared-memory applications with 10s to 100+ cores, 

at a high speed when compared to existing simulators. The sniper simulator has been 

validated for real hardware of Intel Nehalem and Intel Core2 with error accuracy about 

11%, it supports modern Linux-OS (Redhat EL 5,6, Debian Lenny+, Ubuntu 10.04-

14.04+, etc.) (Carlson, T. et al., 2011) (Carlson, T. et al., 2014a) (Carlson, T. et al., 2014b) 

(Florea, et al. 2014). The sniper simulator is explained with higher details in Chapter 

Three. 

http://marss86.org/~marss86/index.php/Home
https://github.com/mit-carbon/Graphite
https://groups.google.com/forum/#!forum/graphite-sim
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1 http://marss86.org/~marss86/index.php/Home 
1. https://github.com/mit-carbon/Graphite 

2. https://groups.google.com/forum/#!forum/graphite-sim 

The MARSS simulator2 (Micro-ARchitectural and System Simulator for x86-64 

based Systems) is an open-source, cycle-accurate, full system simulator, Quick Emulator 

(QEMU) based, full-system emulation environment with models for the chipset and 

peripheral devices. It supports detailed models for coherent caches, bus based and on-

chip interconnections networks, and MESI or MOESI cache coherent protocols. MARSS 

has its root on MPTLsim that is the multicore version of PTLsim simulator. Also, it runs 

in user-space only, without any need for root access or the installation of any kernel 

module (Patel, et al 2011). 

The Graphite simulator3 is an open source, distributed parallel simulator. It can 

explore dozens, hundreds or thousands of cores. And also, it is capable of accelerating 

simulation by distributing simulated cores across multiple Linux machines. Graphite4 is 

the root of the Sniper simulator (Miller, et al. 2010). 

The CMP$im simulator, a Pin-based on-the-fly multi-core cache simulator, is a 

flexible multicore simulator and uses a dynamic binary instrumentation tool as an 

alternative to trace-driven and execute-driven approach. It is a memory system simulator 

that characterizes memory performance of x86 workloads on multicore processors. 

CMP$im is fast, fully configurable and can gather detailed cache performance statistics. 

Users can model any kind of cache hierarchy and supports multi-cores and multi-threaded 

cores, but the disadvantage of this simulator is the lack of speculation and out-of-order 

execution (Jaleel, et al. 2008). 

 

 

  

 

http://marss86.org/~marss86/index.php/Home
https://github.com/mit-carbon/Graphite
https://groups.google.com/forum/#!forum/graphite-sim
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1. https://github.com/s5z/zsim 
2. http://manifold.gatech.edu/ 
3. http://masc.soe.ucsc.edu/esesc/ 

 

Zsim1, is an open-source and a Pin-based simulator, like Graphite, CMP$im, and 

Sniper simulators. It is fast and accurate microarchitectural simulation system of 

thousand-core systems. Its main goal is to focus on memory hierarchies and large, 

heterogeneous systems. It supports detailed core models (including OoO cores) with 

instruction driven timing models. It supports complex workloads, including multi-

programmed, client-server, and managed-runtime applications, without the need for full-

system simulation (Sanchez, et al. 2013). 

The Manifold2 simulator, a parallel simulation framework for multicore systems, 

is a full system, open source simulator, and supports parallel and serial simulations that 

is transparent to the users. It supports Stanford ParalleL Applications for Shared memory 

(SPLASH2) and Princeton Application Repository for Shared-Memory Computers 

(PARSEC) benchmark suites and it has integrated library of power, thermal, reliability, 

and energy models. It is defined as flexible and scalable simulator. However, Manifold’s 

component-based design provides the user with the ability to easily replace a component 

with another for efficient exploration of the design space (Wang, et al. 2011) (Wang, et 

al. 2014). 

The ESESC3, a fast multicore simulator using time-based sampling, is an open 

source, very fast simulator that supports heterogeneous multicores, with detailed power, 

thermal, and performance models for modern out-of-order multicores. It supports 

multicore homogeneous and heterogeneous configurations, various memory hierarchies, 

and on-chip memory controller. It can model power and temperature in addition to 

performance and their interactions (Ardestani, et al.2013) (Ardestani, et al.2014). 

 

https://github.com/s5z/zsim
http://manifold.gatech.edu/
http://masc.soe.ucsc.edu/esesc/
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1. http://csg.csail.mit.edu/hornet/ 
2. http://gem5.org/Main_Page 

 The Hornet1, a parallel, open source and cycle-level multicore simulator, is based 

on an ingress-queued wormhole router NoC architecture. It is highly configurable, 

scalable, accurate multicore simulation in the 1000-core range. Hornet permits tradeoffs 

between perfect timing accuracy and high speed with very good accuracy (Lis, et al. 2011) 

(Ren, et al. 2012). 

Gem52 is a simulation infrastructure introduced from the merger of the best 

aspects of the M5 and GEMS simulators. M5 provides a highly-different configuration 

infrastructures, multiple ISAs, and diverse central processor unit (CPU) models. GEMS 

simulator complements these features with a detailed and flexible multicore system 

features. Such features include memory system and support for multiple cache coherence 

protocols and interconnect models except MESIF. Although Gem5’s simple CPU models 

are much faster than their detailed counterparts, they are still considerably slower than 

binary translation-based simulators (Binkert, et al. 2011). 

Finally, Carlson et al. (A,2014) concluded that the good simulator should have 

simulation infrastructure that has many important requirements; particularly: 

 Efficiency,  both in time and space, by only simulating relevant parts of the 

benchmark in detail, avoiding long warm-up time; and occupying a small disk 

footprint for storing workloads. 

 Accuracy:  simulation results should be representative of running the 

complete workload.  

 Reproducible:  the unit of work must be fixed across architectures to allow 

for valid comparisons to be made; workloads must be easily shareable while 

guaranteeing (mostly) identical simulation results.

http://csg.csail.mit.edu/hornet/
http://gem5.org/Main_Page
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2.4 Multicore Benchmarks  

Modern processors are designed as a SoC, which can execute many independent 

threads in parallel. Hence, the performance measurement should be done on 

multithreaded benchmarks. 

There are many general proposed benchmark suites such as Standard Performance 

Evaluation Corporation (SPEC), SPEC CPU2006 suite (SPEC, 2014), which is a 

collection of compute-intensive applications and is a representative of scientific and 

engineering applications. These applications are serial programs that are not suitable for 

studies of multicore platforms. 

SPLASH2 suite (Woo, et al., 1995) is a collection of multithreaded applications, 

which is representative of scientific, engineering, and graphic applications. These 

applications are widely used in the HPC domain.  

PARSEC suite (Bienia, et al., 2008) is a collection of multithreaded commercial 

and new applications in recognition, data mining, and synthesis (RMS) (Dubey, 2005), 

which is representative of animation, media processing, computer vision, enterprise 

servers, and computational finance applications.  

The PARSEC benchmark suite is often used in studies related to multicore 

processors. Bienia, et al. (2008) characterized PARSEC benchmarks to show that their 

benchmark suit has diverse types of multi-threaded behaviors. Bhattacharjee and 

Martonosi (2009) characterized the translation look-aside buffer (TLB) behavior of the 

PARSEC benchmark applications. Contreras and Martonosi (2008) characterized a subset 

of PARSEC benchmark applications that were compiled with Intel threading building 

block (TBB) on AMD dual-core processors to determine the sources of overhead within 

the TBB. The recent threading library TBB is a C++ template library developed by Intel 
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for writing software programs that take advantage of multi-core processors. These entire 

tools target helping the programmers to develop efficient parallel applications. 

Dey, et al. (2011) characterized PARSEC benchmark applications to measure the 

effect of shared resource contention on performance. They classified resource contention 

into intra-application contention, which is the contention among threads from the same 

application, and inter-application contention, which is the contention among threads from 

different applications. 

Natarajan and Chaudhuri (2013) characterized a set of multi-threaded applications 

selected from the PARSEC, SPEC openMP, and SPLASH to understand the last level 

cache (LLC) behavior of multi-threaded applications. They proposed a generic design 

that introduces sharing-awareness in LLC replacement policies. They showed that their 

design could significantly improve the performance of LLC replacement policies. 

  Despite that SPLASH was released at the beginning of the 1990s for the HPC 

domain, it is widely used beside PARSEC in the recent multicore research (Shi and Khan, 

2013), (Shriraman et al., 2013), (Krishna et al., 2013).  

Bienia, et al. (2008b) showed that SPLASH and PARSEC complement each other 

in terms of the diversity of working set size, cache miss rate, and distribution of 

instructions. Heirman, et al. (2011) characterized a set of multithreaded benchmarks from 

SPLASH2, PARSEC, and Rodinia suites in order to understand scaling bottlenecks in 

multi-threaded workloads. They concluded that the three benchmark suites cover similar 

areas in the workload space. 
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Mohammad and Abandah (2016) used SPLASH2 besides PARSEC in their 

multicore applications characterization independently on hardware configurations. They 

used eight applications from the two benchmark suites, which were selected as they 

represent a wide range of multicore applications. 

Researchers prefer doing their simulations on the parallel region of the benchmark 

called the region of interest (ROI) (Southern, G. 2016), i.e. Sniper simulator has the 

feature of running all simulation on just the ROI of the multithreaded benchmarks. 

Furthermore, it can eliminate the initialization (warm up) and finalization transient times 

of any simulation, which could give more accurate results on max processor 

parallelization performance and give hints on max run-time peak power (Jha, et al. 2017). 

 

2.5 Multicore Studies 

The multicore studies branched out in more than one direction in studying the 

multicore processors.  Researchers proposed and discussed various design options like 

the number and speed of chip cores, the interconnection networks, cache hierarchies, and 

cache coherence protocols. They study how these issues affect the important metrics of 

performance of multicore processors like throughput, execution time, energy, CPU clock 

speed, memory bandwidth, inter-core communication overhead, and scalability ability. 

Shukla, et al. (2015), in their literature survey, conclude that all studies attempt to 

address some isolated issues and some common issues. Less research is available about 

the correlation between multicore performance parameters, or about obtaining the 

performance issues when many parameters influence each other. 
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Some researchers tried generally to summarize many multicore processor 

performance parameters. Ubal, et al. (2007) proposed Multi2sim tool: a simulation 

framework to evaluate multicore-multithreaded processors for the analysis of multicore 

architecture performance. They studied three major performance elements of multicore 

architecture: processor cores, memory hierarchy, and the interconnection network. By 

this tool, they can graphically show how cores execute threads, how many cores are idle, 

and how the interconnection network is utilized by all cores for the inter-core 

communication.  

Blake, et al. (2009) studied five major attributes common among multicore 

architectures and discussed the tradeoffs for each attribute in the context of actual 

commercial products. These areas were application domain, power/performance, 

processing elements, memory, and accelerators/integrated peripherals. 

Other studies are about the multicore interconnection networks. Bononi, et al. 

(2007) study four NoC topologies; ring, 2d mesh, spidergon and unbuffered crossbar. 

They found that ring forces some   packets   to   follow   longer   paths   than   other 

topologies although that mesh has more channels for data transfer. Also, they found that 

ring and spidergon have the best performance of elapsed execution cycles while mesh and 

crossbar perform worse than expected. In percentage, the difference between the 

performances, spidergon and ring behave equivalently being 3.3% faster than mesh 

and 6.2% faster than crossbar. And by considering the total buffer size for the 12-node 

architectures, they note that mesh and crossbar have less buffering memory: 204 flits 

for mesh and 0 for crossbar vs. 288 flits for ring and 216 for spidergon.  
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Mohanty, et al. (2013) had concluded that the evaluation of performance is 

dependent on the internal network, e.g., ring network and a hybrid network. They used 

the metrics execution time and speed-up to show the performance of ring network and a 

hybrid network. 

 Ingle, et al (2013) studied the performance of mesh topology of NoC architecture 

using Source routing algorithm. They observed that topology and routing algorithm are 

two key features which distinguish various NoC platforms. And, 2D mesh topology is 

one of the most frequently mentioned topologies for an NoC design due to its natural 

layout mapping onto an SoC. and because of its network Scalability and the use of a 

simple routing algorithm.  

Some researchers try to analyze only one processor architecture. Molka, et al. 

(2015) studied cache coherence protocol and memory performance of the Intel Haswell 

architecture. In addition, Molka, et al. (2009) have pointed out some of the fundamental 

details of the Intel Nehalem microarchitecture with its integrated memory controller, 

quick path interconnects, and non-uniform memory access (NUMA) architecture. They 

used benchmarks to measure the latency and bandwidth between various locations in the 

memory subsystem. 

Rolf (2009) also studied Intel’s Nehalem architecture and has summarized the 

major improvements to the architecture of Intel’s previous multicore architectures with a 

special focus on the memory organization and cache coherency scheme. 

Rahman, R. (2013) studied the Intel Xeon Phi architecture and presented tools and 

guides for the application developers. 
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 Jarus, et al. (2013) presented performance evaluation and energy efficiency of 

high-density HPC platforms based on Intel, AMD and ARM processors. They discussed 

the trade-off that could exist between computing and power efficiency.  

Another point of view, some researchers create new hardware techniques. 

Kakoullie, (2012) created a hot spot router, which is responsible for the data exchange 

among the cores in the multicore processor. He showed that the hot spot has major 

improvements in the performance of multicore architecture.  

Duarte, et al. (2010) proposed the Accelerator scheme. With the help of this 

scheme, data movement between the main memory and the cache memory can be 

increased. It can improve the performance of multicore architecture. They showed that 

this scheme has a power enhancement just in case of copy data from memory to cache 

and not suitable in the case of real-time applications. 

Cache coherence protocols have a high impact on multicore performance. 

Therefore, many researches concentrate on this hot topic. Tiwari, et al. (2014) used the 

GEM5 simulator and SPLASH benchmark to compare the performance of cache 

coherence protocols on multicore architectures such as snoopy and directory protocols. 

Snoopy coherence is studied with Modified MOESI coherence protocol and directory 

coherence is studied with MI, MESI TWO LEVEL, MESI THREE LEVEL, MOESI, and 

MOESI TOKEN coherence protocols.  

Martin, et al (2012) concluded that cache coherence protocols can be affected by 

many factors including parallel programming communication and synchronization. 

Marty, (2008) contributed a hierarchical coherence protocol, directory CMP, that uses 

two directory-based protocols bridged together to create a highly scalable system. He 

compared this protocol with token CMP and extended the later to create a multiple-CMP 
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system. His simulation results showed that the token CMP has better performance than 

directory CMP. He also proposed a new cache coherence protocol that exploits a ring’s 

natural round robin order. 

Other researchers studied and analyzed cache and memory hierarchy in multicore 

processors. Ramasubramanian, et al., (2011) used M5sim tool for analyzing cache 

memory performance and have found that cache memory plays a crucial role in deciding 

the performance of the multicore system.  

Jaleel, et al. (2006) characterized LLC memory behavior of parallel 

bioinformatics data mining workloads on multicore processors. They concluded that 

shared last-level cache memory is better than private last-level cache memory for high-

performance systems. 

Tudor and Young, (2011) concluded that memory contention is a big issue in the 

performance of the multicore architecture. The cache misses depend +on the problem 

size. If it is small, then there are fewer cache misses. Their model has many limitations 

but it is useful when there are large memory requirements. 

 Zhou, et al. (2009) proposed a concept of performance fairness metric depending 

on management mechanism. They also designed an adaptive hardware mechanism for 

enforcing performance fairness on the shared cache. 

Some studies evaluate different multicore designs like a single chip and 

superscalar multiprocessor.  Chaturvedi, et al. (2013) compared a single chip 

multiprocessor design with the dynamically scheduled superscalar processor. They used 

GEM5 full system functional simulator extended with multi-facet GEMS. Their results 

show that the single chip multiprocessor performs 50–100% better than the wide 

superscalar processor with the applications that have full parallelism. On applications that 
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can not be parallelized, the superscalar processor performs marginally better than one 

processor of the multiprocessor architecture. 

Fasiku, et al. (2014) worked on performance evaluation studies on AMD dual core 

and Intel dual core processors to find which of processor has better execution time and 

throughput. They studied the architecture of AMD and Intel dual core processors and used 

SPEC CPU2006 benchmarks suite to measure their performance. The results of overall 

execution and throughput time measurement showed that the execution time of CQ56 

Intel Pentium Dual-Core processor is about 6.62% faster than AMD Turion II P520 dual-

core processor while the throughput of Intel Pentium dual-core processor is 1.06 times 

higher than AMD Turion (tm) II P520 dual core processor. They concluded that Intel 

Pentium dual-core processors exhibit better performance probably due to the following 

architectural features: faster core-to-core communication, dynamic cache sharing 

between cores, and smaller size of level 2 cache. 

There is also another research comparison of memory write policies for multicore 

cache coherent systems. Pierre, et al. (2012) showed that write-through-invalidate 

protocols are a possible and simple solution to maintain coherency and this protocol 

performs very well compared with a classic write-back-MESI protocol in both execution 

time and generated traffic. 

Some computer scientists saw the solution with working on improvements on 

parallel programming and applications. Shukla, et al. (2015) concluded that the 

development of parallel programming is useful in the growth of multicore architectures. 

They said that operating system (OS), scheduling algorithms, and memory management 

should be developed for the multicore architectures. 
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Eduardo et al. (2014) proposed a new thread mapping technique to optimize the 

communication overhead. They also proposed algorithms to dynamically migrate the 

threads. Using the NAS parallel benchmarks and with a producer-consumer benchmark, 

they observed the importance of dynamic mapping over static mapping. 

Several studies have proposed different techniques to characterize shared memory 

behavior of several types of parallel applications on multicore platforms. Pan et al, (2014) 

used a set of benchmarks from the PARSEC benchmark suite to evaluate their newly 

creative model, which can be used to predict the private cache misses of a multi-threaded 

application for different cache sizes. This approach can be used to guide program 

optimizations to improve utilization of the private cache. 

Woo, et al. (1995) used configuration dependent analysis to characterize several 

aspects of the SPLASH benchmark suite. Abandah and Davidson (1998, a) proposed a 

Configuration Independent Analysis Tool (CIAT) to characterize configuration 

independent characteristics such as memory access instructions, concurrency, 

communication patterns, and sharing behavior of shared-memory applications on a 

varying number of processors. Abandah, (1998) proposed Configuration Dependent 

Analysis Tool (CDAT) to characterize memory behaviors such as cache misses and false 

sharing that depend on configuration parameters such as cache block size. CDAT is a 

simulator that has memory, cache, bus, and interconnection models. By using a 

configuration file, users can specify a system configuration through specifying the 

coherence protocol, size and speed of system components, and processors and memory 

banks interconnections. 

Mohammed and Abandah, (2015) developed CIAT tool to characterize shared 

memory multithreaded applications on recent common multicore processors. They 
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proposed an on-the-fly, configuration-independent characterization approach for 

characterizing the inherent communication characteristics of multicore applications. 

Recent research goes far energy and power-aware systems. They proposed techniques for 

power consumption estimation. Priya, et al (2016) also presented a survey of different 

techniques to improve the energy consumption of multicore processors. They considered 

parameters in a survey like dynamic energy, area, throughput, performance, lifetime, 

harmonic mean instruction per cycle, miss rate and latency.  

Heinrich, et al, (2017) present an extension of the SimGrid simulation toolkit that 

addresses these challenges. They firstly introduce a model for application energy 

consumption that supports dynamic voltage/frequency scaling (DVFS) of simulated 

processors. Secondly, they discuss means to account for coarse-grain memory effects in 

multi-core architectures. The advantages of their approach, compared to cycle-level 

simulators, are faster simulation run times and enhanced scalability with, retained 

excellent accuracy if the target platform is correctly modeled. 

Jho, et al (2017) proposed a two-tier hierarchical power management 

methodology to exploit per tile voltage regulators and clustered last-level caches. In 

addition, they included a novel thread migration layer that (i) analyzes threads running on 

the tiled many-core processor for shared resource sensitivity in tandem with core, cache 

and frequency adaptation, and (ii) co-schedules threads per tile with compatible behavior. 

On a 256-core setup with 4 cores per tile. They showed that adding sensitivity-based 

thread migration to a two-tier power manager improves system performance by 10% on 

average (and up to 20%) while using 4× less on-chip voltage regulators. It also achieves 

a performance advantage of 4.2% on average (and up to 12%) over existing solutions that 

do not take DVFS sensitivity into account. 



26 
 

 

As we explained previously, the first aspect of multicore development is the 

microarchitectural simulation, processors designers predict the processor performance by 

using some efficient performance metrics (Eeckhout, et al. 2010); some of them indicates 

the overall system performance. However, the most used metric is the system latency 

which indicates the total execution time needed for execution of any selected 

program/task or many simultaneous programs executed together. The other metric is the 

system throughput, which is a measure of how many units of a specific unit of 

workload/instructions the processor can process in a given amount of time. The other 

specific performance metrics that affect overall performance include branches, caches, 

and dynamic random access memory (DRAM) misses. The time loss due these misses 

can be shown by using CPI stack (Eeckhout, et al. 2010). 

 The processor power and energy consumption are the main constraints for 

modern high-performance multicore systems. Some simulators give us hints on the 

change of performance over time, ex. Sniper simulator can show the change of CPI stack 

and consumed power over time (Jho, et al. 2017). 

Our study differs from prior works in that we use configuration dependent 

characterization technique to characterize the multithreaded applications depending on a 

specific configuration of some system components. We will evaluate four common 

multicore processors from state of the art multicore systems.  

However, we will analyze the configuration dependent characteristics of 

multithreaded applications (SPLASH2 and PARSEC benchmark suites) on different 

multicore platforms. Our study will use Sniper, fast, accurate, and efficient multicore 

simulator to determine the major system factors that have a large impact on system 

performance. 
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 We use representative performance evaluation metrics for analysis; i.e. execution 

time, average core IPC, CPI stack changes over time, average core utilization, cache 

misses and finally, average run time power. We also study the changes on performance 

due change of cache coherency protocol MESI to MEISF.  

System designers can benefit from our benchmark applications characteristics 

analysis to investigate much larger design space in the early design stages of their designs. 

On the other hand, software researchers and developers can benefit from using cycle 

stacks, they can easily identify the performance bottleneck of an application on a 

particular platform and study how application behavior changes with varying hardware 

configurations, while computer architects can use cycle stacks to optimize different 

architectures (Heirman, et al. (2011). 



 
 

 

CHAPTER 3: METHODOLOGY AND TOOLS



29 
 

 

3.1 Introduction 

This chapter summarizes our methodology for performance evaluation of multicore 

design alternatives, and characterizing multi-core applications on these designs. Then, 

describes Sniper simulator and the study metrics that are used to evaluate these multicore 

design systems. 

3.2 Overview 

The methodology relies on choosing four commercial multicore designs that cover 

different options of multicore processor parameters and choosing a set of benchmarks, which 

are representative of multithreading applications based on the recent related studies. Then, 

we determine best performance parameters that have the main impact on multicore 

processors performance. The Sniper simulator is a fast and accurate system-based simulator 

cooperative with the Pin dynamic instrumentation tool which instruments the multithreaded 

applications dynamically during the simulation and sends application characteristics to 

Sniper that analyze them. Sniper outputs many result files like the CPI stack and Power. It 

gives us visualization results which explain how CPI changes over time.  

We perform micro-architectural simulation using the Sniper x86-64 simulator on four 

multicore design alternatives based on commercial Intel’s server processors. 

3.3 Multicore Design Alternatives 

In our study, we investigated the available commodity multicore processors in order 

to determine their important features. We concentrated on the differences that cover 

important multicore processor issues, which face designers in the processor design phase.  
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The main issues are multicore interconnection network (Bus-based, or NoC-based 2D 

mesh (Tilera like), and ring topology), the memory hierarchy issues specified by the number 

and type of the core caches, private, shared, or non-uniform cache access (NUCA) caches, 

and the cache coherence protocols (we have intended to study the MESI and MESIF 

protocols).  

We have chosen four representative multicore processors from Intel’s server 

multicore list, which cover all the previously mentioned design issues. We have performed 

micro-architectural simulation and tradeoff between optimum performance and power 

consumption. We also investigated their strengths and weaknesses points. By so, we can 

recommend useful multicore design features. 

 In this section, we discuss their design options and touch on their main features. We 

choose Intel’s multicore server processors (Xeon brand X86-64 processors) in our study. 

They have the same microarchitecture with the same line desktop-grade multicore 

processors. However, they have some advantages over desktop processors, like limited power 

consumption due to lower clock rates (since servers run more tasks in parallel than desktops 

do), their multi-socket capabilities, higher core counts, larger cache sizes that support Error-

correcting code memory (ECC RAM), and more multiprocessing capabilities. 
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1https://ark.intel.com/products/36947/Intel-Xeon-Processor-X7460-16M-Cache-2_66-GHz-1066-MHz-FSB 
2https://ark.intel.com/products/37106/Intel-Xeon-Processor-X5550-8M-Cache-2_66-GHz-6_40-GTs-Intel-
QPI 
3 https://ark.intel.com/products/71992/Intel-Xeon-Phi-Coprocessor-5110P-8GB-1_053-GHz-60-core 
4 http://ark.intel.com/products/83361/Intel-Xeon-Processor-E5-2667-v3-20M-Cache-3_20-GHz 

Table 3.1 shows multicore design features for the four commercial Intel’s server 

processors. The full details of their features are in Appendix B. These four processors are: 

 1Intel Xeon Processor X7460 (Dunnington or Core 2 codenamed microarchitecture), Sep 

2008 

 2Intel Xeon Processor X5550 (Gainestown or Nehalem-EP codenamed microarchitecture), 

Jan 2009 

 3Intel Xeon Phi coprocessor (Knights Corner codenamed microarchitecture), Nov 2012 

 4Intel Xeon Processor E5-2667 v3 (Haswell-EP codenamed microarchitecture), Sep 2014 

    Table 3.1. Multicore design features for the four commercial Intel’s server processors. 

 

1Intel Xeon 

Processor 

X7460 

2Intel Xeon 

processor 

X5550 

3Intel Xeon 

Phi 

Coprocessor 

5110P 

4Intel Xeon 

processor 

E5-2667 v3 

Code Name 

Dunnington/ 

Core 2-based               

Gainestown/ 

Nehalem-based              

Knights 

Corner (KNC) Haswell              

Launch Date Q3'08 Q1'09 Q4'12 Q3'14 

Lithography 45 nm 45 nm 22 nm 22 nm 

# of Cores 6  4 60 8 

Processor Base 

Frequency 

2.66 GHz 

 

2.66 GHz 

 

1,05 Ghz 3.20 GHz 

 

Total LLC 16 MB L3 8MB L3 per socket 30 MB L2 20 MB NUCA L3 

Bus Speed 1066 MHz FSB 6.4 GT/s QPI 5 GT/s QPI 9.6 GT/s QPI 

Link bandwidth 

(Bus BW) 

8 GB/s for two 

directions 

25.6 GB/s for two 

directions 

256 GB/s for 

two direcion 

80 GB/s for two 

directions 

TDP 130 W 95 W 225 W 135 W 

Dispatch width 

4micro 

operations 4 micro operations 

2 micro 

operations 

4 micro 

operations 

Reorder buffer 96 entries 128 entries 32 entries 192 entries 

Branch 

predictor 

Mispredict 

penalty 

Pentium M 

 

15 cycles 

Pentium M 

 

8 cycles 

Pentium M 

 

5 cycles 

Pentium M 

 

14 cycles 

# of QPI Links  No QPI 2 between sockets 2 between tiles 2 between tiles 

Interconnection 

network 

Bus-based 

network / FSB 

Bus-based 

network / QPI 

NoC-based/ 

2D-mesh 

network 

NoC-based/ bi-

directional ring 

network 
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1https://ark.intel.com/products/36947/Intel-Xeon-Processor-X7460-16M-Cache-2_66-GHz-1066-MHz-FSB 
2https://ark.intel.com/products/37106/Intel-Xeon-Processor-X5550-8M-Cache-2_66-GHz-6_40-GTs-Intel-
QPI 
3 https://ark.intel.com/products/71992/Intel-Xeon-Phi-Coprocessor-5110P-8GB-1_053-GHz-60-core 
4 http://ark.intel.com/products/83361/Intel-Xeon-Processor-E5-2667-v3-20M-Cache-3_20-GHz 

D-TLB  

Size 

Associativity 

 

0 

1 

 

64 

4 

 

0 

1 

 

64 

4 

I-TLB Size 

Associativity 

0 

1 

128 

4 

0 

1 

128 

4 

S-TLB  

Size 

Associativity 

 

0 

1 

 

512 

4 

 

0 

1 

 

1024 

4 

L1 features: 

private/shared 

Size  

Associativity 

Data access 

time 

Tags access 

time 

Private L1 x 

6cores 

 

32 KB 

L1-D 8 way 

L1-I 8 way 

3 cycles 

1 cycles 

Private L1 x 

8cores 

 

32 KB 

L1-D 4 way 

L1-I 8 way 

4 cycles 

1 cycles 

Private L1 x 

60 cores 

 

32 KB 

L1-D 4 way 

L1-I 8 way 

3 cycles 

1 cycles 

Private L1 x 

8cores 

 

32 KB 

L1-D 8 way 

L1-I 8 way 

3 cycles 

1 cycles 

L2 features: 

private/shared 

Size  

Associativity 

Data access time 

Tags access time 

Shared by 2 cores 

x 3 

3072 KB 

12 way 

14 cycles 

3 cycles 

Private cache x 8 

 

256 KB 

8 way 

8 cycles 

3 cycles 

Private cache x 

60 

512 KB 

8 way 

22 cycles 

5 cycles 

Private cache x 8 

 

256 KB 

8 way 

8 cycles 

3 cycles 

L3 features: 

private/shared/ 

NUCA cache 

Size  

Associativity 

Data access time 

Tags access time 

Shared by 6 cores 

 

16384 KB 

16 way 

96 cycles 

10 cycles 

Shared by 4 cores 

 x 2 

8192 KB 

16 way 

30 cycles 

10 cycles 

 

No L3 cache NUCA cache 

shared by 8 cores 

8192 KB 

16 way 

30 cycles 

10 cycles 

DRAM : 

Number of MC 

Per controller 

bandwidth 

Latency 

1 MC per 6 cores 

2.5 GB/s 

173 ns 

2 MC per 8 cores 

7.6 GB/s 

45 ns 

 

 

8 per 60 cores 

32 GB/s 

80 ns 

1 per 8 cores 

68 GB/s 

45 ns 

Memory type DDR2 DDR3 GDDR5 DDR4 

Vdd 1.6 volts 1.2 volts 1.05 volts 1.2 volts 

Cache 

coherence 

protocol  

MESI MESI MESI MESI inside 

socket 

MESIF in case of 

multi-socket 
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1. http://www.hardwarezone.com.sg/feature-intels-cpu-roadmap-nehalem-and-beyond 
2. https://www.bjorn3d.com/2008/11/intel-core-i7-920-nehalem/ 

3.3.1 Dunnington / Core 2-based Microarchitecture 

Intel Xeon X7460 is based on Intel Core 2 series, coden amed Dunnington, Intel’s 

first multicore which was introduced on 15 September 2008. It features 45 nm technology 

node running at 2.66 GHz. Figure 3.1 shows the die microarchitecture containing a six-

core design that contains three Core 2 dies put in one chip and 16 MB shared level three 

cache. It features 1066 MHz FSB. Dunnington supports double data rate memory (DDR2-

533 MHz), and have a maximum thermal design power (TDP) below 130 W (see Table 

3.1 for other design features). 

The purpose of this study is to do a performance evaluation of different 

commercial multicore processors dependent on the main system performance factors. The 

number of cores per multicore per socket is known, that has a direct relation on 

performance. By so, we fixed the number of cores to all design alternatives to eight cores.  

The first performance evaluation technique is doing a raw comparison, for that purpose, 

we made some minor modifications to the Dunnington microarchitecture.  Hence, in 

Dunnington microarchitecture, we use eight cores Intel Xeon X7460 based architecture, 

2 sockets with two memory controller MC, one MC for each socket that will double the 

memory bandwidth and the L3 total size. Figure 3.1 shows the 6 core Dunnington-based 

system. 

http://www.hardwarezone.com.sg/feature-intels-cpu-roadmap-nehalem-and-beyond
https://www.bjorn3d.com/2008/11/intel-core-i7-920-nehalem/
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1. http://www.hardwarezone.com.sg/feature-intels-cpu-roadmap-nehalem-and-beyond 
2. https://www.bjorn3d.com/2008/11/intel-core-i7-920-nehalem/ 

       

3.3.2 Gainestown / Nehalem-based Microarchitecture 

Xeon X5550 Core microarchitecture is based on the Nehalem microarchitecture, 

which used 45 nm manufacturing technology. Figure 3.2 shows a Core 2 die shot that 

features 4 cores sharing 8MB cache and supports multi-socket. Each core has two levels 

of private caches and works at 2.66 GHz. Intel Core i7 is the first processor released with 

the Nehalem architecture. The server version for Nehalem has performance 

improvements over the previous server processors. They mainly rely on using integrated 

memory controller IMC that uses 3 channels of DDR3 and using QuickPath interconnect 

(QPI) running at 6.40 GT/s. QPI is a new point-to-point processor interconnect replacing 

the legacy front side bus (FSB). Other advantages are the support of simultaneous 

multithreading by the multiple cores, hyper-threading (HT) of two threads per core. 

Additionally, Nehalem has fewer branches miss-predict penalty cycles, equal to eight 

cycles; Core2 has 15 cycles miss-predict penalty. See Table 3.1 for more Nehalem 

features. Also, here we will use two sockets, 4 cores each, to reach the required eight 

cores. 

Figure 3.1 Dunnington microarchitecture1.          Figure 3.2 Gainestown microarchitecture2.  

http://www.hardwarezone.com.sg/feature-intels-cpu-roadmap-nehalem-and-beyond
https://www.bjorn3d.com/2008/11/intel-core-i7-920-nehalem/
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1. https://www.pcper.com/reviews/Processors/Haswell-E-Intel-Core-i7-5960X-8-core-Processor-Review 
2. http://gray.biji.us/xeon-architecture/ 
 

3.3.3 Haswell Microarchitecture 

Haswell microarchitecture was introduced in September 2014.  Figure 3.3 shows 

the Haswell die shot. It features 22 nm technology node running at 3.20 GHz. Xeon 

processor E5-2667 v3 consists of eight cores sharing an L3 NUCA cache (a distributed 

shared LLC) connected in a ring topology. However, logically there are indeed a single 

NUCA cache and a single tag directory that are shared by all cores. However, each 

physical slice handles a distinct set of cache blocks. So, all slices can operate completely 

independently from each other (see Table 3.1 for other features). 

        

 

3.3.4 Xeon Phi Knights Corner (KNC) Microarchitecture 

Intel introduced the first commercial product of the Xeon Phi line/ Knights Corner 

(KNC) in November 2012 that belongs to the many integrated core (MIC) design space. 

This product contains many Intel CPU cores combined in a single chip by a high 

bandwidth Bi-directional ring topology.

Figure 3.3 Haswell Microarchitecture1.                 Figure 3.4 Xeon Phi Microarchitecture2.                                                     

https://www.pcper.com/reviews/Processors/Haswell-E-Intel-Core-i7-5960X-8-core-Processor-Review
http://gray.biji.us/xeon-architecture/
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  Figure 3.4 shows the block diagram for a KNC die, which targets the highly 

parallel workloads. Each core has private small L1/L2 caches, directory-based coherency 

with MESI protocol, and high memory bandwidth (see Table 3.1 for more details). The 

main purpose of the Intel Xeon Phi coprocessor is offloading the main processor for doing 

the heavy computations. Designers classify the Intel Xeon Phi coprocessor as Symmetric 

Multiprocessor (SMP) with shared uniform access memory. However, each core has 

access to all memory at the same priority. 

For our study target, as mentioned in the previous section, we choose eight cores 

for all multicore alternatives to be equally evaluated, and also, Sniper doesn’t model ring 

topology without NUCA cache. Therefore, we modify the network to be Tilera-like 2d 

mesh network (4x2 2d mesh size). Actually, the 2D mesh network is used by Intel in the 

next generation Xeon Phi line (KNL). So, it is preferable to study how it affects the system 

performance. The new design is explained further in Chapter 4. 

3.4 Experimental Setup  

 This section represents all environmental requirements for installing Sniper 

multicore simulator, describes its features and validation method. 

3.4.1 Host Machine 

We do all simulations with Sniper multicore simulator on HP ProBook 4530s 

laptop which features Core i3-2310M multicore processor, 64-bit operating system, 4 GB 

RAM, and 320 GB HDD.  

3.4.2 Operating System, Compiler, and Libraries 

We have installed Sniper multicore simulator on Linux 2 Ubuntu 14.04.3 LTS 64 

bit. Sniper needs a special environment to successfully works, like the GNU Compiler 
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Collection (GCC 4.8.2), Python library 2.7.6, Pin tool 2.14-71313 (Dynamic Binary 

Instrumentation Tool), Perl, Perl base, and Perl modules version 5.14.2-21. 

After setting the environment and libraries, we have installed the latest version of 

Sniper multicore simulator 6.1 (more details in Section 3.5). Then, we installed and built 

the benchmarks. Sniper is compatible with SPLASH2 and PARSEC benchmark suites, 

which are described in the next section. 

 

3.5 Sniper Multicore Simulator 

By reviewing the literature searching for an efficient multicore simulator, we 

choose Sniper multicore simulator for its valuable features. In this section, we will explain 

how it works and what its features are. Sniper is an execution-driven simulator that uses 

functional-first simulation with timing feedback based on the Pin dynamic 

instrumentation framework and the Graphite simulation infrastructure (Miller et al. 

2010). It implements parallel simulation by keeping threads synchronized using a 

quantum-based barrier synchronization with a quantum of 100ns. Each thread in the 

benchmark application is pinned to its own simulated core. Sniper is a user-space 

simulator, hence, it does not model the operating system nor a scheduler, although 

emulation of some aspects that impact performance, such as system call overhead, have 

been added. 

  Sniper is designed for fast and accurate simulation and makes a good tradeoff 

between accuracy and speed. It is validated against multicore two-socket Intel Core 2 

processor with an average error of 25% against the real hardware (Carlson et al., 2011), 

at simulation speed of several million instructions per second (MIPS). It was enhanced 

by introducing the instruction window-centric (IWC) core model which is used and 



38 
 

 

validated on Nehalem processors against real hardware (Carlson et al., 2014a). It shows 

good accuracy with an average single-core error of 11.1% and a maximum of 18.8% for 

the IW-centric model with only 1.5 slowdown factor and is more accurate compared to 

interval simulation. Eyerman et al. (2009) proposed the interval core simulation.  

One of the key features of Sniper simulator is its utility in unicore and system-

level studies because it gives more details than the typical one-IPC models. However, this 

happens by “jumping” between miss events called intervals. Miss events include branch 

misprediction and cache misses. So, there is an added benefit for the interval core model.  

Sniper can generate CPI stacks that show the number of cycles lost due to different 

characteristics of the system, like the cache hierarchy or branch predictor or 

interconnection network. Therefore, Sniper offers a better understanding of each 

component’s effect on total system performance. By so, we could use it to characterize 

applications on different designs (Al-Manasia et al., 2015). 

Modern multicore and many-core designs show high numbers of core counts and 

more cache hierarchies’ complexity. Instruction window-centric (IWC) core model was 

introduced to support these new configurations and can simulate new many-core designs. 

Cycle accurate simulation can give more accurate results, but also tends to be slow. This 

model limits the number of configurations that can be evaluated. Hence, resulting in a 

large simulation bottleneck. Interval simulation provides a middle ground that is needed 

for fast simulation of complex many-core processors while still providing accurate results 

(Carlson et al., 2014a). IW- centric take new core features in details making it easy to 

implement dispatch stage and reorder buffer (ROB) in the out of order (OoO) core model, 

in addition to the previous interval configurations. Sniper supports a wide range of 

flexible simulation options for exploring different homogeneous and heterogeneous 
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multi-core architectures, different types of workloads like multi-threading and multi-

program workloads, and support parallel applications like OpenMP, etc. Sniper runs 

SPLASH2, PARSEC, Rodinia, and SPEC OMP. It is compatible with modern Linux OS 

(Redhat EL 5,6/Debian Lenny+/Ubuntu 10.04-15.04+/etc.) and supports DVFS scaling 

and integrate with MCPAT for generating a Power and energy results. Sniper uses barrier 

synchronization with a 100ns quantum to minimize simulation error by decreasing 

synchronization periods (Carlson, et al., 2014a). 

Sniper uses the timing model feedback instrumented by the Pin dynamic 

instrumentation framework (Luk et al., 2005), which is available on Linux and Windows. 

It is just in time (JIT)-based dynamic instrumentation tool. It instruments single and 

multiple threaded applications and it supports different types of processors including 

Intel’s instruction set IA-32bit, IA-64 bit (Intel, 2017). 

One of the Sniper key features is its integration with MCPAT; an integrated 

power, area, and timing modeling framework for multicore architectures. It is an 

analytical modeling framework that gives an estimation of power and area consumption, 

like CPI stacks. Sniper has high-quality visualization power results plotted over time, 

leading to better understanding of individual runs (Ahn et al., 2013), (Ahn et al., 2009). 

Sniper implements snooping coherency between caches on a socket (or a tile in 

the NoC based configuration) and directory-based coherency across sockets/tiles. In 

addition, it supports MSI/MESI/MESIF protocols (which applies to both snooping and 

directory-based protocols). The MESIF protocol is always used across the socket/tile 

because the LLC is always inclusive in Sniper so it provides the data and the Forward 

state is not needed. Sniper supports different core interconnection network, multi-socket 

bus-based and NoC architectures. The two types of networks will be explained in Chapter 

four. 
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3.6 Benchmarks  

Almost all the new multicore processors have abilities to run applications using a 

high number of threads in parallel by the multithreading features. Thus, it is very 

important to choose a representative multithreaded workload when evaluating 

multithreaded processor designs. Applications should cover the compute intensive and 

memory intensive applications and belong to the well-scaling benchmarks and poorly 

scaling benchmarks. However, after studying all the available workload types in current 

practice in computer architecture research and development, we chose eight 

multithreaded applications belonging to the two representative multicore benchmark 

suites; SPLASH2 and PARSEC (M. Sultan and G. Abandah, 2015). To make the analysis 

meaningful, we use two input sets (small and large data sets). Benchmarks in general are 

executed with eight threads on our eight core processors. Each thread pinned to a core. 

We run each benchmark to completion and report many performance metrics like total 

execution time, average IPC per core, processor utilization, and energy consumption. 

Simulation speed for all benchmarks in our research is around 2 MIPS, which allows us 

to complete the simulation of a typical benchmark used in this study in around 1 to 3 

hours on a modern dual core (i3) host machine. 

3.6.1  SPLASH2 Benchmark Suite 

 Radix is a sorting algorithm that carries out one iteration on radix r digits of the 

keys, which are a series of integers. In each iteration, a processor sorts its assigned keys 

and creates a local histogram. After that, the local histograms are accumulated into a 

global histogram.  Finally, each processor uses the global histogram to permute its keys 

into a new array for the next iteration. Radix does not have floating point operations. It is 

integer kernel application (Mohammad and Abandah, 2015) (Bienia, e al. 2008). 
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LU is a kernel benchmark that decomposes a dense square matrix into the product 

of a lower triangular and an upper triangular matrix. The n×n matrix is divided into a 

N×N array of B×B blocks, where n=NB. The blocks are divided among the processors 

and each processor updates its blocks. To reduce communication, a2-D scatter 

decomposition is used to assign blocks to processors (Mohammad and Abandah, 2015) 

(Bienia, e al. 2008). 

FFT is a one-dimensional kernel of the radix-6 steps Fast Fourier Transform 

(FFT) algorithm that is optimized to minimize inter-processor communication. The 

dataset is organized as a number of  √𝑛 × √𝑛  matrices, which are distributed, in a 

neighboring set of rows, on the processors and assigned to each processor’s local memory. 

The all-to-all inter-processor communication occurs in three matrix transpose steps. Each 

processor transposes a neighboring sub-matrix of √𝑛/𝑝 × √𝑛/𝑝 from each other 

processor. To avoid high contention, each processor starts by transposing a submatrix 

from the next processor (Mohammad and Abandah, 2015) (Bienia, e al. 2008). 

Cholesky is a kernel benchmark that decomposes a sparse matrix into the product 

of a lower triangular matrix and an upper triangular matrix by using blocked Cholesky 

decomposition. As LU, it divides a sparse matrix into blocks that are divided among the 

processors and each processor updates its blocks (Mohammad and Abandah, 2015) 

(Bienia, e al. 2008). 

3.6.2  PARSEC Benchmark Suite 

Canneal is a kernel benchmark that uses a cache-aware Simulated Annealing 

(SA) algorithm to minimize routing cost of a chip design. The SA algorithm is a generic 

probabilistic metaheuristic for locating a good approximation to the global minimum of 

a given function in a large search space.  
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Canneal simulates putting elements on a chip with minimum routing cost. Like 

Radix benchmark, Canneal is an integer kernel application (Mohammad and Abandah, 

2015) (Bienia, e al. 2008). 

Blackscholes is an Intel recognition, data mining, and synthesis (RMS) 

application. It calculates the prices for a portfolio of European options analytically by 

using the Black-Scholes partial differential equation solution. It partitions the portfolio 

work among the threads and processes them simultaneously (Mohammad and Abandah, 

2015) (Bienia, e al. 2008). 

Fluidanimate is an Intel RMS application that uses an extension of the smoothed 

particle hydrodynamics approach to simulate an incompressible fluid for interactive 

animation purposes. Fluidanimate partitions the work among the threads and each thread 

handles its portion and interacts with the other threads to handle shared work (Mohammad 

and Abandah, 2015) (Bienia, e al. 2008). 

Swaptions is an Intel RMS application that uses the Heath Jarrow Morton (HJM) 

framework to price a portfolio of swaptions. The HJM framework describes how interest 

rates evolve for risk management and asset liability management for a class of models. 

Its central insight is that there is an explicit relationship between the drift and volatility 

parameters of the forward-rate dynamics in a no-arbitrage market.  Swaptions uses Monte 

Carlo simulation to compute the prices (Mohammad and Abandah, 2015) (Bienia, e al. 

2008). 

We use two input sets for each benchmark application, small input set and large 

input set to make the study meaningful. Table 3.2 shows the input sets for all applications. 
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Table 3.2 Two input sets for thesis studied applications. 

Benchmark application Small input size Large input size 

SPLASH2-FFT 64 K points 1 M points 

SPLASH2-Radix 256 K integers 2 M integers 

SPLASH2-Lu.cont 256 x 256 512 x 512 

SPLASH2-Cholesky tk15.0 file Tk29.0 file 

PARSEC-Canneal 
100.000 elements, 32 

temperature steps 

200.000 elements, 32 

temperature steps 

PARSEC-Blackscholes 4 K options 16 K options 

PARSEC-Fluidanimate 5 frames, 35 K particles 5 frames, 100 K particles 

PARSEC-Swaptions 
16 swaptions, 10,000 

simulations 

32 swaptions, 20.000 

simulations 

 

3.7 Performance Evaluation Metrics 

Choosing suitable multicore performance metrics helps in evaluating design 

alternatives in system software and architecture in the multicore era. Performance metrics 

are classified into two sets: user-oriented metrics like the response time (simulation total 

execution time) that indicates how long it takes to do a task, and system-oriented metrics 

like throughput that focuses on the total work done per unit of time. Here, we use average 

instructions per cycle (IPC) the inverse of cycles per instruction (CPI). We use the 

visualization CPI stacks to interpret the change of CPI characterization over time, and we 

use the utilization metric (U %), mainly, the total processor utilization. 

  To take the power consumption into account, we use average runtime power 

consumed from the MCPAT tool integration. Therefore, designers can make tradeoffs 

and optimize performance within an allocated power budget. 

The performance of multicore design alternatives is evaluated in two techniques; 

a raw comparison which compares original processors features without any 

modifications, and normalized comparison (Abandah et al., 1998) which normalizes the 

technology-related features and focuses on three main parameters in multicore design: 

memory hierarchy, interconnection network, and cache coherence protocol.  
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The normalized comparison better exposes the performance differences due to 

microarchitecture main features rather than the underlying technology and component 

sizes. 

3.8 Validation 

The Sniper paper (Carlson, et al. 2011) and its validation journal version (Carlson, 

et al. 2014a) validated Sniper multicore simulator on Intel Core 2 and Nehalem real 

hardware, respectively. For validation issue, we have validated Sniper multicore 

simulator version 6.1 by reproducing their validation work (Carlson, et al. 2014a) on Intel 

Xeon X5550 (Nehalem codename). See Table 3.3 for the validated Nehalem core 

configuration. We reproduce 39 simulations of 13 applications from SPLASH2 

benchmark suite (see Table 3.4 for SPLASH2 benchmark applications and its input sets). 

Table 3.3 Validated Nehalem core configuration. 

Component Configuration 

Processor 1 and 2 sockets, 4 cores per socket 

Core 2.66GHz, 4-way dispatch, 128-entry ROB 

Branch predictor 8 cycles penalty 

L1-I 32KB, 4 way, 4 cycle access time 

L1-D 32KB, 8 way, 4 cycle access time 

L2 cache 256KB per core, 8 way, 8 cycle 

L3 cache 8MB per 4 cores, 16 way, 30 cycle 

Main memory QPI, 12.8GB/s per direction 

 

Carlson, et al. (2014a) used 3 types of core models: IW-Centric that supports 

reorder buffer ROB, Interval for in order execution, and One-IPC on a single core and 

large input size of SPLASH2 suite. They compare simulation results with their collected 

results from running the same applications on real hardware. We reproduced the same 

simulations’ results by taking the SPLASH2 applications and simulate them using the 

three core models. By so, we got the 39 results shown in Table 3.5.  
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We tried to match exact configurations, but we keep in mind that any absolute 

numbers we found in the validation paper are for a specific version of Sniper, with very 

specific application binaries and command lines, etc. Also, Nehalem core model in the 

current version of Sniper has some improvements to suite the recent processors like 

instruction extensions, and branch prediction techniques. 

Table 3.4 Validated benchmarks and input sets. 

SPLASH2 Benchmarks Input Set 

Barnes 32,768 particle 

Cholesky tk29.O 

FFT 4M points 

Fmm 32,768 particles 

Lu.cont 1,024×1,024 matrix 

Lu.ncont 1,024×1,024 matrix 

Ocean.cont 1,026×1,026 ocean 

Ocean.ncont 1,026×1,026 ocean 

Radiosity -room 

Radix 1M integers 

Raytrace car –m64 –a4 

Raytrace_opt car –m64 –a4 

Water.nsq 2,197 molecules 

Water.sp 2,197 molecules 

 

 

Figure 3.5 Validation of Sniper multicore simulator, the first column for real hardware. Each two 

consecutive columns are from the new and old results from the same core model. 
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The comparison between the old and new IPC results in Figures 3.5 showed the 

similarity results view. In addition, that the results of recent simulations tend to be more 

accurate than the old results relative to hardware results in most of the simulations. Hence, 

the results agree in general with negligible differences and the same results relations.

Table 3.5 IPC results of our validation and the results of Sniper1 validation paper 2014. 

SPLASH2 

Applications 

IWC 

results 
Interval results 

IPC 

results 

Real hardware 

results 
Old New Old New Old New 

Barnes 1.42 1.28 1.58 0.73 0.88 0.89 1.166 

Cholesky 2.44 2.13 2.31 1.73 0.83 0.79 2.281 

FFT 1.416 1.83 1.58 1.93 0.63 0.64 1.166 

Fmm 2.22 2.42 2.66 2.66 0.93 0.97 1.80 

Lu.cont 2.5 2.45 2.42 2.31 0.92 0.95 2.375 

Lu.ncont 2.42 2.32 2.27 2.10 0.80 0.76 2.00 

Ocean.cont 0.55 0.61 0.75 0.68 0.20 0.23 0.5 

Ocean.ncont 0.63 0.66 0.75 0.68 0.20 0.21 0.55 

Radiosity 1.65 1.56 2.38 1.09 0.92 0.98 1.63 

Radix 0.38 0.42 0.38 0.41 0.92 0.95 0.38 

Raytrace 1.24 1.30 1.88 0.97 0.83 0.85 1.08 

Raytrace_opt 1.08 0.85 1.80 0.98 0.81 0.85 1.06 

Water.nsq 1.94 2.01 2.35 1.88 0.87 0.96 1.82 

Water.sp 1.75 1.85 2.13 2.03 0.83 0.92 1.50 
 

 



 
 

 

 

 

 

CHAPTER 4: RAW AND NORMALIZED EVALUATIONS 

 



48 
 

1. https://www.slideshare.net/IntelSoftwareBR/numa-i-step2014 
2. http://slideplayer.com/slide/7090758/ 

4.1 Introduction 

In this chapter, we present the results of our comparative study of the four commodity 

multicore processors. The purpose of this study is to evaluate alternative multicore and many 

core designs, and identify system strengths and bottlenecks in current processors. Also, we 

determine design aspects that have high positive impact on such processors, we identify areas 

that need further investigation and improvement. 

We used the Sniper simulator to evaluate the four common Intel’s server multicore 

processors (Xeon brand). Recall that two of them are bus based multi-socket architectures 

(Dunnington/Core2 based and Gainestown/Nehalem based microarchitectures). The others 

are NoC based architectures (2d mesh and bidirectional ring interconnection network). They 

are state of the art multicore and many core processors (Haswell and Xeon Phi based 

processors). Although the four multicore processors share many similarities, they have 

significant differences that lead to large performance differences.  

 For fair comparison, we used eight multi-threaded benchmark applications with small 

and large input sets. Four of these applications are from SPLASH benchmark suite, which 

are Radix, FFT, LU, and Cholesky. The other four are from PARSEC benchmark suite, which 

are Canneal, Blackscholes, Fluidanimate, and Swaptions. The eight benchmarks have 

interesting differences (Mohammad and Abandah 2016). 

We used total execution time (Ex. time) in milliseconds, instructions per cycle (IPC), 

and cycles per instruction (CPI) stack changes over time. In addition to the average thread 

utilization, we used average dynamic run time power (P) in Watts. 

The next section presents the raw comparison, and Section 4.3 presents the 

normalized comparison.  

https://www.slideshare.net/IntelSoftwareBR/numa-i-step2014
http://slideplayer.com/slide/7090758/
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4.2 Raw Comparison 

This section presents the raw comparison where we use Sniper configuration files that 

select components of the same size and speed as those used in the four case-study processors. 

The four processors design alternatives are explained in Chapter 3. Figures 4.1, 4.2, 4.3, and 

4.4 show the four case-study multicore design alternatives as plotted by Sniper multicore 

simulator. These figures show the multi-core processors networks, memory hierarchy 

organizations that contain number of caches and their sizes, and number of memory 

controllers.  

Parameterizing the configuration files of the Dunnington and Gainestown were easy 

because there are detailed publications (Carlson, et al. 2011), (Carlson, et al. 2014a), and 

(Rolf, Trent. 2009). Also, parameterizing the Xeon Phi configuration file was easy because 

it is supported as an open source example from the Sniper multicore simulator and also there 

are detailed publications, e.g., (Rahman, R. 2013). The last Haswell configuration is the 

hardest design to collect all of its detailed features. We used few specifications that are 

provided from Intel home page, and some related publications, e. g., (Molka, et al. (2015). 

https://www.slideshare.net/IntelSoftwareBR/numa-i-step2014
http://slideplayer.com/slide/7090758/
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Figure 4.1 Multi-socket Dunnington based microarchitecture (Sniper simulator output).

Figure 4.2 Multi-socket Gainestown based microarchitecture (Sniper simulator output).

https://www.slideshare.net/IntelSoftwareBR/numa-i-step2014
http://slideplayer.com/slide/7090758/
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Figure 4.3 Haswell based microarchitecture (Sniper simulator output). 

 

Figure 4.4 Xeon Phi based microarchitecture (Sniper simulator output). 

 

https://www.slideshare.net/IntelSoftwareBR/numa-i-step2014
http://slideplayer.com/slide/7090758/
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Some of the factors that affect multicore performance are:  

• Number, type and size of cache levels. 

• Core interconnection network and network link bandwidth. 

• Number of memory controllers, memory type, memory link bandwidth and 

speed, and number of memory channels per memory controller. 

• Technology node. 

• Branch predictor type and penalty. 

• TLB size and associativity. 

•  Processor base frequencies. 

 

The overall processor performance has a positive relationship with processor clock 

frequiency. The following equation is the CPU performance equation. 

𝑆𝑒𝑐𝑜𝑛𝑑𝑠

𝑃𝑟𝑜𝑔𝑟𝑎𝑚
=
𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠

𝑃𝑟𝑜𝑔𝑟𝑎𝑚
×

𝐶𝑙𝑜𝑐𝑘𝑠

𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠
×
𝑆𝑒𝑐𝑜𝑛𝑑𝑠

𝐶𝑙𝑜𝑐𝑘
 

The performance equation describes the three main factors of any processor 

performance: which are, in order, instruction count (IC), clocks per instruction (CPI), and 

clock time (CT). Processor frequency is the reciprocal of clock time. Hence, higher processor 

frequency generally gives lower execution time. Therefore, higher performance.  

The network in multicore processors is conceptually between the different LLC and 

DRAM. We can configure processor network in two ways: either as a multi-socket system 

where each socket has a shared LLC and locally connected DRAM. In this case, the network 

models the QPI interface. This mode is used in the Gainestown configuration which models 

an Intel Nehalem-like system. Figure 4.5 shows how local and remote communications 

happen over the two QPI links. Although Gainestown and Dunnington use buses to connect 

sockets together, but Dunnington uses legacy FSB.  

https://www.slideshare.net/IntelSoftwareBR/numa-i-step2014
http://slideplayer.com/slide/7090758/
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Figure 4.5 Local and remote communications in multi-socket Gainestown microarchitecture1. 

The second network type is where we have a single processor chip with multiple 

LLCs connected through an NoC, such as an Intel Xeon Phi Knights Corner implementing 

2D mesh NoC with L2 as LLC. The second example is Haswell architecture that implements 

bi-directional ring NoC over L3 NUCA cache slices. Figure 4.6 shows the two NoC 

topologies, 2d mesh and ring network. The squares in graphs represent processing elements 

(PE) or cores and the black circles represent routers that are responsible of routing packets 

between cores. 

 

Figure 4.6 The two common NoC; a) 2D mesh topology, b) ring topology2.

https://www.slideshare.net/IntelSoftwareBR/numa-i-step2014
http://slideplayer.com/slide/7090758/
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4.2.1 Total Execution Time  

This subsection presents and analyzes the user perspective performance metric and 

the first order performance insight; total execution time (Ex. time) in milliseconds. Figure 

4.7 and Figure 4.8 show the total execution time for running the eight multithreaded 

applications on the four multicore alternatives with the small and large input data sets (Table 

3.2).  

 

Figure 4.7 Execution times for running eight benchmark applications with small input size over the 

four multicore design alternatives. 
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Xeon Phi 12.62 13.32 29.49 64.92 31.99 96.33 373.3 182.2

Haswell 2.182 4.443 7.376 13.24 7.63 25.2 77.54 35.37
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Figure 4.8 Execution times for running eight benchmark applications with large input size over the 

four multicore design alternatives. 

 

We see big differences in performance amongst all multicore alternatives. Also, we 

see how benchmark applications execution times depend on the workload data set. There is 

positive relationship between the application input set size and the application execution 

times. Haswell design shows high performance in all multithreaded applications, due to its 

high component speeds and sizes. It’s the most recent technology relative to the other 

systems.  Haswell has the highest clock rate (3.2 GHz) and highest bus speed (9.6 GT/s). The 

bus based systems, Gainestown and Dunnington have the same frequency (2.66 GHz), but 

Gainestown has higher bus speed than Dunnington. Xeon Phi has the minimal processor 

frequency (1.05 GHz), but its communication speed is higher than the other two bus based 

systems.
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1. https://en.wikipedia.org/wiki/DDR_SDRAM 
 

In fact, the data transfer rates and memory bandwidth are highly dependable on the 

memory type. Figure 4.9 shows common memory types and their corresponding data rates. 

Furthermore, each multicore microarchitecture supports several types of DRAM memory and 

has different number of channels. So, the max memory bandwidth varies depending on these 

two factors. Dunnington has three channels of double data rate memory (DDR2-533 MHz) 

for each socket, Gainestown has four channels of DDR3 for each socket, Haswell has four 

channels of DDR4, and Xeon Phi has two channels of the new graphic memory (GDDR5) 

for one memory controller. GDDR5 memory type supports high memory bandwidth and is 

suitable for graphics and HPC. Also, the lack of TLB buffer makes it less efficient in terms 

of throughput and latency in Dunnington and Xeon Phi microarchitectures. The TLB 

improves overall CMP performance (Lustig, et al. 2013) (Mittal, S. 2016). 

 
Figure 4.9 Various memory types and their corresponding data rates1. 

 

It’s clear that Xeon Phi has the least performance. Although it is designed for HPC 

and low memory latency, but the target performance of its design is aggregated over many 

core architecture (60+ cores). Its low frequency, small L1 and L2 cache sizes, and the lack 

of L3 cache are main reasons behind this low performance. 

  The two medium performance values are for the two bus-based systems. In fact, in 

all multithreaded applications, Gainestown shows better performance than Dunnington. 

https://en.wikipedia.org/wiki/DDR_SDRAM
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One important reason is the high speed quick path interconnect (QPI) instead of 

Dunningtons FSB.  Although that Dunnington has larger cache L2 and lower miss rates as 

shown in Figures 4.10 and 4.11. Gainestown hides these misses better by its high-speed 

communications using high speed QPI. 

There is an exceptional case of the Canneal benchmark application with small input 

data set. Gainestown has execution time better than Haswell with small difference value. This 

can be interpreted due to the number of L3 cache sharing cores. In Gainestown there is 8 MB 

L3 cache shared by four cores for each socket, but Haswell has 8 MB L3 cache shared by 

eight cores. Hence, with small data set size of Canneal, most of instructions and data fit into 

L1 and L2 caches and the rest data lies in L3 cache. Thus, most of the work in Gainestown 

is done locally, there is small ratio of remote memory or DRAM accesses. Haswell has fewer 

available L3 banks and hence more misses and more DRAM accesses. 

4.2.2 L2 Cache Miss Rate 

Figure 4.10 and Figure 4.11 show L2 miss rates for the four multicore design 

alternatives when running the eight benchmark applications with small and large input data 

sets, respectively. We observe that the size and sharing property are playing a large impact 

on processor performance.  

The best performance design, from L2 miss rate point of view, is Dunnington 

processor, due to its largest L2 cache size (3072KB), despite it is shared by two cores. Xeon 

Phi comes in the second rank as it has larger cache size (512 KB private L2) than Haswell 

and Gainestown (256 KB L2).   

Although Haswell has L2 miss rates fewer than Gainestown processor, they have the 

same L2 cache sizes. We think that the larger ROB size in Haswell leads to more data space 
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locality hits in the L2 cache. Although the L2 cache misses affects the over all performance, 

but Haswell and Gainestown hides these misses by their higher clock rates, higher 

parallelizing features, and higher speed of QPIs. 

Most benchmarks behave similiraly, but Swaptions benchmark has low miss rates in 

the four multicore alternatives with the small and large data sets. Swaptions is a highly 

memory intensive application and is a data streaming workload where there is a large working 

set and little data reuse. Sniper simulator gives the number of L2 accesses and the number of 

total instructions. By so, we can compute the probability of accesses to the L2 cache. In 

Swaptions benchmark the average probablility of L2 accesses over all cores is very small. As 

an example, the L2 accesse propability in Haswell design is equall to 0.0039 with large data 

set. 

 

Figure 4.10 L2 Miss rates for running eight benchmark applications with small input size over the 

four multicore design alternatives. 
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Figure 4.11 L2 Miss rates for running eight benchmark applications with large input size over the four 

multicore design alternatives. 
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4.3 Normalized Comparison 

This section presents the normalized comparison where we use Sniper configuration 

files that preserve the architectural and network differences, but put the four multicore design 

alternatives on the same technological level, i.e., same network speeds and same component 

sizes and speeds. The configuration files configure Sniper to simulate the four derived 

systems: nDunnington, nGainestown, nXeon Phi, and nHaswell. We select modern 

component sizes and speeds like those used in Haswell (Table 3.1). The four derived systems, 

unlike the original Haswell, have high memory bandwidth as Xeon Phi processors. See 

Figures 4.12, 4.13, 4.14, and 4.15 for further detail about the cache sizes and normalized 

design features. 

Figure 4.12 Normalized multi-socket Dunnington based microarchitecture (Sniper simulator 

output). 
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Figure 4.13 Normalized multi-socket Gainestown based microarchitecture (Sniper simulator 

output). 

Figure 4.14 Normalized one socket Haswell based microarchitecture (Sniper simulator output). 

The network in Figure 4.14 is bidirectional ring topology as plotted by the Sniper 

simulator. However, the two sides of the network graph are connected via QPI links to 

perform the ring. 
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Figure 4.15 Normalized one socket Xeon Phi based microarchitecture (Sniper simulator output). 

The following subsections present the performance evaluation results using 

performance metrics for their normalized comparison with analysis. It is worth mentioning 

that we used the multithreaded application characterization results concluded by Mohammad 

and Abandah, (2015) in analyzing the behaviours of the multithreaded applications on these 

multicore design alternatives.  

4.3.1 Total execution Time  

This subsection presents and analyzes the user perspective performance metric; total 

execution time in milliseconds. Figure 4.16 and Figure 4.17 show the total execution times 

for running the eight benchmark applications with small and large input sizes over the four 

normalized multicore design alternatives, respectively. 
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Comparing the results shown in Figures 4.16 and 4.17 gives a general view of the 

overall system performance for the four normalized systems. Another advantage for this 

comparison is identifying the impact of changing the data set input size on performance for 

all the applications from SPLASH2 and PARSEC suites. As application problem size is 

scaled up, the execution time increases. 

The nHaswell time shown in Figure 4.16 is the best performance for six benchmarks; 

FFT, Radix, Lu.cont, Cholesky, Canneal, and Fluidanimate. The system of worst 

performance is the nXeon Phi in most cases because it lacks L3 cache and due to the time 

spent on the routing protocol. However, the 2D mesh spent is relatively more time in 

computing the shortest path because of many paths possibilities. The two multi-socket bus 

based systems (nDunnington and nGaineston) behave very close to each other with minor 

differences. Further investigation and evaluation for the multicore design alternatives are 

done through evaluatinging the CPI stack for all multithreaded workloads in Section 4.3.3. 

Also, we evaluate the multithreaded benchmarks behaviors. 

  Most multithreaded benchmarks have small differences between execution times of 

the four multicore designs except Canneal benchmark. It shows big differences in the 

execution time of simulation over the four designs. However, Canneal is a memory intensive 

application, it has around 70% of memory contribution on the CPI stack (will be discussed 

later in the CPI stack section). The mem-DRAM contribution is the reason behind the large 

memory access latency. Also, the multicore designs have various memory designs, such as 

different cache levels, private or shared caches, and existence of NUCA cache.
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Figure 4.16 Execution times for running eight benchmark applications with small input size over the 

four normalized multicore design alternatives. 

 

Figure 4.17 Execution times for running eight benchmark applications with large input size over the 

four normalized multicore design alternatives. 
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4.3.2 Average Core IPC 

The average number of instructions per clock cycle, or IPC, is a function of the 

machine and program. The IPC or its reciprocal CPI is a system throughput metric (Eeckhout, 

et al. 2010). The CPI depends on the actual instructions appearing in the program, for 

example, a floating-point intensive application might have a higher CPI than an integer-based 

program. Also. It depends on the processor features. When each instruction takes one cycle, 

CPI or IPC = 1. The IPC can be <1 due to memory stalls and slow instructions. The IPC can 

be > 1 on machines that execute more than 1 instruction per cycle (superscalar). 

Figures 4.18 and 4.19 show the average IPC for running the eight benchmark 

applications with the small and large input sizes over the four normalized multicore design 

alternatives. The normalized Haswell (nHaswell) with its ring topology and NUCA L3 cache 

shows high throughput IPC over all benchmarks with large and small input sizes. Multi-

socket nGainestown with its QPI interconnect comes in the second performance position. 

The nDunnington has IPC performance less than nGainestown, because of the sharing 

property of L2 every two cores in nDunnington, where that decreases the L2 cache 

availability and increases cache misses. The least performance is the nXeonPhi processors. 

The evaluation of IPC or CPI stacks performance metrics are explained briefly in the next 

Section. 

 The two figures show large differencies in IPC among the eight benchmarks, these 

differencies relate to the high differencies in cache misses in each benchmark. As an example, 

the average L2 miss rate for Cholesky is about 54% for nDunnington but it is about 7.8% for 

the same multicore design, and so for the others. Radix benchmark has very close IPC values 

over multicore design alternatives, high percent of CPI loss due to compute time (close to 
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95% CPI), and negligable synchronization contribution (around 0.05%). Mohammad and 

Abandah, (2015) mentioned that Radix has a small sharing degree where 90% of shared data 

are shared with only one thread. Because we configure all designs at the same in-core 

configurations, most of the designs have the same time spent due to computation components. 

FFT, Radix, Blackscholes, Fluidanimate, and Swaptions show very close IPC values 

over the four design alternatives. This happens becuase they are mostly compute intensive 

applications, like FFT, Radix and Blackscholes. As all designs put at the same computation 

technological components, the show same time spent to compute. The Fluidanimate and 

Swaptions have the same behavior even they are highly memory intensive applications 

because they have large working memory sets but without data reuse or minimum 

communication slack. 

 

Figure 4.18 Average core IPC for running the eight benchmark applications with the small input 

sizes over the four normalized multicore design alternatives. 
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Figure 4.19 Average core IPC for running the eight benchmark applications with the large input 

sizes over the four normalized multicore design alternatives. 

4.3.3 CPI Cycle Stack 

 The CPI stack equals 1/IPC, and depends on performance for one specific 

architecture. However, the CPI components can provide a breakdown in base components 

CPI, and gives more insight than looking at IPC alone. Hence, we use CPI stacks to evaluate 

performance. By cycle stacks we can understand and analyze performance of multi-threaded 

workloads over different microarchitectures. CPI stacks can quantify where the cycles have 

gone, and provide more information than raw event rates, such as miss rates of the memory 

hierarchy and branch predictors. A cycle stack is typically plotted as a stacked bar with the 

different components showing the relative contribution of each component to overall 

performance. The main benefit of a CPI cycle stack is that it provides quick insight into the 

major performance bottlenecks, which hints towards optimization opportunities. This is 

particularly interesting for analyzing parallel software and hardware performance.  
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By analyzing how the cycle stacks change with changing the different processor 

designs, one can understand whether designing bottlenecks come from synchronization 

overhead, poor performance in the memory hierarchy, load imbalance, etc. Figure 4.20 is an 

example to show how Sniper can visualize performance CPI stack over time. The shown 

output is from simulation of Haswell-like design running Canneal benchmark with large data 

input set. Figure 4.20(a) shows the simple CPI stack (compute, memory, branch, and 

synchronization contribution on system CPI). It also shows how CPI changes corresponds to 

the IPC. Figure 4.20(b) shows detailed CPI stack which we used to interprent the simple CPI 

stack. The base CPI is typically shown at the bottom of the CPI stack and represents useful 

workdone. The other CPI components, which reflect ‘lost’ cycle opportunities due to miss 

events such as branch mispredictions, and cache and TLB misses, are stacked on top of each 

other. Figure 4.20(c) demonstrates Sniper ability to focus on a single CPI component 

contribution. 
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Figure 4.20 An example of Haswell simulation output a) simple b) detailed c) single component. 

a) 

b) 

c) 
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 In the following CPI stack graphs, from Figure 4.21 to Figure 4.36, we present the 

multithreaded benchmarks CPI stack changes over time and correlating these CPI 

downbreaks with the IPC changes over time. We used detailed CPI stack graphs and single 

components contribution graphs as explained in the previous example in Figure 4.20. 

Unfortunately, due to space limitation, we can not include the detailed and single components 

graphs.  They are large data statistics outputted from 64 simulations. But include all 

simulation results on compact disk (CD) that is attached with this thesis. 

Figure 4.21 shows FFT benchmark CPI stack with small input size. FFT is a compute 

and memory intensive application. The CPI stack shows how the computation (in red) has 

significant ration in the CPI stack. The time spent on computation doesn’t change over all 

designs (around 0.21 CPI). However, we fixed all in-core and branch prediction 

specifications. The other key design bottleneck is memory components. It is the reason for 

performance changes over the four case-study designs. nHaswell has the smallest execution 

time (1.88 ms) and largest IPC. The worst case is with nXeon phi microarchitecture (2.679 

ms). The memory contribution in nXeon takes place in more misses in CPI. The lack for L3 

stresses maximize the need for off-chip DRAM accesses. The medium performance of the 

two bus based systems put them in the second and third performance ranking levels (2.105 

ms and 2.138 ms) for nGainestown and nDunnington, respectively. We can point the more 

role for private L2 cache in nGainestown over shared L2 cache of nDunnington. The more 

L2 cache available per core, the more hit rates. Also, the more IPC.  
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Figure 4.22 shows the second FFT IPC stack with the large input data set, we can see 

that in all applications as the problem scaled up the memory contributions increases, because 

the parallel applications stresses more the memory hierarchy which results in a significant 

fraction of time spent on cache misses and off-chip DRAM accesses.  

The other interesting conclusion is when the FFT problem scaled up the 

synchronization overhead becomes very small percent. Mohammad and Abandah, (2015) 

presented that the number of synchronization calls per 106 memory accesses generally 

decreases because these synchronization calls either are at fixed points of the code and they 

do not increase as the problem size increases. From FFT CPI stacks, we showed that the 

synchronization contribution becomes dominant factor in three positions in the execution 

time; in the start, middle and final. But with more than of three quarters of the time execution, 

synchronization has negligible contribution on CPI loss. As the problem scaled up, FFT 

behaves unexpectedly. The L3 cache accesses becomes overhead for memory contribution. 

The needed data were lied in DRAM. In addition, FFT has small sharing degree, 100% of 

shared data are shared by one thread Mohammad and Abandah, (2015).  Therfore, nHaswell 

has the largest CPI losses due to off tile-LLCs L3 contribution. nXeon on the other hand, has 

high memory cycle stalls due to the lack of upper cache levels. Therefore, more off-chip 

DRAM accesses. In the case of bus based systems. They are the more suitable for FFT like 

benchmarks. Gaining 2.390 IPC and 2.377 IPC for nGainestown and nDunnington 

processors, respectively. The IPC drop for nDunnington because sharing property of L2 

cache. 
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Figure 4.21 CPI stack over time for running SPLASH2-FFT benchmark application with small 

input size over the four normalized multicore design alternatives. 
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Figure 4.22 CPI stack over time for running SPLASH2-FFT benchmark application with large input 

size over the four normalized multicore design alternatives.
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Radix benchmark CPI stacks are shown in Figures 4.23 and 4.24. The design 

bottleneck is the integer and floating-point computation (24% Floating-point operations), 

high percent of CPI loss due to compute time (close to 95% CPI), Radix has negligable 

synchronization contribution (around 0.05%). Mohammad and Abandah, (2015) mentioned 

that Radix has a small sharing degree where 90% of shared data are shared with only one 

thread. Because we configure all designs at the same in-core configurations, most the designs 

have the same time spent due to computation components. But at the last quarter of 

simulation, Radix transfers to become memory intensive application (near 86% CPI). nXeon 

spent more highest (relatively) time in waiting for memory stall cycles, therefore, it needs 

4.577 ms execution time. On the other hand, nHaswell consumes the smallest Execution time 

equal to 4.476 ms. It needs smallest time processing memory operations. nDunnington and 

nGainestown also, have medium execution times (4.63 ms and 4.53 ms respectively). 

nDunnington has more memory contribution. Its mem-L2 contribution is close to 1.2 % CPI 

on average at the end of execution time, instead of nGainestown mem-L2 contribution about 

1.15 % CPI.  

Radix is the same as FFT benchmark, in case of large problem size. The 

synchronization calls do not increase when number of memory accesses increases. Therefore, 

memory contribution increases and synchronization decreases. All system designs exhibit the 

same 0.33 IPC in the most of their execution times. But, at the end of simulation, the memory 

components contribute the CPI stack and be a key role in varying the total overall 

performance. The design systems have the same performance order as small problem size. 

nHaswell, nGainestown, nDunnington and nXeon, we ordered them from the best 

performance to the worst. 
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Figure 4.23 CPI stack over time for running SPLASH2-Radix benchmark application with small 

input size over the four normalized multicore design alternatives. 
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Figure 4.24 CPI stack over time for running SPLASH2-Radix benchmark application with large 

input size over the four normalized multicore design alternatives. 
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Lu.cont benchmark CPI stacks are shown in Figures 4.25 and 4.26 , it is a compute 

intensive multithreaded application, that have 85 % floating-point and need to synchronize 

data between cores every time period. So, the synchronization become design bottleneck in 

performance evaluation as we scaled up for larger and larger data sets. Lu.cont needs design 

that minimizes the core-to-core communication overhead. Mohammad and Abandah (2015) 

presented that Lu.cont has more than 92% of the data sharing among each four threads. 

Multicore that able to minimize memory contribution on CPI stack. In small problem size, 

nHaswell has the hieghest performance or minimum execution time (7.32 ms). Due to its 

efficient memory design that minimize time spent for the memory components, and for it is 

high bidirectional speed ring which achieves good tolerance with core-to-core 

communication overhead (less than 0.10 % on average). nXeon, on the other hand, exhibits 

similar synchronization contribution, but the design bottleneck was the memory components. 

Bus based systems behave differently. nDunnington suffers from large 

synchronization contribution comparable to nGainestown. nGainestown benefits from QPI 

to speed up core-to-core communication. The other advantage of nGainestown is its private 

level 2 cache which minimize L2 cache misses leading to minimizing memory contribution 

on CPI stack. 

 Figure 4.26 shows Lu.cont benchmark CPI stacks in the case of large problem size. 

We concluded that the four multicore design alternatives behave in the same manner of small 

input size. The differences are increasing memory contribution and decreasing 

synchronization contribution on CPI stacks. nHaswell has best performance, then 

nGainestown, nDunnington, and finally nXeon, with 52.36 ms, 54.40 ms, 54.36 and 58.00 

ms, respectively. 
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Figure 4.25 CPI stack over time for running SPLASH2-Lu.cont benchmark application with small 

input size over the four normalized multicore design alternatives. 
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Figure 4.26 CPI stack over time for running SPLASH2-Lu.cont benchmark application with large 

input size over the four normalized multicore design alternatives. 
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Cholesky benchmark application is shown in Figures 4.27 and 4.28, for the small and 

large problem sizes, respectively. It is classified as compute and memory intensive 

application. Mohammad and Abandah (2015), concluded that it has minimum core-to-core 

communication, each thread communicates with itself, i.e. each thread reads from or writes 

to memory locations that it previously wrote to them and shared them with other threads. 

Initial thread sometimes communicates with all other threads. We get same conclusion. All 

figures present minimal synchronization CPI contribution (less than 0.01 % in most execution 

time). nDunnington has larger memory contribution than nGainestown. The worst case refers 

to the weaknesses of memory hierarchy of nXeon (max of 52% CPI to 17% at the end of 

simulation at large problem size). The lack for level 3 cache is the main reason. On the other 

hand, nHaswell exhibit highest performance because it has better memory efficiency (max 

of 38% decreasing to 23% at the end of the simulation at large problem size). We get same 

behavior of design alternatives in small input size. Notice that memory contribution for large 

problem size increases their contribution. An interesting point that Cholesky, after period of 

execution, benefits from its communication slack in decreasing far memory accesses and 

therefore increasing IPC. 

The branch prediction contribution on CPI starts to be one of the design bottlenecks 

in PARSEC benchmark applications (Blackscholes, Swaptions and Fluidanimate), they 

have larger contribution (relatively to SPLASH2 applications) valuable percent of 

synchronization overhead near 25 % of overall system CPI. Branch prediction contribution 

differences on all normalized systems will be negligible because we fixed their branch 

prediction features. 
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Figure 4.27 CPI stack over time for running SPLASH2-Cholesky benchmark application with small 

input size over the four normalized multicore design alternatives. 
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Figure 4.28 CPI stack over time for running SPLASH2-Cholesky benchmark application with large 

input size over the four normalized multicore design alternatives. 
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Blackscholes application CPI stacks changes over time which are shown in Figures 

4.29 and 4.30, Blackscholes have small sharing degree between threads, minimum core-to-

core communication, like FFT benchmark (Mohammed and Abandah, 2015). We get the 

same application characterization. Figure 4.29 show that synchronization contribution on CPI 

of all multithreaded workload does not exceed 2% of their CPI stacks.  

Blackscholes is a compute intensive application more than 80 % of CPI in most of 

design alternatives, the floating-point units in Blackscholes are design bottlenecks. But, as 

we normalized all in-core specifications and without core-to-core communications. There are 

negligible differences on alternatives performance due to computation contribution. 

Furthermore, nDunnington exhibit more memory contribution than nGainestown. nXeon the 

largest (relatively) memory contribution. nHaswell the best design that behaves will for 

memory design bottleneck. 

 Mohammad and Abandah (2015), presented that Blackscholes communication has a 

large percent of slack in the ranges of 99.5% for small input size, and 99.9% of slack for 

large problem size. That interprets why memory contribution decreases as we go to end of 

execution time. 
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Figure 4.29 CPI stack over time for running PARSEC-Blackscholes benchmark application with 

small input size over the four normalized multicore design alternatives. 
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Figure 4.30 CPI stack over time for running PARSEC-Blackscholes benchmark application with 

large input size over the four normalized multicore design alternatives. 
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Canneal is a memory intensive application because it has around 70% of memory 

contribution on CPI stack for small problem size and around 72% for large problem size, as 

shown in Figures 4.31 and 4.32, respectively. For large input size, nHaswell has the largest 

IPC (0.595) and smallest execution time (57.96ms). The mem-DRAM contribution is the 

reason behind the large memory access latency, nXeon Phi clearly shows larger memory 

contribution on CPI stack rather than other designs (a round 65% of processor CPI). On the 

other hand, nHaswell drops its mem-DRAM contribution from 8% at the start of simulation 

to 0.06 % at the end of simulation. However, Mohammad and Abandah (2015) concluded 

that Canneal’s communication has a large percent of slack in the ranges of tens of millions 

of instructions and more, where it has 86.5% of slack in these ranges for small problem size 

and 90.4% of slack in these ranges for large problem size. This behavior indicates that cache 

hierarchy of L1, L2, and NUCA L3 slices in nHaswell satisfies the benchmarks data 

requirements. More cache hits due to communication slack. Hence, minimize DRAM 

accesses. This type of applications needs efficient memory hierarchies. Larger cache sizes 

and more than two levels of caches. Also, ring NoC serviced synchronization overhead better 

than others (0.23 to max of 0.25 CPI over time). nXeon with 2d mesh has synchronization 

CPI of (0.4 to 0.43 CPI over time). The bus-based two systems exhibit medium performance 

values (IPC and ex. times) from the other nHaswell and nXeon alternatives, but with small 

differences between them. nDunnington presents more memory contribution on CPI stack 

(1.54- 1.55 CPI) rather than nGainestown memory contribution (1.51 -1.52 CPI) over 

simulation time. The reason is the shared L2 per 2 cores in ndunnington versus the same size 

private L2. Higher mem-l2 contribution is for nDunnington which starts from (0.51% to 

minimum 0.40) at the end of simulation time (benifiting from communication slack). And 

(0.46 % to 0.40) for nGainestown. Because there are more available L2 memory banks for 
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each core. All multicores have the same integer compute contribution on CPI stack which 

equals (0.28 CPI).  

Fluidanimate application CPI stacks change over time are shown in Figures 4.33 and 

4.34. Fluidanimate has large percent of synchronization overhead (close to 50% of CPI stack) 

for all multicore design alternatives. This overhead is due to Fluidanimate’s partitioning of 

the work among the threads and each thread handles its portion, also they interact with other 

threads to handle the shared data (Mohammed and Abandah, 2015). The nHaswell design 

presents better performance over other multicore design alternatives. There execution times 

are 193.5ms, 196.4ms, 196.9ms and 203.1ms, for nHaswell, nGainestown, nDunnington and 

nXeon, respectively. The higher memory contribution in nXeon is responsible for higher CPI. 

On the other hand, nHaswell LLCs minimize the time loss due to memory components. 

nGainestown’s private L2 cache exihipit smaller contribution than nDunnington shared L2 

cache. Swaptions application CPI Stacks in Figures 4.35 and 4.36. It shows different 

behavior versus other applications. The performance CPI statistics, for large problem size, 

behave more like some constant lines over two partitions of execution time. In the first half 

of application execution time, the CPI contribution is mainly on the compute components 

(arround 52.5 % of CPI stack) and (12.5 % of CPI satck) for synchronization and (20% of 

CPI) for branch prediction, finally, (15 % CPI) for memory components. Then, in the second 

half of execution time, the main contribution component transfers to be the synchronization 

(87% of CPI stack), due to the high percent of core-to-core communication overheads. 

Therefore, that explain the huge decreases in IPC in the second half of of application 

execution. We saw that Swaptions performance statistics have negligible differencess over 

the four normalized systems. In small input size, the memory contribution becomes less 

slightly than it in large problem size.  
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Figure 4.31 CPI stack over time for running PARSEC-Canneal benchmark application with small 

input size over the four normalized multicore design alternatives. 
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Figure 4.32 CPI stack over time for running PARSEC-Canneal benchmark application with large 

input size over the four normalized multicore design alternatives. 
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Figure 4.33 CPI stack over time for running PARSEC-Fluidanimate benchmark application with 

small input size over the four normalized multicore design alternatives. 

0

20

40

60

80

100

0 10000 20000 30000 40000 50000 60000 70000
time
(µs)

0

20

40

60

80

100

0 10000 20000 30000 40000 50000 60000 70000
time
(µs)

0

20

40

60

80

100

0 10000 20000 30000 40000 50000 60000 70000 80000
time
(µs)

0

20

40

60

80

100

0 10000 20000 30000 40000 50000 60000 70000
time
(µs)

CPI (%) 

nDunnington 

 

CPI (%) 

nGainestown 

 

CPI (%) 

nXeon Phi 

CPI (%) 

nHaswell 

 

 

 

 

 



91 
 

 

 

 

 

 

Figure 4.34 CPI stack over time for running PARSEC-Fluidanimate benchmark application with 

large input size over the four normalized multicore design alternatives. 
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Figure 4.35 CPI stack over time for running PARSEC-Swaptions benchmark application with small 

input size over the four normalized multicore design alternatives. 
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Figure 4.36 CPI stack over time for running PARSEC-Swaptions benchmark application with large 

input size over the four normalized multicore design alternatives. 
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As conclusion, high speed synchronization over ring NoC in nHaswell and 2d mesh 

in nXeon Phi play a main role in minimizing the core-to-core communication overheads. But, 

the synchronization design bottleneck due to core-to-core communication overhead appears 

on the two bus-based microarchitectures. Moreover, nDunnington suffers more from shared 

L2 losses. Also, nXeon Phi suffers from large memory contribution on CPI losses especially 

in large data set. In compute-intensive or communication-intensive applications the memory 

weakness design has a negligible affect on the overall system performance. The different 

behaviour with FFT and Canneal, nHaswell consumes higher execution times because it has 

minimum interprocessor communication and not benefits from high speed ring network. 

4.3.4 Average Core Utilization 

The elapsed idle time is the inverse of system utilized time. The processor idle time 

relates to the core time spent without usefull work. The core is called idle when it is waiting 

for threads synchronization futex or core-to-core communication. In addition, when it suffers 

from system stall cycles waiting for data from low level cache hierarchies. Hence, leading to 

larger delay and larger execution time. The sytem waiting futex simply occures when we are 

tracing the original parent thread, and it is doing nothing but waiting for some other threads 

to finish. We conclude that the high utilization multicore system is the one which can hide 

losses and minimizes synchronization and memory bottlenecks.  

For the tilization metric, we use average core utilization percent (%). The following 

equations are used to calculate this metric:  

Utilization % = per thread utilization time * 100 %               .............................       (1)  

Per thread utilization time = total execution time – thread idle time       .............      (2)  
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 Figures 4.37 and 4.38 show the average core utilization for running the eight 

benchmark applications with the small and large input sizes over the four normalized 

multicore design alternatives.  

Low time utilization percent and high performance are two opposite goals. However, 

sometimes the higher utilization is not required, like with power aware systems. However, 

power consumption increases in case of higher utilization percent. Utilization and power 

consumption are a budjet factors in designing multicore processors. They are often used in 

trade-off performance evaluations. 

Although the design utilization differencies look small but they show some 

indications. nXeon exhibits minimum utilization relative to the other designs. It has more 

idle time due the memory contribution in Radix, Lu.cont, Blackscholes, Fluidanimate, and 

Swaptions. nHaswell exhipits larger utilization percent in many benchmarks such as Radix, 

Lu.cont, Cholesky, Blackscholes. It minimizes the cycle stalls and idle time leading to 

minimum execution times. An interesting conclusion from these graphs is that a linear 

relation between minimum execution times and higher utilization is not always agiven. The 

reason for the exception may refer to applicatiom load imbalance. 

It is worth mentioning that not all benchmarks are good scaling application. However, 

Fluidanimate only uses five cores in all simulations, the rest of three cores are idle all the 

time. Thus, Fluidanimate is classified as poor scaling application. Fluidanimate averaged 

cache L2 miss rates that appeare in Figures 4.10 and 4.11 are averaged and calculated over 

five cores. All other seven workloads make use of all eight cores. 
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The second interesting behavior that we can concluded is that some multithreaded 

benchmarks have poor load balance. Blackscholes, Canneal, Swaptions and Fluidanimate 

have idle time percent larger than or equal to 99.5 %   for a working core and its cache miss 

rate is large relatively to the other cores in the other design alternatives. This core is 

responsiple for application initialization and communicates with other threads in the 

processor. Cholesky, FFT, Lu.cont, and Radix on the other hand, have a good load balance, 

all threads in the benchmarks have the same percent of instructions executed and the same 

percent of idle time. 

Swaptions and Fluidanimate have low utilization compared with the other 

benchmarks, because they have high communication overhead. The cores stay idle more than 

50% of the time waiting for data from each other. The synchronization contribution for 

Fluidanimate is around 50% of the CPI stack (Figures 4.33 and 4.34). Swaptions has 

synchronization contribution around 25% in the first half of execution then transfer to be 

87% in the second half of the execution time. 
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Figure 4.37 Average core utilization for running the eight benchmark applications with the small 

input sizes over the four normalized multicore design alternatives. 

 

Figure 4.38 Average core utilization for running the eight benchmark applications with the large 
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4.3.5 Power Consumption 

Figures 4.39 and 4.40 show the average runtime dynamic power for running the eight 

benchmark applications with the small and large input sizes over the four normalized 

multicore design alternatives. 

The higher power dissipation for nHaswell in most benchmarks is due to high 

utilization time percent and minimum idle time. Also, due to the FLow control unITs (FLITs) 

size of ring topology, a FLIT is a unit or amount of data when the message is transmitting in 

any network link. However, the message or packet size is the dominant deciding factor among 

many others in deciding the flit width. Based on the message size, there are two design 

choices, if we want to keep the size of each packet small, then the number of packets must 

increase, hence, increasing the traffic. The alternative option is to keep the size of the packet 

large and make lesser transactions. So, based on the size of the packets, the width of the 

physical link between two routers have to be increased. Meaning, larger link width leads to 

more area and higher power dissipation. 

The small power dissipation in 2D mesh relates to the large (relatively) core idle time. 

Because the cores spend more time in waiting due to the memory stalls. Also, the lower size 

of link transfer unit becomes the second reason for lower power consumption. However, 2D 

mesh network has small FLITs relative to the ring topology. In addition, the relative smaller 

area of Xeon Phi leads to small power consumption because of the lack of L3 cache.  

The power consumption for bus-based systems is less than the power of Haswell 

architecture and larger than Xeon Phi processors. Bus based systems have more time spent 

for synchronization issues, then minimum utilization. 
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Figure 4.39 Average runtime dynamic power for running the eight benchmark applications with the 

small input sizes over the eight normalized multicore design alternatives. 

 

Figure 4.40 Average runtime dynamic power for running the eight benchmark applications with the 

large input sizes over the four normalized multicore design alternatives. 
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The L3 cache in bus based designs plays a key role in increasing power consumption 

rather than nXeon Phi architecrure. More area a multicore has, more power it consumes.  In 

fact, nGainestown consumes more power than nDunnington, due to the higher utilization of 

processors because that QPI links decreases the time of synchronization cycles. FFT and 

Canneal benchmark applications have different behaviour with large problem size. However, 

nHaswell consumes minimum power because it has minimum core-to-core communication 

and minimum synchronization waiting cycles. 

An exception case appears with Swaptions and Fluidanimate. The rule that higher 

utilization gives higher power consumption is not present here. They have the lowest 

utilization, but they consume larger power than two of the other benchmarks. This behavior 

can be interpreted by their high core to core communication as mentioned in the previous 

section (they have more than 50% synchronization contribution of the CPI stack). The cores 

stay idle waiting each other but the whole processor works on synchronization between them. 

We perform Kiviat chart for the four-metrics used in performance evaluation. It summarizes 

all the above explanations. 

 

Figure 4.41. Kiviat chart for performance evaluation for the four multicore design alternatives.
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1. http://www.realworldtech.com/common-system-interface/5/ 
 

4.3.6 Cache Coherence Protocol 

In the MESI protocol, when a processor requests a cache line that is stored in multiple 

locations, every location might reply with the data. However, the requesting processor just 

needs a single copy of the data, so the system is wasting link bandwidth for sending extra 

data. The added F state changes the role of the Shared (S) state. In the MESIF protocol, only 

a single copy of a cache line may be in the F state and that instance is the only one that may 

be duplicated the cache line in the F state is used to respond to any read requests, while the 

S state cache lines are now silent and do not respond. By designating a single cache line to 

respond to requests, coherency traffic is substantially reduced. Figure 4.42 demonstrates the 

advantages of MESIF versus the old MESI protocol, reducing two data responses to a single 

response (acknowledgements are not shown). Note that a peer node is simply any node in the 

system that contains a cache line. Normalized Haswell does not benefit from MESIF protocol 

because all cores share L3 NUCA cache which has the inclusive property. Hence, any cache 

request will found in L3 or in DRAM not in other core caches. Swaptions and Fluidanimate 

have performance drop.  MESIF sometimes adds relative overhead to executing some 

benchmarks; like Fluidanimate and Swaptions due to their low sharing degree. Figures 4.43 

and 4.44 show how the MESIF cache coherence protocol enhances the system performance. 

 
Figure 4.42. MESI versus MESIF Protocol1.

http://www.realworldtech.com/common-system-interface/5/
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Figure 4.43 Average core IPC for running four SPLASH2 benchmark applications with large input 

size over the four studied multicore design alternatives with MESI/MESIF cache coherence 

protocols.  
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Figure 4.44 Average core IPC for running four PARSEC benchmark applications with large input 

size over the four studied multicore design alternatives with MESI/MESIF cache coherence 

protocols. 
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CHAPTER 5: THESIS CONCLUSION AND FUTURE WORK
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5.1  Introduction 

This chapter presents the conclusions regarding the thesis’s methodology, raw and 

normalized multicores comparisons, and results analyses. Also, it presents some proposed 

future work. 

5.2 Conclusions 

 The purpose of this thesis is to evaluate the performance of commodity multicore 

processors and find the strengths and weaknesses of their design features to help designers 

to develop multicore applications and design new processors. To achieve this goal, first, we 

chose four commercial multicore processors from Intel’s server list (Xeon brand), two of 

them are bus based multi-socket architectures (Core2 and Nehalem based multicores). And 

two are NoC based architectures (2d mesh and bidirectional Ring interconnection network) 

where they are Haswell and Xeon Phi based processors. They were chosen because they 

cover wide range of recent multicore design options. 

Second, we chose a set of parallel applications that are representative of multi-core 

applications and are widely used in recent multi-core research. This set consists of eight 

applications from two benchmark suits. Four of these applications are from SPLASH suite, 

where they are Radix, FFT, LU, and Cholesky. The other four are from PARSEC suite, which 

are Canneal, Blackscholes, Fluidanimate, and Swaptions. These applications were selected 

because they represent a wide range of applications and are often used in multi-core research. 

To study the impact of application problem size on the communication behavior, we worked 

on two problem sizes of each application: small and large sizes (Table 3.2). 
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Third, Sniper multicore simulator is used to evaluate performance of the selected 

multicore design alternatives. We chose Sniper simulator because it is relatively fast and is 

an accurate execution driven simulator and is validated under real hardware (Carlson, et al. 

2014a). 

Multithreaded benchmark applications behave differently due to scaling input sets. 

When using a small input, most of the working set of multithreaded workloads fits in the last-

level cache LLC, and the time that is spent on the compute units contributes (relatively) more 

to the total run time. On the other hand, with a large input, most benchmarks stress the 

memory hierarchy which results in a significant fraction of time spent on cache misses and 

off-chip DRAM accesses. 

By characterizing benchmarks performance, we show how different these 

benchmarks are with respect to each other, some of them have steady cmponents contribution 

like Blackscholes and Canneal. However, the contribution of CPI component seems to be 

constant over all the time of simulation. Swaptions applications is computation and memory 

intensive workload in the first half of the execution time, then transfers to become large 

synchronization and communication intensive workload. This parallel application needs 

multicore processor design that have high level of core compute units beside high speed 

communication and efficient memory designs. Memory contribution on CPI stack of some 

benchmarks gradually decreases over time due to its high percent of communication slack; 

like Cholesky and Lu.cont benchmarks. 
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 Most benchmarks have good scaling feature and make use of all processor cores 

except Fluidanimate benchmarks. However, it uses only five cores out of eight cores in all 

multicore alternatives. Another load imbalance appers in using initial core for benchmarks. 

Blackscholes, Fluidanimate, Canneal, and Swaptions benchmarks have this initial thread with 

nearly 99.9% idle time. Cholesky, FFT, Lu.cont, and Radix have good load balancing. 

Using cycle stacks provides excellent indication on how design bottlenecks change 

as multicore configurations changes. As we change sytem design features, the contributions 

of individual cycle components vary significantly. From nHaswell and nXeon Phi to bus-

based microarchitectures (nDunnington and nGainestown) an interesting system strengths 

and weaknesses are concluded. 

We found that normalized Haswell exhibits better performance in forms of execution 

time (69 ms) and system throughput (1.39 IPC) averaged over the eight multithreaded 

benchmarks for the large data sets. This relatively high performance is probably due to the 

following architectural features: private level 2 cache, large level 3 shared non-uniform cache 

access (NUCA). And the high-speed core-to-core communication through the bidirectional 

ring NoC. On the other hand, it relatively consumes large power (52.3 watts). 

We concluded that the bus-based microarchitectures are no longer able to meet the 

requirements of new HPC workloads due to the obvious weakness in their handling of the 

synchronization and communication overheads, which for sure will increase in future many-

core architectures. The normalized Gainestown and normalized Dunnington have average 

execution times of 74 ms and 73 ms, respectively and have average throughput of 1.33 IPC 

and 1.31 IPC, respectively. Also, they consume power equal to 50.14 watts and 49.99 watts 

on average, respectively. 
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When analyzing nXeon Phi architecture, we concluded that although it shows lower 

power consumptions (48.14 watts). Designers should do further research in developing its 

memory components. Xeon Phi suffers relatively from larger CPI loss in memory intensive 

applications (1.27 IPC) leading to larger execution times (77.25 ms on average). Most of the 

performance bottleneck concentrates on the off-chip DRAM access and smaller in core units. 

Finally, we have shown that the Modified Exclusive Shared Invalid Forward (MESIF) 

cache coherence protocol enhances the multicore performance, compared with the older 

MESI protocol. Normalized Dunnington has speedup of 1.028x.  normalized Gainestown has 

1.027x of speed up. Normalized Xeon Phi has 1.01x speed up. But normalized haswell does 

not benefit from MESIF protocol because it has only one socket and all cores share NUCA 

cache. MESIF sometimes adds relative overhead to executing some benchmarks; like 

Fluidanimate and Swaptions, because of their low sharing degree. 

 

5.3 Future work 

In our work, we did microarchitectural simulations for common Intel multicore 

processors. Therefore, the future work is to do performance evaluations for other multicore 

processors from other vendors like AMD, ARM, and Nvidia, etc.   

In addition, we plan to develop Sniper multicore simulator to support MOESI cache 

coherence protocol which it is the recent cache coherence protocol for AMD multicore 

processors. The workload which is used in this research is multithreaded benchmark 

applications. So, one of the future works is to use multi-program workload in simulations 

(Multi multithreaded workload).  
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The studied multicore processors are homogenuous processors, that mean all cores 

have the same specifications, but there is a new open research studies about hetrogenuous 

multicore designs, which is a good future work.  The hyper multithreading SMT property 

and Intel over clocking are implemented in recent multicore processors. Hence, adding these 

features to the simulations will be a future work.  

 Finally, Sniper supports simulating many core processors from 10 to 100 cores. We 

plan to study our design alternatives with more than eight cores and evaluate their 

performance. By so, we can examine their scalability bottlenecks.
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APPENDIX A: USAGE INSTRUCTIONS 

All simulator files and the studied applications are put in one compressed file, which is 

called Sniper.tar.gz. Extract the compressed file in the home directory. The Sniper directory 

contains three directories, which are Sniper files, pin_kit, Boost, and Benchmarks, 

which contains both PARSEC and SPLASH suites. 

A.1 Environment Setup 

  First, the environment should be prepared to run Sniper successfully. Make sure the 

required libraries shown in Table A.1 are installed. This table specifies the required libraries and 

how to install them. 

Table A.1. The required libraries. 

Library Method of installation 

g++ sudo apt-get install g++ 

x11  sudo apt-get install libx11-dev 

zlib1g sudo apt-get install zlib1g-dev 

libbz2 sudo apt-get install libbz2-dev 

libsqlite3 sudo apt-get install libsqlite3-dev 

Libboost sudo apt-get install libboost-dev 

xsltproc sudo apt-get install xsltproc 

Libxmu sudo apt-get install libxmu-dev 

gfortran sudo apt-get install gfortran 

Expat sudo apt-get install libexpat1-dev 

Xt   sudo apt-get install libxt-dev 
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Xext sudo apt-get install libxext-dev 

Xmu sudo apt-get install libxmu-dev 

Xi sudo apt-get install libxi-dev 

m4   sudo apt-get install m4 

perl5 
1- Download perl, perl-base, and perl-module of version 5.14.2-21   from  

https://launchpad.net/ubuntu/raring/amd64/perl/5.14.2-21 

2- Force install by "sudo dpkg --force-all -i perl*", 

 Where you must run it from the same downloaded files directory. 

Note: If system deny downgrade perl package, type in terminal: 

sudo rm /var/lib/dpkg/lock then downgrade perl. 

Boost 
1- Download Boost version 1_59_0 from the link below 

         http://sourceforge.net/projects/boost/files/boost/1.59.0/ 

2- Extract the downloaded package in the Sniper directory. 

gnuplot 
1- Download gnuplot-5.0.2 from the link below 

         https://sourceforge.net/projects/gnuplot/files/ 

2- Extract and Install it by the print following commands: 

$ tar xzf gnuplot-5.0.1.tar.gz 

$ cd gnuplot-5.0.1 

$ ./configure 

$ make 

$ sudo make install 

 

A.2 Downloading Sniper 

Sniper simulator is an open source, so we request the the download link for the latest version 

Sniper 6.1 from their website http://www.Snipersim.org/w/Download  

Then extract it in the home directory by running the following commands. 
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Cd Downloads 

Wget < download link you got by mail> 

A.3 PIN Installation 

First, download pin, binary instrumentation tool, version pin-2.14-71313-gcc.4.4.7-linux, from 

this link https://software.intel.com/en-us/articles/pin-a-binary-

instrumentation-tool-downloads 

Extract the downloaded pin tool in a folder pin_kit then copy to a Sniper directory, for note; 

we now have 2 folders in you Sniper directory; pin and pin_kit. 

A.4 Compiling Sniper 

Now, the environment is ready for installing Sniper, install it by running the following 

commands: 

cd Sniper 

~/Sniper$ Make –j 2 (to take advantage of parallel simulation) here our host machine has 2 

cores. 

Next, you can verify your installation by running a small test Application. 

 ~/Sniper$ cd test/fft 

~/Sniper/test/fft$ make run

https://software.intel.com/en-us/articles/pin-a-binary-instrumentation-tool-downloads
https://software.intel.com/en-us/articles/pin-a-binary-instrumentation-tool-downloads
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A.5 Benchmarks Downloading, Installation and Building 

Sniper is compatible with SPLASH2 and PARSEC, the selected multithreaded applications, to 

downloading and building the benchmarks, run the following command: 

 cd Sniper 

~/Sniper$ wget http://Snipersim.org/packages/Sniper-benchmarks.tbz  

Extract the benchmarks compressed file: 

~/Sniper$ tar xjf Sniper-benchmarks.tbz 

Enter the banchmarks folder and set the roots: 

~/Sniper$ cd benchmarks 

~/Sniper/benchmarks$ export GRAPHITE_ROOT=/path/to/Sniper  

Here, you should write your Sniper folder path, an example of my Sniper path is: 

/home/aiesha/Sniper instead of /path/to/Sniper 

~/Sniper/benchmarks$ export BENCHMARKS_ROOT=$(pwd 

~/Sniper/benchmarks$ make  

SPLASH2 has four input sets: tiny, small, test (this is the defualt input size for all benchmarks 

applications), and large (this is the best to show the performance of multicores) on the other hand, 

PARSEC has simsmall, test, simdev, simlarge, simmedium sizes. Table A.2 show the studied eight 

multithreaded applications from the two selected representative benchmarks SPLASH2 and 

PARSEC, and also, there input sets. 

 

http://snipersim.org/packages/sniper-benchmarks.tbz
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Table A.2. The names of the studied benchmarks applications and input sets. 

Suite Benchmarks Applications Input sets 

SPLASH2 

Radix Small large 

Fft Small large 

lu.cont Small large 

Cholesky Small large 

PARSEC 

Canneal Simsmall simmeduim 

Blackscholes Simsmall simmeduim 

  Fluidanimate   Simsmall   simmeduim 

Swaptions Simsmall simmeduim 

 

A.6 Running Simulations 

Sniper supports python user configuration files which passing configuration options to the 

simulations. We use four configuration files original and normalized design alternatives, these files 

in Appendix B., For example, to characterize FFT on eight threads and using problem Size “small” 

on Haswell microarchitecture, providing the power and visualization option, run the following 

command. 

cd Sniper/benchmarks 

~/Sniper/benchmarks$./run-Sniper -p SPLASH2-fft -i small -n 8 –viz --

power -c haswell 
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APPENDIX B: Sniper configuration files 

Core2/Dunnington 

Microarchitecture 

 

[bbv] 

sampling = 0 

 

[caching_protocol] 

type = 

"parametric_DRAM_directory_msi" 

variant = "mesi" 

 

[clock_skew_minimization] 

report = "false" 

scheme = "barrier" 

 

[clock_skew_minimization/barrier] 

quantum = 100 

 

[core] 

spin_loop_detection = "false" 

 

[core/cheetah] 

enabled = "false" 

max_size_bits_global = 36 

max_size_bits_local = 30 

min_size_bits = 10 

 

[core/hook_periodic_ins] 

ins_global = 1000000 

ins_per_core = 10000 

 

[core/light_cache] 

num = 0 

 

[dvfs] 

transition_latency = 10000 

type = "simple" 

 

[dvfs/simple] 

cores_per_socket = 4 

 

[fault_injection] 

injector = "none" 

type = "none" 

 

[general] 

enable_icache_modeling = "true" 

enable_pinplay = "false" 

enable_signals = "false" 

enable_smc_support = "false" 

enable_syscall_emulation = "true" 

inst_mode_end = "fast_forward" 

inst_mode_init = "cache_only" 

inst_mode_output = "true" 

inst_mode_roi = "detailed" 

issue_memops_at_functional = "false" 

magic = "true" 

Nehalem core/Gainestown 

Microarchitecture 

 

[bbv] 

sampling = 0 

 

[caching_protocol] 

type = 

"parametric_DRAM_directory_msi" 

variant = "mesi" 

 

[clock_skew_minimization] 

report = "false" 

scheme = "barrier" 

 

[clock_skew_minimization/barrier] 

quantum = 100 

 

[core] 

spin_loop_detection = "false" 

 

[core/cheetah] 

enabled = "false" 

max_size_bits_global = 36 

max_size_bits_local = 30 

min_size_bits = 10 

 

[core/hook_periodic_ins] 

ins_global = 1000000 

ins_per_core = 10000 

 

[core/light_cache] 

num = 0 

 

[dvfs] 

transition_latency = 2000 

type = "simple" 

 

[dvfs/simple] 

cores_per_socket = 1 

 

[fault_injection] 

injector = "none" 

type = "none" 

 

[general] 

enable_icache_modeling = "true" 

enable_pinplay = "false" 

enable_signals = "false" 

enable_smc_support = "false" 

enable_syscall_emulation = "true" 

inst_mode_end = "fast_forward" 

inst_mode_init = "cache_only" 

inst_mode_output = "true" 

inst_mode_roi = "detailed" 

issue_memops_at_functional = 

"false" 

Haswell Microarchitecture 

 

[bbv] 

sampling = 0 

 

[caching_protocol] 

type = 

"parametric_DRAM_directory_msi" 

variant = "mesif" 

 

[clock_skew_minimization] 

report = "false" 

scheme = "barrier" 

 

[clock_skew_minimization/barrier] 

quantum = 100 

 

[core] 

spin_loop_detection = "false" 

 

[core/cheetah] 

enabled = "false" 

max_size_bits_global = 36 

max_size_bits_local = 30 

min_size_bits = 10 

 

[core/hook_periodic_ins] 

ins_global = 1000000 

ins_per_core = 10000 

 

[core/light_cache] 

num = 0 

 

[dvfs] 

transition_latency = 2000 

type = "simple" 

 

[dvfs/simple] 

cores_per_socket = 1 

 

[fault_injection] 

injector = "none" 

type = "none" 

 

[general] 

enable_icache_modeling = "true" 

enable_pinplay = "false" 

enable_signals = "false" 

enable_smc_support = "false" 

enable_syscall_emulation = "true" 

inst_mode_end = "fast_forward" 

inst_mode_init = "cache_only" 

inst_mode_output = "true" 

inst_mode_roi = "detailed" 

issue_memops_at_functional = 

"false" 

magic = "true" 

Xeon Phi Microarchitecture 

 

[bbv] 

sampling = 0 

 

[caching_protocol] 

type = 

"parametric_DRAM_directory_msi" 

variant = "mesi" 

 

[clock_skew_minimization] 

report = "false" 

scheme = "barrier" 

 

[clock_skew_minimization/barrier] 

quantum = 100 

 

[core] 

spin_loop_detection = "false" 

 

[core/cheetah] 

enabled = "false" 

max_size_bits_global = 36 

max_size_bits_local = 30 

min_size_bits = 10 

 

[core/hook_periodic_ins] 

ins_global = 1000000 

ins_per_core = 10000 

 

[core/light_cache] 

num = 0 

 

[dvfs] 

transition_latency = 2000 

type = "simple" 

 

[dvfs/simple] 

cores_per_socket = 1 

 

[fault_injection] 

injector = "none" 

type = "none" 

 

[general] 

enable_icache_modeling = "true" 

enable_pinplay = "false" 

enable_signals = "false" 

enable_smc_support = "false" 

enable_syscall_emulation = "true" 

inst_mode_end = "fast_forward" 

inst_mode_init = "cache_only" 

inst_mode_output = "true" 

inst_mode_roi = "detailed" 

issue_memops_at_functional = 

"false" 

magic = "true" 
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num_host_cores = 0 

 

roi_script = "false" 

suppress_stderr = "false" 

suppress_stdout = "false" 

syntax = "intel" 

total_cores = 8 

 

[hooks] 

 

 

[instruction_tracer] 

type = "none" 

 

[log] 

circular_log = "false" 

disabled_modules = "" 

enabled = "false" 

enabled_modules = "" 

mutex_trace = "false" 

pin_codecache_trace = "false" 

stack_trace = "false" 

 

[loop_tracer] 

iter_count = 36 

iter_start = 0 

 

[network] 

collect_traffic_matrix = "false" 

memory_model_1 = "bus" 

memory_model_2 = "bus" 

system_model = "magic" 

 

[network/bus] 

bandwidth = 8 

ignore_local_traffic = "false" 

 

[network/bus/queue_model] 

type = "contention" 

 

[network/emesh_hop_by_hop] 

concentration = 1 

dimensions = 2 

hop_latency = 2 

link_bandwidth = 64 

size = "" 

wrap_around = "false" 

 

[network/emesh_hop_by_hop/broadca

st_tree] 

enabled = "false" 

 

[network/emesh_hop_by_hop/queue_

model] 

enabled = "true" 

type = "history_list" 

 

[network/emesh_hop_counter] 

hop_latency = 2 

link_bandwidth = 64 

 

[osemu] 

magic = "true" 

num_host_cores = 0 

 

roi_script = "false" 

suppress_stderr = "false" 

suppress_stdout = "false" 

syntax = "intel" 

total_cores = 8 

 

[hooks] 

 

 

[instruction_tracer] 

type = "none" 

 

[log] 

circular_log = "false" 

disabled_modules = "" 

enabled = "false" 

enabled_modules = "" 

mutex_trace = "false" 

pin_codecache_trace = "false" 

stack_trace = "false" 

 

[loop_tracer] 

iter_count = 36 

iter_start = 0 

 

[network] 

collect_traffic_matrix = "false" 

memory_model_1 = "bus" 

memory_model_2 = "bus" 

system_model = "magic" 

 

[network/bus] 

bandwidth = 25.6 

ignore_local_traffic = "true" 

 

[network/bus/queue_model] 

type = "contention" 

 

[network/emesh_hop_by_hop] 

concentration = 1 

dimensions = 2 

hop_latency = 2 

link_bandwidth = 64 

size = "" 

wrap_around = "false" 

 

[network/emesh_hop_by_hop/broadc

ast_tree] 

enabled = "false" 

 

[network/emesh_hop_by_hop/queue_

model] 

enabled = "true" 

type = "history_list" 

 

[network/emesh_hop_counter] 

hop_latency = 2 

link_bandwidth = 64 

 

num_host_cores = 0 

 

roi_script = "false" 

suppress_stderr = "false" 

suppress_stdout = "false" 

syntax = "intel" 

total_cores = 8 

 

[hooks] 

 

 

[instruction_tracer] 

type = "none" 

 

[log] 

circular_log = "false" 

disabled_modules = "" 

enabled = "false" 

enabled_modules = "" 

mutex_trace = "false" 

pin_codecache_trace = "false" 

stack_trace = "false" 

 

[loop_tracer] 

iter_count = 36 

iter_start = 0 

 

[network] 

collect_traffic_matrix = "false" 

memory_model_1 = 

"emesh_hop_by_hop" 

system_model = "magic" 

 

[network/bus] 

ignore_local_traffic = "true" 

 

[network/bus/queue_model] 

type = "contention" 

 

[network/emesh_hop_by_hop] 

concentration = 1 

dimensions = 1 

hop_latency = 2 

link_bandwidth = 80 

size = "" 

wrap_around = "true" 

 

[network/emesh_hop_by_hop/broadc

ast_tree] 

enabled = "false" 

 

[network/emesh_hop_by_hop/queue_

model] 

enabled = "true" 

type = "windowed_mg1" 

 

[network/emesh_hop_counter] 

hop_latency = 2 

link_bandwidth = 64 

 

[osemu] 

clock_replace = "true" 

num_host_cores = 0 

 

roi_script = "false" 

suppress_stderr = "false" 

suppress_stdout = "false" 

syntax = "intel" 

total_cores = 8 

 

[hooks] 

 

 

[instruction_tracer] 

type = "none" 

 

[log] 

circular_log = "false" 

disabled_modules = "" 

enabled = "false" 

enabled_modules = "" 

mutex_trace = "false" 

pin_codecache_trace = "false" 

stack_trace = "false" 

 

[loop_tracer] 

iter_count = 36 

iter_start = 0 

 

[network] 

collect_traffic_matrix = "false" 

memory_model_1 = 

"emesh_hop_by_hop" 

system_model = "magic" 

 

[network/bus] 

ignore_local_traffic = "true" 

 

[network/bus/queue_model] 

type = "contention" 

 

[network/emesh_hop_by_hop] 

concentration = 1 

dimensions = 2 

hop_latency = 4 

link_bandwidth = 256 

size = "4:2" 

wrap_around = "false" 

 

[network/emesh_hop_by_hop/broadc

ast_tree] 

enabled = "false" 

 

[network/emesh_hop_by_hop/queue_

model] 

enabled = "true" 

type = "windowed_mg1" 

 

[network/emesh_hop_counter] 

hop_latency = 2 

link_bandwidth = 64 

 

[osemu] 

clock_replace = "true" 
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clock_replace = "true" 

nprocs = 0 

pthread_replace = "false" 

time_start = 1337000000 

 

[perf_model] 

 

[perf_model/branch_predictor] 

mispredict_penalty = 15 

size = 1024 

type = "pentium_m" 

 

[perf_model/cache] 

levels = 3 

 

[perf_model/core] 

core_model = "nehalem" 

frequency = 2.666 

logical_cpus = 1 

type = "interval" 

 

[perf_model/core/interval_timer] 

dispatch_width = 4 

issue_contention = "true" 

issue_memops_at_dispatch = "false" 

lll_cutoff = 30 

lll_dependency_granularity = 64 

memory_dependency_granularity = 8 

num_outstanding_loadstores = 8 

window_size = 96 

 

[perf_model/core/static_instruction_c

osts] 

add = 1 

branch = 1 

delay = 0 

div = 18 

dynamic_misc = 1 

fadd = 3 

fdiv = 6 

fmul = 5 

fsub = 3 

generic = 1 

jmp = 1 

mem_access = 0 

mul = 3 

recv = 1 

spawn = 0 

string = 1 

sub = 1 

sync = 0 

tlb_miss = 0 

unknown = 0 

 

[perf_model/DRAM] 

controller_positions = "" 

controllers_interleaving = 4 

direct_access = "false" 

latency = 173 

num_controllers = -1 

per_controller_bandwidth = 2.5 

type = "constant" 

[osemu] 

clock_replace = "true" 

nprocs = 0 

pthread_replace = "false" 

time_start = 1337000000 

 

[perf_model] 

 

[perf_model/branch_predictor] 

mispredict_penalty = 8 

size = 1024 

type = "pentium_m" 

 

[perf_model/cache] 

levels = 3 

 

[perf_model/core] 

core_model = "nehalem" 

frequency = 2.66 

logical_cpus = 1 

type = "rob" 

 

[perf_model/core/interval_timer] 

dispatch_width = 4 

issue_contention = "true" 

issue_memops_at_dispatch = "false" 

lll_cutoff = 30 

lll_dependency_granularity = 64 

memory_dependency_granularity = 8 

num_outstanding_loadstores = 10 

window_size = 128 

 

[perf_model/core/rob_timer] 

address_disambiguation = "true" 

commit_width 4 

in_order = "false" 

issue_contention = "true" 

issue_memops_at_issue = "true" 

mlp_histogram = "false" 

outstanding_loads = 48 

outstanding_stores = 32 

rob_repartition = "true" 

rs_entries = 36 

simultaneous_issue = "true" 

store_to_load_forwarding = "true" 

 

[perf_model/core/static_instruction_c

osts] 

add = 1 

branch = 1 

delay = 0 

div = 18 

dynamic_misc = 1 

fadd = 3 

fdiv = 6 

fmul = 5 

fsub = 3 

generic = 1 

jmp = 1 

mem_access = 0 

mul = 3 

recv = 1 

nprocs = 0 

pthread_replace = "false" 

time_start = 1337000000 

 

[perf_model] 

 

[perf_model/branch_predictor] 

mispredict_penalty = 14 

size = 4096 

type = "pentium_m" 

 

[perf_model/cache] 

levels = 2 

 

[perf_model/core] 

core_model = "nehalem" 

frequency = 3 

logical_cpus = 1 

type = "rob" 

 

[perf_model/core/interval_timer] 

dispatch_width = 4 

issue_contention = "true" 

issue_memops_at_dispatch = "false" 

lll_cutoff = 30 

lll_dependency_granularity = 64 

memory_dependency_granularity = 8 

num_outstanding_loadstores = 72 

window_size = 192 

 

[perf_model/core/rob_timer] 

address_disambiguation = "true" 

commit_width = 4 

in_order = "false" 

issue_contention = "true" 

issue_memops_at_issue = "true" 

mlp_histogram = "false" 

outstanding_loads = 72 

outstanding_stores = 42 

rob_repartition = "true" 

rs_entries = 60 

simultaneous_issue = "true" 

store_to_load_forwarding = "true" 

 

[perf_model/core/static_instruction_c

osts] 

add = 1 

branch = 1 

delay = 0 

div = 10 

dynamic_misc = 1 

fadd = 5 

fdiv = 10 

fmul = 10 

fsub = 5 

generic = 1 

jmp = 1 

mem_access = 0 

mul = 10 

recv = 1 

spawn = 0 

string = 1 

nprocs = 0 

pthread_replace = "false" 

time_start = 1337000000 

 

[perf_model] 

 

[perf_model/branch_predictor] 

mispredict_penalty = 5 

size = 1024 

type = "pentium_m" 

 

[perf_model/cache] 

levels = 2 

 

[perf_model/core] 

core_model = "nehalem" 

frequency = 1.0 

logical_cpus = 1 

type = "interval" 

 

[perf_model/core/interval_timer] 

dispatch_width = 2 

issue_contention = "true" 

issue_memops_at_dispatch = "false" 

lll_cutoff = 30 

lll_dependency_granularity = 64 

memory_dependency_granularity = 8 

num_outstanding_loadstores = 8 

window_size = 64 

 

[perf_model/core/static_instruction_c

osts] 

add = 1 

branch = 1 

delay = 0 

div = 18 

dynamic_misc = 1 

fadd = 3 

fdiv = 6 

fmul = 5 

fsub = 3 

generic = 1 

jmp = 1 

mem_access = 0 

mul = 3 

recv = 1 

spawn = 0 

string = 1 

sub = 1 

sync = 0 

tlb_miss = 0 

unknown = 0 

 

[perf_model/DRAM] 

controller_positions = "" 

controllers_interleaving = 0 

direct_access = "false" 

latency = 80 

num_controllers = 1 

per_controller_bandwidth = 32 

type = "constant" 
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[perf_model/DRAM/cache] 

enabled = "false" 

 

[perf_model/DRAM/normal] 

standard_deviation = 0 

 

[perf_model/DRAM/queue_model] 

enabled = "true" 

type = "history_list" 

 

[perf_model/DRAM_directory] 

associativity = 16 

directory_cache_access_time = 10 

directory_type = "full_map" 

home_lookup_param = 6 

interleaving = 1 

locations = "DRAM" 

max_hw_sharers = 64 

total_entries = 1048576 

 

[perf_model/DRAM_directory/limitle

ss] 

software_trap_penalty = 200 

 

[perf_model/dtlb] 

associativity = 1 

size = 0 

 

[perf_model/fast_forward] 

model = "oneipc" 

 

[perf_model/fast_forward/oneipc] 

include_branch_misprediction = 

"false" 

include_memory_latency = "false" 

interval = 100000 

 

[perf_model/itlb] 

associativity = 1 

size = 0 

 

[perf_model/l1_dcache] 

address_hash = "mask" 

associativity = 8 

cache_block_size = 64 

cache_size = 32 

data_access_time = 3 

dvfs_domain = "core" 

next_level_read_bandwidth = 0 

outstanding_misses = 0 

passthrough = "false" 

perf_model_type = "parallel" 

perfect = "false" 

prefetcher = "none" 

replacement_policy = "lru" 

shared_cores = 1 

tags_access_time = 1 

writeback_time = 150 

writethrough = 0 

 

[perf_model/l1_dcache/atd] 

spawn = 0 

string = 1 

sub = 1 

sync = 0 

tlb_miss = 0 

unknown = 0 

 

[perf_model/DRAM] 

chips_per_dimm = 8 

controller_positions = "" 

controllers_interleaving = 4 

dimms_per_controller = 4 

direct_access = "false" 

latency = 45 

num_controllers = -1 

per_controller_bandwidth = 7.6 

type = "constant" 

 

[perf_model/DRAM/cache] 

enabled = "false" 

 

[perf_model/DRAM/normal] 

standard_deviation = 0 

 

[perf_model/DRAM/queue_model] 

enabled = "true" 

type = "history_list" 

 

[perf_model/DRAM_directory] 

associativity = 16 

directory_cache_access_time = 10 

directory_type = "full_map" 

home_lookup_param = 6 

interleaving = 1 

locations = "DRAM" 

max_hw_sharers = 64 

total_entries = 1048576 

 

[perf_model/DRAM_directory/limitle

ss] 

software_trap_penalty = 200 

 

[perf_model/dtlb] 

associativity = 4 

size = 64 

 

[perf_model/fast_forward] 

model = "oneipc" 

 

[perf_model/fast_forward/oneipc] 

include_branch_misprediction = 

"false" 

include_memory_latency = "false" 

interval = 100000 

 

[perf_model/itlb] 

associativity = 4 

size = 128 

 

[perf_model/l1_dcache] 

address_hash = "mask" 

associativity = 8 

sub = 1 

sync = 0 

tlb_miss = 0 

unknown = 0 

 

[perf_model/DRAM] 

chips_per_dimm = 1 

controller_positions = "" 

controllers_interleaving = 8 

dimms_per_controller = 4 

direct_access = "false" 

latency = 45 

num_controllers = -1 

per_controller_bandwidth = 68 

type = "constant" 

 

[perf_model/DRAM/cache] 

enabled = "false" 

 

[perf_model/DRAM/normal] 

standard_deviation = 0 

 

[perf_model/DRAM/queue_model] 

enabled = "true" 

type = "history_list" 

 

[perf_model/DRAM_directory] 

associativity = 16 

directory_cache_access_time = 10 

directory_type = "full_map" 

home_lookup_param = 6 

interleaving = 1 

locations = "llc" 

max_hw_sharers = 64 

total_entries = 1048576 

 

[perf_model/DRAM_directory/limitle

ss] 

software_trap_penalty = 200 

 

[perf_model/dtlb] 

associativity = 4 

size = 64 

 

[perf_model/fast_forward] 

model = "none" 

 

[perf_model/fast_forward/oneipc] 

include_branch_misprediction = 

"false" 

include_memory_latency = "false" 

interval = 100000 

 

[perf_model/itlb] 

associativity = 4 

size = 128 

 

[perf_model/l1_dcache] 

address_hash = "mask" 

associativity = 8 

cache_block_size = 64 

cache_size = 32 

[perf_model/DRAM/cache] 

enabled = "false" 

 

[perf_model/DRAM/normal] 

standard_deviation = 0 

 

[perf_model/DRAM/queue_model] 

enabled = "true" 

type = "windowed_mg1" 

 

[perf_model/DRAM_directory] 

associativity = 64 

directory_cache_access_time = 10 

directory_type = "full_map" 

home_lookup_param = 6 

interleaving = 1 

locations = "llc" 

max_hw_sharers = 64 

total_entries = 1048576 

 

[perf_model/DRAM_directory/limitle

ss] 

software_trap_penalty = 200 

 

[perf_model/dtlb] 

associativity = 1 

size = 0 

 

[perf_model/fast_forward] 

model = "oneipc" 

 

[perf_model/fast_forward/oneipc] 

include_branch_misprediction = 

"false" 

include_memory_latency = "false" 

interval = 100000 

 

[perf_model/itlb] 

associativity = 1 

size = 0 

 

[perf_model/l1_dcache] 

address_hash = "mask" 

associativity = 8 

cache_block_size = 64 

cache_size = 32 

data_access_time = 3 

dvfs_domain = "core" 

next_level_read_bandwidth = 0 

outstanding_misses = 0 

passthrough = "false" 

perf_model_type = "parallel" 

perfect = "false" 

prefetcher = "none" 

replacement_policy = "lru" 

shared_cores = 1 

tags_access_time = 1 

writeback_time = 0 

writethrough = 0 

 

[perf_model/l1_dcache/atd] 
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[perf_model/l1_icache] 

address_hash = "mask" 

associativity = 8 

cache_block_size = 64 

cache_size = 32 

coherent = "true" 

data_access_time = 3 

dvfs_domain = "core" 

next_level_read_bandwidth = 0 

passthrough = "false" 

perf_model_type = "parallel" 

perfect = "false" 

prefetcher = "none" 

replacement_policy = "lru" 

shared_cores = 1 

tags_access_time = 1 

writeback_time = 0 

writethrough = 0 

 

[perf_model/l1_icache/atd] 

 

[perf_model/l2_cache] 

address_hash = "mod" 

associativity = 12 

cache_block_size = 64 

cache_size = 3072 

data_access_time = 14 

dvfs_domain = "core" 

next_level_read_bandwidth = 0 

passthrough = "false" 

perf_model_type = "parallel" 

perfect = "false" 

prefetcher = "none" 

replacement_policy = "lru" 

shared_cores = 2 

tags_access_time = 3 

writeback_time = 60 

writethrough = 0 

 

[perf_model/l2_cache/atd] 

 

[perf_model/l3_cache] 

address_hash = "mask" 

associativity = 16 

cache_block_size = 64 

cache_size = 16384 

data_access_time = 96 

dvfs_domain = "global" 

passthrough = "false" 

perf_model_type = "parallel" 

perfect = "false" 

prefetcher = "none" 

replacement_policy = "lru" 

shared_cores = 4 

tags_access_time = 10 

writeback_time = 390 

writethrough = 0 

 

[perf_model/l3_cache/atd] 

 

[perf_model/l4_cache] 

cache_block_size = 64 

cache_size = 32 

data_access_time = 4 

dvfs_domain = "core" 

next_level_read_bandwidth = 0 

outstanding_misses = 10 

passthrough = "false" 

perf_model_type = "parallel" 

perfect = "false" 

prefetcher = "none" 

replacement_policy = "lru" 

shared_cores = 1 

tags_access_time = 1 

writeback_time = 0 

writethrough = 0 

 

[perf_model/l1_dcache/atd] 

 

[perf_model/l1_icache] 

address_hash = "mask" 

associativity = 4 

cache_block_size = 64 

cache_size = 32 

coherent = "true" 

data_access_time = 4 

dvfs_domain = "core" 

next_level_read_bandwidth = 0 

passthrough = "false" 

perf_model_type = "parallel" 

perfect = "false" 

prefetcher = "none" 

replacement_policy = "lru" 

shared_cores = 1 

tags_access_time = 1 

writeback_time = 0 

writethrough = 0 

 

[perf_model/l1_icache/atd] 

 

[perf_model/l2_cache] 

address_hash = "mask" 

associativity = 8 

cache_block_size = 64 

cache_size = 256 

data_access_time = 8 

dvfs_domain = "core" 

next_level_read_bandwidth = 0 

passthrough = "false" 

perf_model_type = "parallel" 

perfect = "false" 

prefetcher = "none" 

replacement_policy = "lru" 

shared_cores = 1 

tags_access_time = 3 

writeback_time = 50 

writethrough = 0 

 

[perf_model/l2_cache/atd] 

 

[perf_model/l3_cache] 

address_hash = "mask" 

associativity = 16 

data_access_time = 3 

dvfs_domain = "core" 

next_level_read_bandwidth = 0 

outstanding_misses = 10 

passthrough = "false" 

perf_model_type = "parallel" 

perfect = "false" 

prefetcher = "none" 

replacement_policy = "lru" 

shared_cores = 1 

tags_access_time = 1 

writeback_time = 0 

writethrough = 0 

 

[perf_model/l1_dcache/atd] 

 

[perf_model/l1_icache] 

address_hash = "mask" 

associativity = 8 

cache_block_size = 64 

cache_size = 32 

coherent = "true" 

data_access_time = 3 

dvfs_domain = "core" 

next_level_read_bandwidth = 0 

passthrough = "false" 

perf_model_type = "parallel" 

perfect = "false" 

prefetcher = "none" 

replacement_policy = "lru" 

shared_cores = 1 

tags_access_time = 1 

writeback_time = 0 

writethrough = 0 

 

[perf_model/l1_icache/atd] 

 

[perf_model/l2_cache] 

address_hash = "mask" 

associativity = 8 

cache_block_size = 64 

cache_size = 256 

data_access_time = 8 

dvfs_domain = "core" 

next_level_read_bandwidth = 0 

passthrough = "false" 

perf_model_type = "parallel" 

perfect = "false" 

prefetcher = "none" 

replacement_policy = "lru" 

shared_cores = 1 

tags_access_time = 3 

writeback_time = 50 

writethrough = 0 

 

[perf_model/l2_cache/atd] 

 

[perf_model/l3_cache] 

address_hash = "mask" 

associativity = 16 

cache_block_size = 64 

cache_size = 8192 

[perf_model/l1_icache] 

address_hash = "mask" 

associativity = 4 

cache_block_size = 64 

cache_size = 32 

coherent = "true" 

data_access_time = 3 

dvfs_domain = "core" 

next_level_read_bandwidth = 0 

passthrough = "false" 

perf_model_type = "parallel" 

perfect = "false" 

prefetcher = "none" 

replacement_policy = "lru" 

shared_cores = 1 

tags_access_time = 1 

writeback_time = 0 

writethrough = 0 

 

[perf_model/l1_icache/atd] 

 

[perf_model/l2_cache] 

address_hash = "mask" 

associativity = 8 

cache_block_size = 64 

cache_size = 512 

data_access_time = 22 

dvfs_domain = "core" 

next_level_read_bandwidth = 0 

passthrough = "false" 

perf_model_type = "parallel" 

perfect = "false" 

prefetcher = "none" 

replacement_policy = "lru" 

shared_cores = 1 

tags_access_time = 5 

writeback_time = 1 

writethrough = 0 

 

[perf_model/l2_cache/atd] 

 

[perf_model/l3_cache] 

passthrough = "false" 

perfect = "false" 

 

[perf_model/l4_cache] 

passthrough = "false" 

perfect = "false" 

 

[perf_model/llc] 

evict_buffers = 8 

 

[perf_model/nuca] 

enabled = "false" 

 

[perf_model/stlb] 

associativity = 1 

size = 0 

 

[perf_model/sync] 

reschedule_cost = 1000 

 



120 
 

 

passthrough = "false" 

perfect = "false" 

 

[perf_model/llc] 

evict_buffers = 8 

 

[perf_model/nuca] 

enabled = "false" 

 

[perf_model/stlb] 

associativity = 1 

size = 0 

 

[perf_model/sync] 

reschedule_cost = 1000 

 

[perf_model/tlb] 

penalty = 0 

penalty_parallel = "true" 

 

[power] 

technology_node = 45 

vdd = 1.6 

 

[progress_trace] 

enabled = "false" 

filename = "" 

interval = 5000 

 

[queue_model] 

 

[queue_model/basic] 

moving_avg_enabled = "true" 

moving_avg_type = 

"arithmetic_mean" 

moving_avg_window_size = 1024 

 

[queue_model/history_list] 

analytical_model_enabled = "true" 

max_list_size = 100 

 

[queue_model/windowed_mg1] 

window_size = 1000 

 

[routine_tracer] 

type = "none" 

 

[sampling] 

enabled = "false" 

 

[scheduler] 

type = "pinned" 

 

[scheduler/big_small] 

debug = "false" 

quantum = 1000000 

 

[scheduler/pinned] 

core_mask = 1 

interleaving = 1 

quantum = 1000000 

 

cache_block_size = 64 

cache_size = 8192 

data_access_time = 30 

dvfs_domain = "global" 

passthrough = "false" 

perf_model_type = "parallel" 

perfect = "false" 

prefetcher = "none" 

replacement_policy = "lru" 

shared_cores = 4 

tags_access_time = 10 

writeback_time = 0 

writethrough = 0 

 

[perf_model/l3_cache/atd] 

 

[perf_model/l4_cache] 

passthrough = "false" 

perfect = "false" 

 

[perf_model/llc] 

evict_buffers = 8 

 

[perf_model/nuca] 

enabled = "false" 

 

[perf_model/stlb] 

associativity = 4 

size = 512 

 

[perf_model/sync] 

reschedule_cost = 1000 

 

[perf_model/tlb] 

penalty = 30 

penalty_parallel = "true" 

 

[power] 

technology_node = 45 

vdd = 1.2 

 

[progress_trace] 

enabled = "false" 

filename = "" 

interval = 5000 

 

[queue_model] 

 

[queue_model/basic] 

moving_avg_enabled = "true" 

moving_avg_type = 

"arithmetic_mean" 

moving_avg_window_size = 1024 

 

[queue_model/history_list] 

analytical_model_enabled = "true" 

max_list_size = 100 

 

[queue_model/windowed_mg1] 

window_size = 1000 

 

[routine_tracer] 

data_access_time = 30 

dvfs_domain = "global" 

passthrough = "false" 

perf_model_type = "parallel" 

perfect = "false" 

prefetcher = "none" 

replacement_policy = "lru" 

shared_cores = 8 

tags_access_time = 10 

writeback_time = 0 

writethrough = 0 

 

[perf_model/l4_cache] 

passthrough = "false" 

perfect = "false" 

 

[perf_model/llc] 

evict_buffers = 8 

 

[perf_model/nuca] 

address_hash = "mask" 

associativity = 16 

bandwidth = 64 

cache_size = 8192 

data_access_time = 30 

enabled = "true" 

replacement_policy = "lru" 

tags_access_time = 10 

 

[perf_model/nuca/queue_model] 

enabled = "true" 

type = "history_list" 

 

[perf_model/stlb] 

associativity = 4 

size = 1024 

 

[perf_model/sync] 

reschedule_cost = 1000 

 

[perf_model/tlb] 

penalty = 30 

penalty_parallel = "true" 

 

[power] 

technology_node = 22 

vdd = 1.2 

 

[progress_trace] 

enabled = "false" 

filename = "" 

interval = 5000 

 

[queue_model] 

 

[queue_model/basic] 

moving_avg_enabled = "true" 

moving_avg_type = 

"arithmetic_mean" 

moving_avg_window_size = 1024 

 

[queue_model/history_list] 

[perf_model/tlb] 

penalty = 0 

penalty_parallel = "true" 

 

[power] 

technology_node = 22 

vdd = 1.05 

 

[progress_trace] 

enabled = "false" 

filename = "" 

interval = 5000 

 

[queue_model] 

 

[queue_model/basic] 

moving_avg_enabled = "true" 

moving_avg_type = 

"arithmetic_mean" 

moving_avg_window_size = 1024 

 

[queue_model/history_list] 

analytical_model_enabled = "true" 

max_list_size = 100 

 

[queue_model/windowed_mg1] 

window_size = 1000 

 

[routine_tracer] 

type = "none" 

 

[sampling] 

enabled = "false" 

 

[scheduler] 

type = "pinned" 

 

[scheduler/big_small] 

debug = "false" 

quantum = 1000000 

 

[scheduler/pinned] 

core_mask = 1 

interleaving = 1 

quantum = 100 

 

[scheduler/roaming] 

core_mask = 1 

quantum = 1000000 

 

[scheduler/static] 

core_mask = 1 

 

[tags] 

 

[traceinput] 

address_randomization = "false" 

enabled = "false" 

mirror_output = "false" 

num_runs = 1 

restart_apps = "false" 

stop_with_first_app = "true" 
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[scheduler/roaming] 

core_mask = 1 

quantum = 1000000 

 

[scheduler/static] 

core_mask = 1 

 

[tags] 

 

[traceinput] 

address_randomization = "false" 

enabled = "false" 

mirror_output = "false" 

num_runs = 1 

restart_apps = "false" 

stop_with_first_app = "true" 

trace_prefix = "" 

type = "none" 

 

[sampling] 

enabled = "false" 

 

[scheduler] 

type = "pinned" 

 

[scheduler/big_small] 

debug = "false" 

quantum = 1000000 

 

[scheduler/pinned] 

core_mask = 1 

interleaving = 1 

quantum = 1000000 

 

[scheduler/roaming] 

core_mask = 1 

quantum = 1000000 

 

[scheduler/static] 

core_mask = 1 

 

[tags] 

 

[traceinput] 

address_randomization = "false" 

enabled = "false" 

mirror_output = "false" 

num_runs = 1 

restart_apps = "false" 

stop_with_first_app = "true" 

trace_prefix = "" 

analytical_model_enabled = "true" 

max_list_size = 100 

 

[queue_model/windowed_mg1] 

window_size = 1000 

 

[routine_tracer] 

type = "none" 

 

[sampling] 

enabled = "false" 

 

[scheduler] 

type = "pinned" 

 

[scheduler/big_small] 

debug = "false" 

quantum = 100 

 

[scheduler/pinned] 

core_mask = 1 

interleaving = 1 

quantum = 100 

 

[scheduler/roaming] 

core_mask = 1 

quantum = 100 

 

[scheduler/static] 

core_mask = 1 

 

[tags] 

 

[traceinput] 

address_randomization = "false" 

enabled = "false" 

mirror_output = "false" 

num_runs = 1 

restart_apps = "false" 

stop_with_first_app = "true" 

trace_prefix = "" 

 

trace_prefix = "" 

 

nDunington 

 

[bbv] 

sampling = 0 

 

[caching_protocol] 

type = 

"parametric_DRAM_directory_msi" 

variant = "mesi" 

 

[clock_skew_minimization] 

report = "false" 

scheme = "barrier" 

 

[clock_skew_minimization/barrier] 

quantum = 100 

 

[core] 

spin_loop_detection = "false" 

 

nGainestown 

 

[bbv] 

sampling = 0 

 

[caching_protocol] 

type = 

"parametric_DRAM_directory_msi" 

variant = "mesi" 

 

[clock_skew_minimization] 

report = "false" 

scheme = "barrier" 

 

[clock_skew_minimization/barrier] 

quantum = 100 

 

[core] 

spin_loop_detection = "false" 

 

nHaswell 

 

[bbv] 

sampling = 0 

 

[caching_protocol] 

type = 

"parametric_DRAM_directory_msi" 

variant = "mesif"                           

 

[clock_skew_minimization] 

report = "false" 

scheme = "barrier" 

 

[clock_skew_minimization/barrier] 

quantum = 100 

 

[core] 

spin_loop_detection = "false" 

 

nXeon Phi 

 

[bbv] 

sampling = 0 

 

[caching_protocol] 

type = 

"parametric_DRAM_directory_msi" 

variant = "mesi" 

 

[clock_skew_minimization] 

report = "false" 

scheme = "barrier" 

 

[clock_skew_minimization/barrier] 

quantum = 100 

 

[core] 

spin_loop_detection = "false" 

 



122 
 

 

[core/cheetah] 

enabled = "false" 

max_size_bits_global = 36 

max_size_bits_local = 30 

min_size_bits = 10 

 

[core/hook_periodic_ins] 

ins_global = 1000000 

ins_per_core = 10000 

 

[core/light_cache] 

num = 0 

 

[dvfs] 

transition_latency = 2000  

type = "simple" 

 

[dvfs/simple] 

cores_per_socket = 1  

 

[fault_injection] 

injector = "none" 

type = "none" 

 

[general] 

enable_icache_modeling = "true" 

enable_pinplay = "false" 

enable_signals = "false" 

enable_smc_support = "false" 

enable_syscall_emulation = "true" 

inst_mode_end = "fast_forward" 

inst_mode_init = "cache_only" 

inst_mode_output = "true" 

inst_mode_roi = "detailed" 

issue_memops_at_functional = "false" 

magic = "true" 

num_host_cores = 0 

 

roi_script = "false" 

suppress_stderr = "false" 

suppress_stdout = "false" 

syntax = "intel" 

total_cores = 8  

 

[hooks] 

 

[instruction_tracer] 

type = "none" 

 

[log] 

circular_log = "false" 

disabled_modules = "" 

enabled = "false" 

enabled_modules = "" 

mutex_trace = "false" 

pin_codecache_trace = "false" 

stack_trace = "false" 

 

[loop_tracer] 

iter_count = 36 

iter_start = 0 

 

[core/cheetah] 

enabled = "false" 

max_size_bits_global = 36 

max_size_bits_local = 30 

min_size_bits = 10 

 

[core/hook_periodic_ins] 

ins_global = 1000000 

ins_per_core = 10000 

 

[core/light_cache] 

num = 0 

 

[dvfs] 

transition_latency = 2000 

type = "simple" 

 

[dvfs/simple] 

cores_per_socket = 1 

 

[fault_injection] 

injector = "none" 

type = "none" 

 

[general] 

enable_icache_modeling = "true" 

enable_pinplay = "false" 

enable_signals = "false" 

enable_smc_support = "false" 

enable_syscall_emulation = "true" 

inst_mode_end = "fast_forward" 

inst_mode_init = "cache_only" 

inst_mode_output = "true" 

inst_mode_roi = "detailed" 

issue_memops_at_functional = 

"false" 

magic = "true" 

num_host_cores = 0 

 

roi_script = "false" 

suppress_stderr = "false" 

suppress_stdout = "false" 

syntax = "intel" 

total_cores = 8 

 

[hooks] 

 

[instruction_tracer] 

type = "none" 

 

[log] 

circular_log = "false" 

disabled_modules = "" 

enabled = "false" 

enabled_modules = "" 

mutex_trace = "false" 

pin_codecache_trace = "false" 

stack_trace = "false" 

 

[loop_tracer] 

iter_count = 36 

iter_start = 0 

[core/cheetah] 

enabled = "false" 

max_size_bits_global = 36 

max_size_bits_local = 30 

min_size_bits = 10 

 

[core/hook_periodic_ins] 

ins_global = 1000000 

ins_per_core = 10000 

 

[core/light_cache] 

num = 0 

 

[dvfs] 

transition_latency = 2000 

type = "simple" 

 

[dvfs/simple] 

cores_per_socket = 1 

 

[fault_injection] 

injector = "none" 

type = "none" 

 

[general] 

enable_icache_modeling = "true" 

enable_pinplay = "false" 

enable_signals = "false" 

enable_smc_support = "false" 

enable_syscall_emulation = "true" 

inst_mode_end = "fast_forward" 

inst_mode_init = "cache_only" 

inst_mode_output = "true" 

inst_mode_roi = "detailed" 

issue_memops_at_functional = 

"false" 

magic = "true" 

num_host_cores = 0 

 

roi_script = "false" 

suppress_stderr = "false" 

suppress_stdout = "false" 

syntax = "intel" 

total_cores = 8 

 

[hooks] 

 

 

[instruction_tracer] 

type = "none" 

 

[log] 

circular_log = "false" 

disabled_modules = "" 

enabled = "false" 

enabled_modules = "" 

mutex_trace = "false" 

pin_codecache_trace = "false" 

stack_trace = "false" 

 

[loop_tracer] 

iter_count = 36 

[core/cheetah] 

enabled = "false" 

max_size_bits_global = 36 

max_size_bits_local = 30 

min_size_bits = 10 

 

[core/hook_periodic_ins] 

ins_global = 1000000 

ins_per_core = 10000 

 

[core/light_cache] 

num = 0 

 

[dvfs] 

transition_latency = 2000 

type = "simple" 

 

[dvfs/simple] 

cores_per_socket = 1 

 

[fault_injection] 

injector = "none" 

type = "none" 

 

[general] 

enable_icache_modeling = "true" 

enable_pinplay = "false" 

enable_signals = "false" 

enable_smc_support = "false" 

enable_syscall_emulation = "true" 

inst_mode_end = "fast_forward" 

inst_mode_init = "cache_only" 

inst_mode_output = "true" 

inst_mode_roi = "detailed" 

issue_memops_at_functional = 

"false" 

magic = "true" 

num_host_cores = 0 

 

roi_script = "false" 

suppress_stderr = "false" 

suppress_stdout = "false" 

syntax = "intel" 

total_cores = 8 

 

[hooks] 

 

 

[instruction_tracer] 

type = "none" 

 

[log] 

circular_log = "false" 

disabled_modules = "" 

enabled = "false" 

enabled_modules = "" 

mutex_trace = "false" 

pin_codecache_trace = "false" 

stack_trace = "false" 

 

[loop_tracer] 

iter_count = 36 
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[network] 

collect_traffic_matrix = "false" 

memory_model_1 = "bus" 

memory_model_2 = "bus" 

system_model = "magic" 

 

 

[network/bus] 

bandwidth = 256  

ignore_local_traffic = "false" 

 

[network/bus/queue_model] 

type = "contention" 

 

[network/emesh_hop_by_hop] 

concentration = 1 

dimensions = 2 

hop_latency = 2 

link_bandwidth = 64 

size = "" 

wrap_around = "false" 

 

[network/emesh_hop_by_hop/broadca

st_tree] 

enabled = "false" 

 

[network/emesh_hop_by_hop/queue_

model] 

enabled = "true" 

type =  "windowed_mg1"  

 

[network/emesh_hop_counter] 

hop_latency = 2 

link_bandwidth = 64 

 

[osemu] 

clock_replace = "true" 

nprocs = 0 

pthread_replace = "false" 

time_start = 1337000000 

 

[perf_model] 

 

[perf_model/branch_predictor] 

mispredict_penalty = 14  

size = 4096  

type = "pentium_m" 

 

[perf_model/cache] 

levels = 3 

 

[perf_model/core] 

core_model = "nehalem" 

frequency = 3.2 

logical_cpus = 1 

type = "rob"   

 

[perf_model/core/interval_timer] 

dispatch_width = 4 

issue_contention = "true" 

issue_memops_at_dispatch = "false" 

lll_cutoff = 30 

 

[network] 

collect_traffic_matrix = "false" 

memory_model_1 = "bus" 

memory_model_2 = "bus" 

system_model = "magic" 

 

 

[network/bus] 

bandwidth = 256  

ignore_local_traffic = "true" 

 

[network/bus/queue_model] 

type = "contention" 

 

[network/emesh_hop_by_hop] 

concentration = 1 

dimensions = 2 

hop_latency = 2 

link_bandwidth = 64 

size = "" 

wrap_around = "false" 

 

[network/emesh_hop_by_hop/broadc

ast_tree] 

enabled = "false" 

 

[network/emesh_hop_by_hop/queue_

model] 

enabled = "true" 

type =  "windowed_mg1"  

 

[network/emesh_hop_counter] 

hop_latency = 2 

link_bandwidth = 64 

 

[osemu] 

clock_replace = "true" 

nprocs = 0 

pthread_replace = "false" 

time_start = 1337000000 

 

[perf_model] 

 

[perf_model/branch_predictor] 

mispredict_penalty = 14  

size = 4096  

type = "pentium_m" 

 

[perf_model/cache] 

levels = 3 

 

[perf_model/core] 

core_model = "nehalem" 

frequency = 3.2  

logical_cpus = 1 

type = "rob" 

 

[perf_model/core/interval_timer] 

dispatch_width = 4 

issue_contention = "true" 

issue_memops_at_dispatch = "false" 

iter_start = 0 

 

[network] 

collect_traffic_matrix = "false" 

memory_model_1 = 

"emesh_hop_by_hop" 

system_model = "magic" 

 

 

[network/bus] 

ignore_local_traffic = "true" 

 

[network/bus/queue_model] 

type = "contention" 

 

[network/emesh_hop_by_hop] 

concentration = 1 

dimensions = 1 

hop_latency = 2 

link_bandwidth = 256  

size = "" 

wrap_around = "true" 

 

[network/emesh_hop_by_hop/broadc

ast_tree] 

enabled = "false" 

 

[network/emesh_hop_by_hop/queue_

model] 

enabled = "true" 

type = "windowed_mg1" 

 

[network/emesh_hop_counter] 

hop_latency = 2 

link_bandwidth = 64 

 

[osemu] 

clock_replace = "true" 

nprocs = 0 

pthread_replace = "false" 

time_start = 1337000000 

 

[perf_model] 

 

[perf_model/branch_predictor] 

mispredict_penalty = 14 

size = 4096 

type = "pentium_m" 

 

[perf_model/cache] 

levels = 2 

 

[perf_model/core] 

core_model = "nehalem" 

frequency = 3.2 

logical_cpus = 1 

type = "rob" 

 

[perf_model/core/interval_timer] 

dispatch_width = 4 

issue_contention = "true" 

issue_memops_at_dispatch = "false" 

iter_start = 0 

 

[network] 

collect_traffic_matrix = "false" 

memory_model_1 = 

"emesh_hop_by_hop" 

system_model = "magic" 

 

[network/bus] 

ignore_local_traffic = "true" 

 

[network/bus/queue_model] 

type = "contention" 

 

[network/emesh_hop_by_hop] 

concentration = 1 

dimensions = 2 

hop_latency = 2 

link_bandwidth = 256 

size = "4:2" 

wrap_around = "false" 

 

[network/emesh_hop_by_hop/broadc

ast_tree] 

enabled = "false" 

 

[network/emesh_hop_by_hop/queue_

model] 

enabled = "true" 

type = "windowed_mg1" 

 

[network/emesh_hop_counter] 

hop_latency = 2 

link_bandwidth = 64 

 

[osemu] 

clock_replace = "true" 

nprocs = 0 

pthread_replace = "false" 

time_start = 1337000000 

 

[perf_model] 

 

[perf_model/branch_predictor] 

mispredict_penalty = 14  

size = 4096  

type = "pentium_m" 

 

[perf_model/cache] 

levels = 2 

 

[perf_model/core] 

core_model = "nehalem" 

frequency = 3.2  

logical_cpus = 1 

type = "rob"   

 

[perf_model/core/interval_timer] 

dispatch_width = 4 

issue_contention = "true" 

issue_memops_at_dispatch = "false" 

lll_cutoff = 30 
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lll_dependency_granularity = 64 

memory_dependency_granularity = 8 

num_outstanding_loadstores = 72  

window_size = 192  

 

[perf_model/core/rob_timer] 

address_disambiguation = "true" 

commit_width = 4 

in_order = "false" 

issue_contention = "true" 

issue_memops_at_issue = "true" 

mlp_histogram = "false" 

outstanding_loads = 72 

outstanding_stores = 42 

rob_repartition = "true" 

rs_entries = 60 

simultaneous_issue = "true" 

store_to_load_forwarding = "true" 

 

 

[perf_model/core/static_instruction_c

osts] 

add = 1 

branch = 1 

delay = 0 

div = 10  

dynamic_misc = 1 

fadd = 5  

fdiv = 10  

fmul = 10  

fsub = 5  

generic = 1 

jmp = 1 

mem_access = 0 

mul = 10  

recv = 1 

spawn = 0 

string = 1 

sub = 1 

sync = 0 

tlb_miss = 0 

unknown = 0 

 

[perf_model/DRAM] 

chips_per_dimm = 1  

controller_positions = "" 

controllers_interleaving = 8  

dimms_per_controller = 4  

direct_access = "false" 

latency = 45  

num_controllers = -1 

per_controller_bandwidth = 68  

type = "constant" 

 

[perf_model/DRAM/cache] 

enabled = "false" 

 

[perf_model/DRAM/normal] 

standard_deviation = 0 

 

[perf_model/DRAM/queue_model] 

enabled = "true" 

lll_cutoff = 30 

lll_dependency_granularity = 64 

memory_dependency_granularity = 8 

num_outstanding_loadstores = 72  

window_size = 192  

[perf_model/core/rob_timer] 

address_disambiguation = "true" 

commit_width = 4  

in_order = "false" 

issue_contention = "true" 

issue_memops_at_issue = "true" 

mlp_histogram = "false" 

outstanding_loads = 72  

outstanding_stores = 42  

rob_repartition = "true" 

rs_entries = 60  

simultaneous_issue = "true" 

store_to_load_forwarding = "true" 

 

[perf_model/core/static_instruction_c

osts] 

add = 1 

branch = 1 

delay = 0 

div = 10  

dynamic_misc = 1 

fadd = 5  

fdiv = 10  

fmul = 10  

fsub = 5  

generic = 1 

jmp = 1 

mem_access = 0 

mul = 10  

recv = 1 

spawn = 0 

string = 1 

sub = 1 

sync = 0 

tlb_miss = 0 

unknown = 0 

 

[perf_model/DRAM] 

chips_per_dimm = 1  

controller_positions = "" 

controllers_interleaving = 8  

dimms_per_controller = 4 

direct_access = "false" 

latency = 45 

num_controllers = -1 

per_controller_bandwidth = 68  

type = "constant" 

 

[perf_model/DRAM/cache] 

enabled = "false" 

 

[perf_model/DRAM/normal] 

standard_deviation = 0 

 

[perf_model/DRAM/queue_model] 

enabled = "true" 

type = "history_list" 

lll_cutoff = 30 

lll_dependency_granularity = 64 

memory_dependency_granularity = 8 

num_outstanding_loadstores = 72 

window_size = 192 

[perf_model/core/rob_timer] 

address_disambiguation = "true" 

commit_width = 4 

in_order = "false" 

issue_contention = "true" 

issue_memops_at_issue = "true" 

mlp_histogram = "false" 

outstanding_loads = 72 

outstanding_stores = 42 

rob_repartition = "true" 

rs_entries = 60 

simultaneous_issue = "true" 

store_to_load_forwarding = "true" 

 

[perf_model/core/static_instruction_c

osts] 

add = 1 

branch = 1 

delay = 0 

div = 10 

dynamic_misc = 1 

fadd = 5 

fdiv = 10 

fmul = 10 

fsub = 5 

generic = 1 

jmp = 1 

mem_access = 0 

mul = 10 

recv = 1 

spawn = 0 

string = 1 

sub = 1 

sync = 0 

tlb_miss = 0 

unknown = 0 

 

[perf_model/DRAM] 

chips_per_dimm = 1 

controller_positions = "" 

controllers_interleaving = 8 

dimms_per_controller = 4 

direct_access = "false" 

latency = 45 

num_controllers = -1 

per_controller_bandwidth = 68 

type = "constant" 

 

[perf_model/DRAM/cache] 

enabled = "false" 

 

[perf_model/DRAM/normal] 

standard_deviation = 0 

 

[perf_model/DRAM/queue_model] 

enabled = "true" 

type = "history_list" 

lll_dependency_granularity = 64 

memory_dependency_granularity = 8 

num_outstanding_loadstores = 72  

window_size = 192  

 

[perf_model/core/rob_timer] 

address_disambiguation = "true" 

commit_width = 4 

in_order = "false" 

issue_contention = "true" 

issue_memops_at_issue = "true" 

mlp_histogram = "false" 

outstanding_loads = 72 

outstanding_stores = 42 

rob_repartition = "true" 

rs_entries = 60 

simultaneous_issue = "true" 

store_to_load_forwarding = "true" 

 

 

[perf_model/core/static_instruction_c

osts] 

add = 1 

branch = 1 

delay = 0 

div = 10  

dynamic_misc = 1 

fadd = 5  

fdiv = 10  

fmul = 10  

fsub = 5  

generic = 1 

jmp = 1 

mem_access = 0 

mul = 10  

recv = 1 

spawn = 0 

string = 1 

sub = 1 

sync = 0 

tlb_miss = 0 

unknown = 0 

 

[perf_model/DRAM] 

chips_per_dimm = 1  

controller_positions = "" 

controllers_interleaving = 8  

dimms_per_controller = 4  

direct_access = "false" 

latency = 45  

num_controllers = -1  

per_controller_bandwidth = 68  

type = "constant" 

 

[perf_model/DRAM/cache] 

enabled = "false" 

 

[perf_model/DRAM/normal] 

standard_deviation = 0 

 

[perf_model/DRAM/queue_model] 

enabled = "true" 
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type = "history_list" 

 

[perf_model/DRAM_directory] 

associativity = 16 

directory_cache_access_time = 10 

directory_type = "full_map" 

home_lookup_param = 6 

interleaving = 1 

locations = "llc"  

max_hw_sharers = 64 

total_entries = 1048576 

 

[perf_model/DRAM_directory/limitle

ss] 

software_trap_penalty = 200 

 

[perf_model/dtlb] 

associativity = 4  

size = 64  

 

[perf_model/fast_forward] 

model = "oneipc" 

 

[perf_model/fast_forward/oneipc] 

include_branch_misprediction = 

"false" 

include_memory_latency = "false" 

interval = 100000 

 

[perf_model/itlb] 

associativity = 4  

size = 128  

 

[perf_model/l1_dcache] 

address_hash = "mask" 

associativity = 8 

cache_block_size = 64 

cache_size = 32 

data_access_time = 3 

dvfs_domain = "core" 

next_level_read_bandwidth = 0 

outstanding_misses = 10  

passthrough = "false" 

perf_model_type = "parallel" 

perfect = "false" 

prefetcher = "none" 

replacement_policy = "lru" 

shared_cores = 1 

tags_access_time = 1 

writeback_time = 0  

writethrough = 0 

 

[perf_model/l1_dcache/atd] 

 

[perf_model/l1_icache] 

address_hash = "mask" 

associativity = 8 

cache_block_size = 64 

cache_size = 32 

coherent = "true" 

data_access_time = 3 

dvfs_domain = "core" 

 

[perf_model/DRAM_directory] 

associativity = 16 

directory_cache_access_time = 10 

directory_type = "full_map" 

home_lookup_param = 6 

interleaving = 1 

locations = "llc"  

max_hw_sharers = 64 

total_entries = 1048576 

 

[perf_model/DRAM_directory/limitle

ss] 

software_trap_penalty = 200 

 

[perf_model/dtlb] 

associativity = 4 

size = 64 

 

[perf_model/fast_forward] 

model = "oneipc" 

 

[perf_model/fast_forward/oneipc] 

include_branch_misprediction = 

"false" 

include_memory_latency = "false" 

interval = 100000 

 

[perf_model/itlb] 

associativity = 4 

size = 128 

 

[perf_model/l1_dcache] 

address_hash = "mask" 

associativity = 8 

cache_block_size = 64 

cache_size = 32 

data_access_time = 3  

dvfs_domain = "core" 

next_level_read_bandwidth = 0 

outstanding_misses = 10 

passthrough = "false" 

perf_model_type = "parallel" 

perfect = "false" 

prefetcher = "none" 

replacement_policy = "lru" 

shared_cores = 1 

tags_access_time = 1 

writeback_time = 0 

writethrough = 0 

 

 

[perf_model/l1_dcache/atd] 

 

[perf_model/l1_icache] 

address_hash = "mask" 

associativity = 8  

cache_block_size = 64 

cache_size = 32 

coherent = "true" 

data_access_time = 3  

dvfs_domain = "core" 

 

[perf_model/DRAM_directory] 

associativity = 16 

directory_cache_access_time = 10 

directory_type = "full_map" 

home_lookup_param = 6 

interleaving = 1 

locations = "llc" 

max_hw_sharers = 64 

total_entries = 1048576 

 

[perf_model/DRAM_directory/limitle

ss] 

software_trap_penalty = 200 

 

[perf_model/dtlb] 

associativity = 4 

size = 64 

 

[perf_model/fast_forward] 

model = "oneipc"  

 

[perf_model/fast_forward/oneipc] 

include_branch_misprediction = 

"false" 

include_memory_latency = "false" 

interval = 100000 

 

[perf_model/itlb] 

associativity = 4 

size = 128 

 

[perf_model/l1_dcache] 

address_hash = "mask" 

associativity = 8 

cache_block_size = 64 

cache_size = 32 

data_access_time = 3 

dvfs_domain = "core" 

next_level_read_bandwidth = 0 

outstanding_misses = 10 

passthrough = "false" 

perf_model_type = "parallel" 

perfect = "false" 

prefetcher = "none" 

replacement_policy = "lru" 

shared_cores = 1 

tags_access_time = 1 

writeback_time = 0 

writethrough = 0 

 

 

[perf_model/l1_dcache/atd] 

 

[perf_model/l1_icache] 

address_hash = "mask" 

associativity = 8 

cache_block_size = 64 

cache_size = 32 

coherent = "true" 

data_access_time = 3 

dvfs_domain = "core" 

type = "history_list"  

 

[perf_model/DRAM_directory] 

associativity =  16  

directory_cache_access_time = 10 

directory_type = "full_map" 

home_lookup_param = 6 

interleaving = 1 

locations = "llc" 

max_hw_sharers = 64 

total_entries = 1048576 

 

[perf_model/DRAM_directory/limitle

ss] 

software_trap_penalty = 200 

 

[perf_model/dtlb] 

associativity = 4  

size = 64  

 

[perf_model/fast_forward] 

model ="oneipc" 

 

[perf_model/fast_forward/oneipc] 

include_branch_misprediction = 

"false" 

include_memory_latency = "false" 

interval = 100000 

 

[perf_model/itlb] 

associativity = 4  

size = 128  

 

[perf_model/l1_dcache] 

address_hash = "mask" 

associativity = 8 

cache_block_size = 64 

cache_size = 32 

data_access_time = 3 

dvfs_domain = "core" 

next_level_read_bandwidth = 0 

outstanding_misses = 10  

passthrough = "false" 

perf_model_type = "parallel" 

perfect = "false" 

prefetcher = "none" 

replacement_policy = "lru" 

shared_cores = 1 

tags_access_time = 1 

writeback_time = 0 

writethrough = 0 

 

[perf_model/l1_dcache/atd] 

 

[perf_model/l1_icache] 

address_hash = "mask" 

associativity =  

cache_block_size = 64 

cache_size = 32 

coherent = "true" 

data_access_time = 3 

dvfs_domain = "core" 
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next_level_read_bandwidth = 0 

passthrough = "false" 

perf_model_type = "parallel" 

perfect = "false" 

prefetcher = "none" 

replacement_policy = "lru" 

shared_cores = 1 

tags_access_time = 1 

writeback_time = 0 

writethrough = 0 

 

[perf_model/l1_icache/atd] 

 

[perf_model/l2_cache] 

address_hash = "mask"  

associativity = 8  

cache_block_size = 64 

cache_size = 256  

data_access_time = 8  

dvfs_domain = "core" 

next_level_read_bandwidth = 0 

passthrough = "false" 

perf_model_type = "parallel" 

perfect = "false" 

prefetcher = "none" 

replacement_policy = "lru" 

shared_cores = 2 

tags_access_time = 3 

writeback_time = 50  

writethrough = 0 

 

[perf_model/l2_cache/atd] 

 

[perf_model/l3_cache] 

address_hash = "mask" 

associativity = 16 

cache_block_size = 64 

cache_size = 8192  

data_access_time = 96 

dvfs_domain = "global" 

passthrough = "false" 

perf_model_type = "parallel" 

perfect = "false" 

prefetcher = "none" 

replacement_policy = "lru" 

shared_cores = 8  

tags_access_time = 10 

writeback_time = 0  

writethrough = 0 

 

[perf_model/l3_cache/atd] 

 

[perf_model/l4_cache] 

passthrough = "false" 

perfect = "false" 

 

[perf_model/llc] 

evict_buffers = 8 

 

[perf_model/nuca] 

enabled = "false" 

 

next_level_read_bandwidth = 0 

passthrough = "false" 

perf_model_type = "parallel" 

perfect = "false" 

prefetcher = "none" 

replacement_policy = "lru" 

shared_cores = 1 

tags_access_time = 1 

writeback_time = 0 

writethrough = 0 

 

[perf_model/l1_icache/atd] 

 

[perf_model/l2_cache] 

address_hash = "mask" 

associativity = 8 

cache_block_size = 64 

cache_size = 256 

data_access_time = 8 

dvfs_domain = "core" 

next_level_read_bandwidth = 0 

passthrough = "false" 

perf_model_type = "parallel" 

perfect = "false" 

prefetcher = "none" 

replacement_policy = "lru" 

shared_cores = 1 

tags_access_time = 3 

writeback_time = 50 

writethrough = 0 

 

[perf_model/l2_cache/atd] 

 

[perf_model/l3_cache] 

address_hash = "mask" 

associativity = 16 

cache_block_size = 64 

cache_size = 8192 

data_access_time = 96  

dvfs_domain = "global" 

passthrough = "false" 

perf_model_type = "parallel" 

perfect = "false" 

prefetcher = "none" 

replacement_policy = "lru" 

shared_cores = 8  

tags_access_time = 10 

writeback_time = 0 

writethrough = 0 

 

[perf_model/l3_cache/atd] 

 

[perf_model/l4_cache] 

passthrough = "false" 

perfect = "false" 

 

[perf_model/llc] 

evict_buffers = 8 

 

[perf_model/nuca] 

enabled = "false" 

 

next_level_read_bandwidth = 0 

passthrough = "false" 

perf_model_type = "parallel" 

perfect = "false" 

prefetcher = "none" 

replacement_policy = "lru" 

shared_cores = 1 

tags_access_time = 1 

writeback_time = 0 

writethrough = 0 

 

[perf_model/l1_icache/atd] 

 

[perf_model/l2_cache] 

address_hash = "mask" 

associativity = 8 

cache_block_size = 64 

cache_size = 256 

data_access_time = 8 

dvfs_domain = "core" 

next_level_read_bandwidth = 0 

passthrough = "false" 

perf_model_type = "parallel" 

perfect = "false" 

prefetcher = "none" 

replacement_policy = "lru" 

shared_cores = 1 

tags_access_time = 3 

writeback_time = 50 

writethrough = 0 

 

[perf_model/l2_cache/atd] 

 

[perf_model/l3_cache] 

address_hash = "mask" 

associativity = 16 

cache_block_size = 64 

cache_size = 8192 

data_access_time = 30 

dvfs_domain = "global" 

passthrough = "false" 

perf_model_type = "parallel" 

perfect = "false" 

prefetcher = "none" 

replacement_policy = "lru" 

shared_cores = 8 

tags_access_time = 10 

writeback_time = 0 

writethrough = 0 

 

[perf_model/l4_cache] 

passthrough = "false" 

perfect = "false" 

 

[perf_model/llc] 

evict_buffers = 8 

 

[perf_model/nuca] 

address_hash = "mask" 

associativity = 16 

bandwidth = 64 

cache_size = 8192 

next_level_read_bandwidth = 0 

passthrough = "false" 

perf_model_type = "parallel" 

perfect = "false" 

prefetcher = "none" 

replacement_policy = "lru" 

shared_cores = 1 

tags_access_time = 1 

writeback_time = 0 

writethrough = 0 

 

[perf_model/l1_icache/atd] 

 

[perf_model/l2_cache] 

address_hash = "mask" 

associativity = 8 

cache_block_size = 64 

cache_size = 256  

data_access_time = 8  

dvfs_domain = "core" 

next_level_read_bandwidth = 0 

passthrough = "false" 

perf_model_type = "parallel" 

perfect = "false" 

prefetcher = "none" 

replacement_policy = "lru" 

shared_cores = 1 

tags_access_time = 3  

writeback_time = 50  

writethrough = 0 

 

[perf_model/l2_cache/atd] 

 

[perf_model/l3_cache] 

passthrough = "false" 

perfect = "false" 

 

[perf_model/l4_cache] 

passthrough = "false" 

perfect = "false" 

 

[perf_model/llc] 

evict_buffers = 8 

 

[perf_model/nuca] 

enabled = "false" 

 

[perf_model/stlb] 

associativity = 4  

size = 1024  

 

[perf_model/sync] 

reschedule_cost = 1000 

 

[perf_model/tlb] 

penalty = 30  

penalty_parallel = "true" 

 

[power] 

technology_node = 22 

vdd = 1.2 
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[perf_model/stlb] 

associativity = 4  

size = 1024  

 

[perf_model/sync] 

reschedule_cost = 1000 

 

[perf_model/tlb] 

penalty = 30  

penalty_parallel = "true" 

 

[power] 

technology_node = 22  

vdd = 1.2  

 

[progress_trace] 

enabled = "false" 

filename = "" 

interval = 5000 

 

[queue_model] 

 

[queue_model/basic] 

moving_avg_enabled = "true" 

moving_avg_type = 

"arithmetic_mean" 

moving_avg_window_size = 1024 

 

[queue_model/history_list] 

analytical_model_enabled = "true" 

max_list_size = 100 

 

[queue_model/windowed_mg1] 

window_size = 1000 

 

[routine_tracer] 

type = "none" 

 

[sampling] 

enabled = "false" 

 

[scheduler] 

type = "pinned" 

 

[scheduler/big_small] 

debug = "false" 

quantum = 100  

 

[scheduler/pinned] 

core_mask = 1 

interleaving = 1 

quantum = 100  

 

[scheduler/roaming] 

core_mask = 1 

quantum = 100  

 

[scheduler/static] 

core_mask = 1 

 

[tags] 

 

[perf_model/stlb] 

associativity = 4 

size = 1024  

 

[perf_model/sync] 

reschedule_cost = 1000 

 

[perf_model/tlb] 

penalty = 30 

penalty_parallel = "true" 

 

[power] 

technology_node = 22  

vdd = 1.2 

 

[progress_trace] 

enabled = "false" 

filename = "" 

interval = 5000 

 

[queue_model] 

 

[queue_model/basic] 

moving_avg_enabled = "true" 

moving_avg_type = 

"arithmetic_mean" 

moving_avg_window_size = 1024 

 

[queue_model/history_list] 

analytical_model_enabled = "true" 

max_list_size = 100 

 

[queue_model/windowed_mg1] 

window_size = 1000 

 

[routine_tracer] 

type = "none" 

 

[sampling] 

enabled = "false" 

 

[scheduler] 

type = "pinned" 

 

[scheduler/big_small] 

debug = "false" 

quantum = 100  

 

[scheduler/pinned] 

core_mask = 1 

interleaving = 1 

quantum = 100  

 

[scheduler/roaming] 

core_mask = 1 

quantum = 100  

 

[scheduler/static] 

core_mask = 1 

 

[tags] 

 

data_access_time = 30 

enabled = "true" 

replacement_policy = "lru" 

tags_access_time = 10 

 

[perf_model/nuca/queue_model] 

enabled = "true" 

type = "history_list" 

 

[perf_model/stlb] 

associativity = 4 

size = 1024 

 

[perf_model/sync] 

reschedule_cost = 1000 

 

[perf_model/tlb] 

penalty = 30 

penalty_parallel = "true" 

 

[power] 

technology_node = 22 

vdd = 1.2 

 

[progress_trace] 

enabled = "false" 

filename = "" 

interval = 5000 

 

[queue_model] 

 

[queue_model/basic] 

moving_avg_enabled = "true" 

moving_avg_type = 

"arithmetic_mean" 

moving_avg_window_size = 1024 

 

[queue_model/history_list] 

analytical_model_enabled = "true" 

max_list_size = 100 

 

[queue_model/windowed_mg1] 

window_size = 1000 

 

[routine_tracer] 

type = "none" 

 

[sampling] 

enabled = "false" 

 

[scheduler] 

type = "pinned" 

 

[scheduler/big_small] 

debug = "false" 

quantum = 100 

 

[scheduler/pinned] 

core_mask = 1 

interleaving = 1 

quantum = 100 

 

[progress_trace] 

enabled = "false" 

filename = "" 

interval = 5000 

 

[queue_model] 

 

[queue_model/basic] 

moving_avg_enabled = "true" 

moving_avg_type = 

"arithmetic_mean" 

moving_avg_window_size = 1024 

 

[queue_model/history_list] 

analytical_model_enabled = "true" 

max_list_size = 100 

 

[queue_model/windowed_mg1] 

window_size = 1000 

 

[routine_tracer] 

type = "none" 

 

[sampling] 

enabled = "false" 

 

[scheduler] 

type = "pinned" 

 

[scheduler/big_small] 

debug = "false" 

quantum = 100  

 

[scheduler/pinned] 

core_mask = 1 

interleaving = 1 

quantum = 100  

 

[scheduler/roaming] 

core_mask = 1 

quantum = 100  

 

[scheduler/static] 

core_mask = 1 

 

[tags] 

 

[traceinput] 

address_randomization = "false" 

enabled = "false" 

mirror_output = "false" 

num_runs = 1 

restart_apps = "false" 

stop_with_first_app = "true" 

trace_prefix = "" 
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[traceinput] 

address_randomization = "false" 

enabled = "false" 

mirror_output = "false" 

num_runs = 1 

restart_apps = "false" 

stop_with_first_app = "true" 

trace_prefix = "" 

[traceinput] 

address_randomization = "false" 

enabled = "false" 

mirror_output = "false" 

num_runs = 1 

restart_apps = "false" 

stop_with_first_app = "true" 

trace_prefix = "" 

[scheduler/roaming] 

core_mask = 1 

quantum = 100 

 

[scheduler/static] 

core_mask = 1 

 

[tags] 

 

[traceinput] 

address_randomization = "false" 

enabled = "false" 

mirror_output = "false" 

num_runs = 1 

restart_apps = "false" 

stop_with_first_app = "true" 

trace_prefix = "" 
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 تعددة النوى باستعمال التحليل المعتمد على التركيبتصاميم مشهورة للحواسيب متقييم بدائل 

 إعداد

 عائشة فالح المسلم بني صخر

 المشرف

 الأستاذ الدكتور غيث عبندة

 الملخص

 من يدالعد هناكو. العالي الأداء مجال في الأخيرة السنوات في متزايدة شعبية النواةمتعدد  المعالج معماريات اكتسبت قدل

 على لتصميمل المتوفرة البدائل أداء بتقييم القيام المهم من ولذلك،. المشهورة التجارية النواة متعددة المعالجات من لعديدل التصاميم

 في وازيةتلما التطبيقات وتطوير ضبط في المبرمجين لمساعدة المنصات هذه على متعددةال التطبيقات توصيف أساس مؤشرات

 الدراسة هذه نم الغرض. إن المتوازية التطبيقات مع بكفاءة تعمل النوى متعددة تصاميم تطوير في المصممين ومساعدة .المستقبل

 وتحديد ية،الحال المعالجات في والضعف القوة نقاط وتحديد الجوهرية،التصاميم  من والعديد النوى المتعددة التصاميم تقييم هو

مسببات  يف والتحسين التحقيق من المزيد إلى تحتاج التي والمجالات المعالجات تلك على الإيجابي الأثر ذات التصميم جوانب

 .في الأنظمة ختناااتالا

 محاكاة تقدم الأطروحة هذه فإن وبالتالي،. المحاكاةعملية  خلال من للغاية اد تطور النوى متعددة المعالجات تصميم إن 

 عأرب لتقييم استخدام هذا المحاكيب امنا. النواة متعددةللمعالجات ال كاةمحا وهو نظام Sniper))ٍ محاكاة برمجيةباستخدام  معمارية

لقد .  Xeon Phi, Dnnington, Gainestown, Haswell: و هي النواة متعددة إنتل خوادممعالجات  معالجات مشهورة من 

 وازيةتم تطبيقات ثمانية اخترنا البحث، هذا في .النوى متعددة التصميم خيارات من واسعة مجموعة يغطوا لأنهم اختيارهم تم

 ستانفورد وتطبيقات( PARSEC) الذاكرة المشتركة الكمبيوتر لأجهزة برينستون تطبيق مستودع: مجموعتين اياسيتين من تمثيلية

نات من البيامختلفين  حجمينل التصاميم مختلف مع التجارب من العديد أجريناولقد (. SPLASH2) المشتركة للذاكرة المتوازية

 .المختارة التطبيقات من كل المدخلة في
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 وات :هيو بين أكثر من مقياس المفاضلة وتحقيقية الوااع على للحفاظ الأداء تقييمل مقاييسال من شاملة مجموعة استخدمنا

دد الدورات في عالتغير  كما امنا بتحليل. الطااة واستهلاك الأساسي، الاستخدام متوسط ،عدد الأوامر في الدورة متوسط التنفيذ،

 .المستهلك لكل أمر مع الزمن

جم في الح مماثلة مكونات مع التكنولوجي المستوى نفس على النوى متعدد تصميم بدائل وضع عادلة تم مقارنة عملول

 لهرميا التسلسل تنظيم مثل الرئيسية المعمارية الميزات بسبب الأداء اختلافات عرضلانها ت أفضل المقارنةهذه و. والسرعة

 المكونات. وأحجام وسرع الحالية التكنولوجيا من بدلا ،المستخدمة والبروتوكولات الربط طوبولوجيا وشبكة للذاكرة،

 مللي Haswell (69هو  من حيث سرعة التنفيذالمتوازية  الحوسبة مع أفضل بشكل يتصرف تصميم أفضل أن جدنالقد وو

 ،ةمشترك L3 ذاكرة وجودو  L2 خاصة بسبب اشتماله على ذاكرة سريعة ذلكيرجع و. IPC)  1.39) النظام إنتاج ومعدل( ثانية

 (.واط 52.3)ا نسبي كبيرة طااة يستهلك فإنه أخرى، ناحية من .الحلقية بسبب سرعة التواصل بين النوى العائد لسرعة الشبكةو

 متطلبات تلبية على اادرة تعد لم Gainestownو  Dunningtonمثل  المسارب على القائمة تصاميمال أن إلى أيضا وخلصنا

المتوازية  تنفيذ التطبيقات في التواصل والتزامن الضغط الناجم عن مع التعامل في الواضح الضعف بسببالجديدة  العمل أعباء

 على ثانية، مللي 73 و ثانية مللي 74 على متوسط زمن تنفيذ يساوي nDunningtonو nGainestownولقد حصل  الحديثة.

 واط 50.14 تساوي طااة انكيستهل امأنه كما. التوالي على ،IPC 1.31 و IPC 1.33 يساوي الإنتاجية متوسط التوالي. وعلى

 .التوالي على المتوسط، في واط 49.99 و

 MESI بروتوكولات ايم عم النوى بالمقارنة متعددة التصميم بدائل أداء MESIFبروتوكول يعززعرضنا كيف  وأخيرا،

 .1.027x   فقد حصل على تسريع يساوي nGainestown. أما 1.028xحصل على تسريع بمقدار  nDunnington .القديمة

nXeon Phi  حصل على تسريع بمقدارx1.01 أما .nHaswell  فلم يستفد من بروتوكولMESIF وحدة وذلك لأنه يتكون من 

  لكل النوى.  L3واحدة فيها ذاكرة مشتركة 


