

 iii

DEDICATION

To my caring parents, Abo Osama and Um Osama

To my loving husband, Hani

To my lovely aunt, Um Hani

To my clever kids, Bandar and Balsam

iv

ACKNOWLEDGEMENTS

First and foremost, glory and praise be to Allah, the Almighty, for providing me

with the strength, patience, and for guiding me through all the difficulties to carry out this

work.

I would like to express my gratitude to everyone who helped me during the thesis

starting with endless thanks and sincere gratitude for my advisor Prof. Gheith Abandah

who didn’t keep any effort in encouraging me and providing me with valuable advice to

be better each time.

 I would like to appreciate the support received from Dr. Wim Heirman and Dr.

Trevor E. Carlson, from Intel ExaScience Lab, and Ghent University; they answered all

my questions about various features of Sniper simulator, and suggested me to choose the

suitable options in multicore configuration files. Also, many thanks for the Spanish

researcher, Marco Antonio Pérez García, for his help in working with Sniper multicore

simulator.

In addition, I would like to thank my family: my parents, my sister and my

brothers who encouraged and fully supported me spiritually throughout this thesis and

my life in general. They were always supporting and encouraging with their best wishes.

Special thanks to my lovely husband, Hani. He was always there cheering me up and

stood by me through the good and bad times. Also, many thanks for my caring aunt, Um

Hani, she provided lovingly care for my children in the hard times. I really appreciate her

support.

Finally, I would like to thank my lovely manager Kefah Al-Etan and my lovely

friends in my work, they made a suitable environment for my study during my master

road.

To those who were mentioned, or indirectly contributed to this research and not

mentioned, your kindness means a lot to me. You have all made a huge impact on who I

am today, and for that; I am forever grateful.

Aieshah BanySakher, 2017

 v

TABLE OF CONTENTS

Subject Page

COMMITTEE DECISION .. ii

DEDICATION .. iii

ACKNOWLEDGEMENTS .. v

 TABLE OF CONTENTS ... v

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

LIST OF ABBREVIATIONS ... xi

ABSTRACT .. xiii

CHAPTER 1: INTRODUCTION .. 1

 1.1 Background and Motivation .. 2

 1.2 Research Contributions ... 4

 1.3 Research Methodology .. 5

 1.4 Thesis Outline ... 6

CHAPTER 2: LITERATURE REVIEW .. 7

 2.1 Introduction ... 8

 2.2 Multicore Overview .. 8

 2.3 Multicore Simulators ... 12

 2.4 Multicore Benchmarks .. 16

 2.5 Multicore Studies .. 18

CHAPTER 3: METHODOLOGY AND TOOLS .. 28

 3.1 Introduction ... 29

 3.2 Overview ... 29

 3.3 Multicore Design Alternatives .. 29

 3.3.1 Core 2 / Dunnington Microarchitecture ... 33

 3.3.2 Nehalem / Gainestown Microarchitecture .. 34

 3.3.3 Haswell Microarchitecture ... 35

 3.3.4 Xeon Phi / Knights Corner (KNC) Microarchitecture 35

 3.4 Experimental Setup ... 36

 3.4.1 Host Machine ... 36

 3.4.2 Operating System, Compiler, and Libraries ... 36

 3.5 Sniper Multicore Simulator ... 37

 3.6 Benchmarks ... 40

 3.6.1 SPLASH2 Benchmark Suite .. 40

 3.6.2 PARSEC Benchmark Suite .. 42

 3.7 Performance Evaluation Metrics ... 43

 vi

 3.8 Validation .. 44

CHAPTER 4: RAW AND NORMALIZED EVALUATIONS ... 47

 4.1 Introduction ... 48

 4.2 Raw Comparison ... 49

 4.2.1 Total Execution Time ... 54

 4.2.2 L2 Cache Miss Rate ... 57

 4.3 Normalized Comparison ... 60

 4.3.1 Total Execution Time ... 62

 4.3.2 Average Core IPC .. 65

 4.3.3 CPI Cycle Stack ... 67

 4.3.4 Average Core Utilization ... 94

 4.3.5 Power Consumption ... 98

 4.3.6 Cache Coherence Protocol ... 101

CHAPTER 5: THESIS CONCLUSION AND FUTURE WORK 104

 5.1 Introduction ... 105

 5.2 Conclusion .. 105

 5.3 Future work ... 109

APPENDIX A: USAGE INSTRUCTIONS ... 110

APPENDIX B: CONFIGURATION FILES ... 115

REFERENCES .. 129

ABSTRACT(Arabic) .. 137

vii

LIST OF TABLES

No. Table Caption Page

3.1 Multicore design features for the four commercial Intel’s server

processors.

31

3.2 Two input sets for thesis studied applications. 43

3.3 Validated Nehalem core configuration. 44

3.4 Validated benchmarks and input sets. 45

3.5 IPC results of our validation and the results of Sniper validation paper

(2014).

46

A.1 The required libraries. 110

A.2 The names of the studied benchmarks applications and input sets. 114

B.1 Sniper configuration files for all studied design alternatives. 115

 viii

LIST OF FIGURES

No. Figure Caption Page

2.1 Multicore processors classifications. 10

3.1 Dunnington/ Core 2-based microarchitecture. 34

3.2 Gainestown/ Nehalem microarchitecture. 34

3.3 Haswell microarchitecture. 35

3.4 Xeon Phi Coprocessor microarchitecture. 35

3.5 Validation of Sniper simulator. 45

4.1 Multi-socket Dunnington based microarchitecture. 50

4.2 Multi-socket Gainestown based microarchitecture. 50

4.3 Haswell-based microarchitecture. 51

4.4 Xeon Phi-based microarchitecture. 51

4.5 Local and remote communications in multi-socket Gainestown

microarchitecture.

53

4.6 The two common NoC; a) 2D mesh topology, b) ring topology. 53

4.7 Execution times for running eight benchmark applications with small input size

over the four multicore design alternatives.

54

4.8 Execution times for running eight benchmark applications with large input size

over the four multicore design alternatives.

55

4.9 Various memory types and their corresponding data rates. 56

4.10 L2 miss rates for running eight benchmark applications with small input sizes

over the four multicore design alternatives.

58

4.11 L2 miss rates for running eight benchmark applications with large input sizes

over the four multicore design alternatives.

59

4.12 Normalized multi-socket Dunnington based microarchitecture. 60

4.13 Normalized multi-socket Gainestown based microarchitecture. 61

4.14 Normalized Haswell-based microarchitecture. 61

4.15 Normalized Xeon Phi based microarchitecture. 62

4.16 Execution times for running eight benchmark applications with small input size

over the four normalized multicore design alternatives.

64

 ix

4.17 Execution times for running eight benchmark applications with large input

size over the four normalized multicore design alternatives.

64

4.18 Average core IPC for running the eight benchmark applications with the small

input sizes over the four normalized multicore design alternatives.

66

4.19 Average core IPC for running the eight benchmark applications with the large

input sizes over the four normalized multicore design alternatives.

67

4.20 An example of Haswell simulation output a) simple b) detailed c) single

component.

69

4.21 CPI stack and IPC over time for running SPLASH2-FFT benchmark

application with small input size over the four normalized multicore design

alternatives.

72

4.22 CPI stack and IPC over time for running SPLASH2-FFT benchmark

application with large input size over the four normalized multicore design

alternatives.

73

4.23 CPI stack and IPC over time for running SPLASH2-Radix benchmark

application with small input size over the four normalized multicore design

alternatives.

75

4.24 CPI stack and IPC over time for running SPLASH2-Radix benchmark

application with large input size over the four normalized multicore design

alternatives.

76

4.25 CPI stack and IPC over time for running SPLASH2-Lu.cont benchmark

application with small input size over the four normalized multicore design

alternatives.

78

4.26 CPI stack and IPC over time for running SPLASH2-Lu.cont benchmark

application with large input size over the four normalized multicore design

alternatives.

79

4.27 CPI stack and IPC over time for running SPLASH2-Cholesky benchmark

application with small input size over the four normalized multicore design

alternatives.

81

4.28 CPI stack and IPC over time for running SPLASH2-Cholesky benchmark

application with large input size over the four normalized multicore design

alternatives.

82

4.29 CPI stack and IPC over time for running PARSEC-Blackscholes benchmark

application with small input size over the four normalized multicore design

alternatives.

84

4.30 CPI stack and IPC over time for running PARSEC-Blackscholes benchmark

application with large input size over the four normalized multicore design

alternatives.

85

4.31 CPI stack and IPC over time for running PARSEC-Canneal benchmark

application with small input size over the four normalized multicore design

alternatives.

88

 x

4.32 CPI stack and IPC over time for running PARSEC-Canneal benchmark

application with large input size over the four normalized multicore design

alternatives.

89

4.33 CPI stack and IPC over time for running PARSEC-Fluidanimate benchmark

application with small input size over the four normalized multicore design

alternatives.

90

4.34 CPI stack and IPC over time for running PARSEC-Fluidanimate benchmark

application with large input size over the four normalized multicore design

alternatives.

91

4.35 CPI stack and IPC over time for running PARSEC-Swaptions benchmark

application with small input size over the four normalized multicore design

alternatives.

92

4.36 CPI stack and IPC over time for running PARSEC-Swaptions benchmark

application with large input size over the four normalized multicore design

alternatives.

93

4.37 Average core utilization for running the eight benchmark applications with the

small input sizes over the four normalized multicore design alternatives.

97

4.38 Average core utilization for running the eight benchmark applications with the

large input sizes over the four normalized multicore design alternatives.

97

4.39 Average runtime dynamic power for running the eight benchmark applications

with the small input sizes over the four normalized multicore design

alternatives.

99

4.40 Average runtime dynamic power for running the eight benchmark applications

with the large input sizes over the four normalized multicore design

alternatives.

99

4.41 Kiviat chart for performance evaluation for the four normalized multicore

design alternatives.

100

4.42 MESIF versus MESI Protocol 101

4.43 Average core IPC for running 4 SPLASH2 benchmark applications with large

input sizes over the four studied multicore design alternatives with

MESI/MESIF cache coherence protocols.

102

4.44 Average core IPC for running 4 PARSEC benchmark applications with large

input sizes over the four studied multicore design alternatives with

MESI/MESIF cache coherence protocols.

103

 xi

LIST OF ABBREVIATIONS

AMD Advanced Micro Devices

ARM Advanced RISC Machine

CMP Chip Multi-Processor

CPU Central Processing Unit

DRAM Dynamic Random Access Memory

DDR Double Data Rate

DVFS Dynamic Voltage and Frequency Scaling

ECC Error Correcting Code

FSB Front Side Bus

FLITs FLow control unITs

HB Higher is Better

HJM Heath Jarrow Morton

HPC High-Performance Computing

HT Hyper-Threading

ILP Instruction Level Parallelism

IPC Instruction Per Cycle

IWC Instructions Window Centric

JIT Just in Time

L1 Level 1 cache

LB Lower is Better

LLC Last Level Cache

MC Memory controller

MESIF Modified Exclusive Shared Invalid Forward protocol

MIC Many Integrated Core

MIPS Million Instructions Per Second

 xii

MOESI Modified Owned Exclusive Shared Invalid protocol

NoC Network on Chip

NUCA NonUniform Cache Access

NUMA Non-Uniform Memory Access

OS Operating System

PARSEC Princeton Application Repository for Shared-Memory Computers

QEMU Quick Emulator

QPI Quick Path Interconnect

RAM Random Access Memory

RISC Reduced Instruction Set Computing

RMS Recognition Mining Synthesis

ROI Region of Interest

SIMD Single Instruction Multiple Data

SMP Symmetric Multiprocessor

SMT Simultanious Multithreading

SPEC Standard Performance Evaluation Corporation

SPLASH Stanford ParalleL Applications for Shared memory

SoC System on Chip

TBB Threading Building Block

TDP Thermal Design Power

TLB Translation Look-aside Buffer

TLP Thread Level Parallelism

VLIW Very Long Instruction Word

xiii

EVALUATION OF POPULAR MULTICORE DESIGN

ALTERNATIVES USING CONFIGURATION

DEPENDENT ANALYSIS

By

Aieshah F. Bany Sakher

Supervisor

Dr. Gheith A. Abandah, Prof

ABSTRACT

Multicore processor architectures have been gaining increasing popularity in

recent years in high-performance computing (HPC) domain. Many designs are proposed

and many commercial multicore processors are introduced. It is important to evaluate the

common design alternatives using representative multithreaded applications.

Performance evaluation helps the programmers in tuning and developing future parallel

applications and helps designers in developing multicore architectures that efficiently run

parallel applications.

The purpose of this thesis is to evaluate alternative multicore and many-core

designs, identify strengths and weaknesses in current processors, and identify design

aspects that have a high positive impact on such processors and areas that need further

investigation and improvement. This thesis presents a micro-architectural simulation

using the Sniper simulator, a fast and accurate multicore simulator, to evaluate four

common Intel server multicore processors (Xeon brand). Two of them are bus-based

multi-socket architectures: Dunnington/Core2-based and Gainestown/ Nehalem-based

microarchitectures. The others are network on chip (NoC) based architectures: 2D mesh

and bidirectional ring interconnection networks. They are Haswell and Xeon Phi based

processors. They were chosen because they cover a wide range of recent multicore design

options.

In this research, we have chosen eight representative parallel applications from

two benchmark suites: Princeton Application Repository for Shared-Memory Computers

(PARSEC) and Stanford ParalleL Applications for Shared memory (SPLASH2). We have

conducted many raw and normalized experiments for the four designs with two problem

sizes of each of the selected applications. In these experiments, we used a comprehensive

collection of performance evaluation metrics to facilitate trade-off evaluations. These

metrics are execution time, average instructions per cycle (IPC), average core utilization,

and power consumption. Also, we analyzed benchmarks cycles per instructions (CPI)

cycle stacks changes over time.

We do a normalized comparison where the multicore design alternatives are put

on the same technological level with similar component sizes and speeds. The normalized

comparison better exposes the performance differences due to microarchitecture main

features; like memory hierarchy organization, network interconnection topology, and

cache coherent protocols, rather than the underlying technology and component sizes.

Discussions of raw and normalized experiments and comparative analysis are included in

this thesis.

xiv

We found that the normalized Haswell exhibits better execution time (69 ms) and

system throughput (1.39 IPC) averaged over the eight multithreaded benchmarks for the

large data set. This relatively high performance is due to its architectural features: private

level 2 cache, large level 3 shared non-uniform cache access (NUCA), and high-speed

core-to-core communication through the bidirectional ring NoC. On the other hand, it

relatively consumes large power (52.3 watts).

The nXeon Phi architecture shows lower power consumptions (48.14 watts), but

designers should do further research in developing its memory components. Xeon Phi

suffers relatively from larger CPI loss in memory intensive applications (1.27 IPC)

leading to larger execution times (77.25 ms on average). Most of the performance hit is

from the off-chip DRAM access and smaller on-core units.

We concluded that the bus-based microarchitectures are no longer able to meet

the requirements of new HPC workloads due to the obvious weakness in their handling

of the synchronization and communication overheads, which for sure will increase in

future many-core architectures. The normalized Gainestown and normalized Dunnington

have average execution times of 74 ms and 73 ms, respectively, and have average

throughput of 1.33 IPC and 1.31 IPC, respectively. Also, their power consumptions are

50.14 and 49.99 watts on average, respectively.

 Finally, we have shown that the Modified Exclusive Shared Invalid Forward

(MESIF) cache coherence protocol enhances the multicore performance, compared with

the older MESI protocols. Normalized Dunnington has speedup of 1.028x, normalized

Gainestown has 1.027x, normalized Xeon Phi has 1.01x, and normalized haswell does

not benefit from MESIF protocol because it has only one socket and all cores share the

same NUCA cache.

CHAPTER 1: INTRODUCTION

2

1.1 Background and Motivation

Multicore architecture is the current step in processor evolution; it is a special kind

of a multiprocessor on a single chip (Olukotun, Kunle, et al. 1996). With this advent of

multicore processors and their widespread use in the commercial and scientific fields,

extensive research areas were open. Thousands of researchers are working on multicore

processor designs.

Many design options are in front of the designers because of many system

parameters. Vendors and designers have shown an interest in increasing the number of

cores and cache sizes. However, this may not be the best performance solution because it

imposes high communication overheads. Other options exist in choosing the cache

coherence protocols, cache hierarchy, cache associativity degree, cache write locality,

chip interconnection networks, and clock speeds.

 One of the biggest challenges in effectively using the multicore architectures is

tuning the system parameters to have the optimized performance and to determine which

option has the largest impact on performance without increasing the energy consumption

(Abandah, G.A 1998).

Some scientists try to enhance the performance of multicore processors by

exploiting thread level parallelism (TLP) in the applications and tuning these applications

to suit the multicore platforms and achieve better performance. In fact, to take the full

advantages of multicore architectures, the programmers need to know the characteristics

of their parallel applications and how they behave on the multicore systems. The

programmers also need to know enough information about the system’s performance

characteristics like the system’s strengths and weaknesses (Abandah and Davidson 1998).

3

A major challenge with design development phase is the ability to analyze and

optimize performance for multicore systems. Computer architects need performance

analysis tools and workload characterization methodologies to understand the behavior

of existing and future workloads in order to design and optimize future hardware.

However, the study of parallel applications performance on alternative system

configurations will support future designs of multicore systems by allowing the designers

to modify the multicore configurations to achieve higher performance.

There are various system configurations in multicore processor, that include many

parameters like the number and speed of processor cores, the number and size of cache

memory levels (L1, L2, L3, or more), cache type (private or shared), cache coherence

protocols (MESI, MSI, MESIF, etc.), write-through and write-back techniques, cache

associativity (Direct or Set associative mapping), and core interconnection networks.

With the emergence of efficient commercial multicore architectures, it is

important to find the weaknesses and strengths of the current processors. This involves

using appropriate metrics to evaluate the performance of multicore processors like

bandwidth and latency (Eeckhout, et al. 2010).

It is important to understand how various designs of multicore processors perform

with the current parallel applications by characterizing such applications on various high-

end multicore alternatives. We need to find out where and when the system is weak or

strong. Our study gets its importance from the fact that it characterizes the parallel

applications on multicore systems depending on the system configuration. This evaluation

will lead to developing and tuning the multicore parameters to run efficiently on parallel

applications with higher performance.

4

1.2 Research Contributions

In this thesis, we have the following contributions:

 Evaluating and calibrating common multicore systems, by using raw and

normalized microarchitectural simulations.

 Comparing the behavior of wide range of multithreaded benchmarks,

analyzing their behavior due to different microarchitectures and different input

data sets, and concluding some interesting information about (dis)similarly

properties of them.

 Facilitating trade-off evaluations, by using comprehensive and

representative multicore performance metrics. These metrics are execution

time, average instructions per cycle (IPC), average core utilization, and power

consumption. Also, CPI cycle stacks changes over time.

 Finally, identifying multicore designs strengths and weaknesses,

concluding system design features that have significant impact on system

performance, and presenting future work directions.

5

1.3 Research Methodology

The methodology of our thesis consists of the following stages:

 Investigating and survey for various design options of recent

multicore processors, in order to select few representative multicore

design alternatives.

 Investigating and survey for different multicore simulators, where this

simulator should be able to efficient simulate different multicore design

options; can evaluate the performance of these alternatives by determining

the systems strength and weakness, and must be flexible and easy to

modify system configurations for normalization issue.

 Investigating the available benchmarks parallel applications, and

selecting a representative set of them for further study. These applications

should be representative and cover several types of multithreaded

workloads.

 Implementing raw experiments of each multicore designs, and

gathering the results of these experiments, then analyzing them, so we can

determine the best multicore design performance.

 Implementing normalization experiments, by normalizing the values or

types of not interested design parameters, so we can determine the real

impact of any determined performance factors, and the system strength and

weaknesses.

 Conclusion and future works, where the conclusion and results analysis

of this work will be presented and future research direction will be

discussed.

6

1.4 Thesis Outline

This thesis contains five chapters that describe the development of the whole

research work. The rest of the thesis is organized as follows:

Chapter two presents a survey of some related work. It includes multicore

processors features, performance evaluation techniques, recent and common multicore

processors simulators, and multithreaded benchmarks.

Chapter three summarizes our methodology for common multicore performance

evaluation, describes case study multicore design alternatives and used multithreaded

applications, and then, describes Sniper multicore simulator, host machine, setup

environment, and used performance metrics.

Chapter four presents the results of raw and normalized comparisons, presents

performance evaluation and results analysis to measure the impact of multicore processor

parameters.

Chapter five presents the main conclusions regarding the thesis’s methodology,

the strengths and weaknesses points of multicore design alternatives depending on

simulation results. Additionally, it presents some proposed future work.

CHAPTER 2: LITERATURE REVIEW

8

2.1 Introduction

This chapter presents a survey of some related work. It includes multicore

processors overview, multicore simulators, multithreaded benchmarks, multicore

performance evaluation metrics, and a survey of multicore studies in the high

performance computing (HPC) domain.

2.2 Multicore Overview

Multicore processors trend is the new trend in computer architecture domain. It

can be defined as replicating multiple independent processor cores and implementing

multiprocessing in a single physical package called a chip. However, if all cores fit into a

single processor socket then it is called Chip Multi-Processor CMP (Barbic, J. 2007). The

first multicore processor is IBM Power 4 in 1996 (Tendler, et al. 2002), which has two

high-performance microprocessor cores on a single silicon chip. In the past, the trend was

to add more components and more cababilities on one die. In Fact, manufacturers cannot

do this forever, because of the limitation of improvements of a single core. Many

components suffer from communication overheads. Also, it is difficult to make single-

core clock frequencies much higher because of the heat problem, design difficulties, and

verification. Hence, server farms need expensive air-conditioning.

On the other hand, most of the new applications are multithreaded, because there

is a general trend in computer architecture for shifting towards more parallelism:

instruction level parallelism (ILP) and thread level parallelism (TLP) (Barbic, J. 2007).

In ILP, the parallelism is at the machine-instruction level; the processor can reorder,

pipeline instructions, split Instructions into microinstructions, do aggressive branch

prediction, etc.

9

TLP employs parallelism on a big scale, however, the server can serve each client

in a separate thread (Web server, database server, etc.). In addition, they employ TLP in

desktop applications (Blake, G. et al., 2010). Computer researches predicted that

“Anything that can be threaded today will map efficiently to multicore” (Barbic, J. 2007).

After the first publication about the multicore processors by Kunle Olukotun et al.

(1996). Thesse researchers, the pioneers of multicore processors, argued that multicore

computer processors are likely to make better use of hardware than existing superscalar

designs, the multicore processors became very hot topic in the computer engineering

(Barbic, J. 2007).

Chip designers continue evolution to increase the number of cores, which is

leading to the many-core architectures. However, a many-core processor is one in which

the number of cores is large enough that traditional multi-processor techniques are no

longer efficient. It can be in the range of several tens of cores and is likely to require a

network on chip (NoC). Many-core architecture is a special type of multicore processors.

See Figure 2.1 that presents a classification of multicore processors. If all cores are

identical, the system is called homogeneous multi-core system and if they are not

identical, it is called heterogeneous multi-core systems. Also, like single-processor

systems, the cores in multi-core systems may implement architectures such as superscalar,

very long instruction word (VLIW), vector processing, single instruction multiple data

(SIMD), or multithreading. An example of many core processors is Intel Xeon Phi

Knights Corner and Knights Landing processors which contain 60+ cores connected with

ring topology network or 2D mesh network respectively. Nowadays, Intel introduced a

max number of 72 cores with 4way simultaneous multi-threading (SMT) on the high-end

Xeon Phi line processors.

10

1. http://slideplayer.com/slide/9016026/

Interconnect systems in multicore systems have gradually evolved from simple

busses to more scalable NoC. NoC is a communication centric interconnection approach

that provides a scalable infrastructure to interconnect multiple cores and sub-systems (i.e.,

memory controllers, I/O ports) in a system on chip (SoC) (Bhople, et al. 2013). Common

network topologies to interconnect cores include: conventional bus-based, ring, 2-

dimensional mesh as an example of NoC and crossbar networks (Lecler, et al. 2011). The

bus topology used in processors with front side bus (FSB), which means that several

resources use the same communication channel (e.g., Intel Nehalem microarchitecture).

In the ring topology, which was used in high-end Intels desktop and server multicore

processors, the resources are connected to each other in a ring (ex. Intel corei7 and Xeon

E5 v3). Every core and resource is connected to its two neighbours, all communication

with other resources then should pass through the neighbours. In the mesh topology any

node can communicate with all other nodes in the system. The 2D-mesh topology is a

type of mesh network in which nodes form a two-dimensional grid where each node is

connected to the four adjacent notews. The cores at the edges have only two or three

connections since they do not have more adjacent cores (Bhople, et al. 2013).

Figure 2.1 Multicore processors classifications1.

http://slideplayer.com/slide/9016026/

11

Common cache coherence protocols include Modified Exclusive Shared Invalid

Forward (MESIF) protocol, which is recently used by Intel’s multicore processors, they

added forward (F) state to the previous MESI protocol. Advanced Micro Devices (AMD)

processors use the Modified Owned Exclusive Shared Invalid (MOESI) protocol that

benefits from the added owned (O) state to the original MESI protocol (Tiwari, A. 2014).

The two protocols support cache to cache transfers in order to efficiently transfer data

between caches instead of expecting information from the main memory. The added F

state in the MESIF is an optimization to the MESI protocol, where a read request for data

in the "shared" state is serviced by one of the sharers of the data instead of waiting for the

data to come from the main memory. Where the added O state in the MOESI protocol lets

the caches to share data which are dirty as long as one of the sharers takes the

responsibility of owning the data. Requests for the shared data will be satisfied by the

owner (Tiwari, A. 2014).

Intel and AMD are the two most common vendors in desktops, workstations, and

server’s processors. On the other hand, Advanced RISC Machine (ARM) is the leader in

mobile processors and embedded systems (Furber, S. B. 2000) (Jarus, et al. 2013). Recent

multicore processors differ in many features; like cache parameters, allocation

/replacement policies, and write policies. Moreover, the number of levels in the cache

hierarchy can be two, three, and four with specifications on the type of inclusion policy.

Even more, multicore processors differ in the configuration of some or all levels of the

cache hierarchy to be shared or private amongst the multiple threads and cores.

12

1 http://marss86.org/~marss86/index.php/Home
1. https://github.com/mit-carbon/Graphite

2. https://groups.google.com/forum/#!forum/graphite-sim

2.3 Multicore Simulators

Computer architecture research is mainly driven by simulation in HPC domain

(Ricco A. 2013). There are many simulators that are used to evaluate multicore processors

in the design phase. In this Section, we review the most popular multicore simulators and

report most of their features.

The sniper multicore simulator1 is an open source and licensed execution-driven

simulator. It is based on the interval core model and the Graphite simulation

infrastructure, so it is a fast and accurate simulation. It is fast because it is based on a Pin

on-the-fly instrumentation tool. It allows a range of flexible simulation options like in-

order and out-of-order (OoO) cores when exploring different homogeneous and

heterogeneous multi-core architectures. It supports time simulation for multithreaded and

multi-programmed workloads and shared-memory applications with 10s to 100+ cores,

at a high speed when compared to existing simulators. The sniper simulator has been

validated for real hardware of Intel Nehalem and Intel Core2 with error accuracy about

11%, it supports modern Linux-OS (Redhat EL 5,6, Debian Lenny+, Ubuntu 10.04-

14.04+, etc.) (Carlson, T. et al., 2011) (Carlson, T. et al., 2014a) (Carlson, T. et al., 2014b)

(Florea, et al. 2014). The sniper simulator is explained with higher details in Chapter

Three.

http://marss86.org/~marss86/index.php/Home
https://github.com/mit-carbon/Graphite
https://groups.google.com/forum/#!forum/graphite-sim

13

1 http://marss86.org/~marss86/index.php/Home
1. https://github.com/mit-carbon/Graphite

2. https://groups.google.com/forum/#!forum/graphite-sim

The MARSS simulator2 (Micro-ARchitectural and System Simulator for x86-64

based Systems) is an open-source, cycle-accurate, full system simulator, Quick Emulator

(QEMU) based, full-system emulation environment with models for the chipset and

peripheral devices. It supports detailed models for coherent caches, bus based and on-

chip interconnections networks, and MESI or MOESI cache coherent protocols. MARSS

has its root on MPTLsim that is the multicore version of PTLsim simulator. Also, it runs

in user-space only, without any need for root access or the installation of any kernel

module (Patel, et al 2011).

The Graphite simulator3 is an open source, distributed parallel simulator. It can

explore dozens, hundreds or thousands of cores. And also, it is capable of accelerating

simulation by distributing simulated cores across multiple Linux machines. Graphite4 is

the root of the Sniper simulator (Miller, et al. 2010).

The CMP$im simulator, a Pin-based on-the-fly multi-core cache simulator, is a

flexible multicore simulator and uses a dynamic binary instrumentation tool as an

alternative to trace-driven and execute-driven approach. It is a memory system simulator

that characterizes memory performance of x86 workloads on multicore processors.

CMP$im is fast, fully configurable and can gather detailed cache performance statistics.

Users can model any kind of cache hierarchy and supports multi-cores and multi-threaded

cores, but the disadvantage of this simulator is the lack of speculation and out-of-order

execution (Jaleel, et al. 2008).

http://marss86.org/~marss86/index.php/Home
https://github.com/mit-carbon/Graphite
https://groups.google.com/forum/#!forum/graphite-sim

14

1. https://github.com/s5z/zsim
2. http://manifold.gatech.edu/
3. http://masc.soe.ucsc.edu/esesc/

Zsim1, is an open-source and a Pin-based simulator, like Graphite, CMP$im, and

Sniper simulators. It is fast and accurate microarchitectural simulation system of

thousand-core systems. Its main goal is to focus on memory hierarchies and large,

heterogeneous systems. It supports detailed core models (including OoO cores) with

instruction driven timing models. It supports complex workloads, including multi-

programmed, client-server, and managed-runtime applications, without the need for full-

system simulation (Sanchez, et al. 2013).

The Manifold2 simulator, a parallel simulation framework for multicore systems,

is a full system, open source simulator, and supports parallel and serial simulations that

is transparent to the users. It supports Stanford ParalleL Applications for Shared memory

(SPLASH2) and Princeton Application Repository for Shared-Memory Computers

(PARSEC) benchmark suites and it has integrated library of power, thermal, reliability,

and energy models. It is defined as flexible and scalable simulator. However, Manifold’s

component-based design provides the user with the ability to easily replace a component

with another for efficient exploration of the design space (Wang, et al. 2011) (Wang, et

al. 2014).

The ESESC3, a fast multicore simulator using time-based sampling, is an open

source, very fast simulator that supports heterogeneous multicores, with detailed power,

thermal, and performance models for modern out-of-order multicores. It supports

multicore homogeneous and heterogeneous configurations, various memory hierarchies,

and on-chip memory controller. It can model power and temperature in addition to

performance and their interactions (Ardestani, et al.2013) (Ardestani, et al.2014).

https://github.com/s5z/zsim
http://manifold.gatech.edu/
http://masc.soe.ucsc.edu/esesc/

15

1. http://csg.csail.mit.edu/hornet/
2. http://gem5.org/Main_Page

 The Hornet1, a parallel, open source and cycle-level multicore simulator, is based

on an ingress-queued wormhole router NoC architecture. It is highly configurable,

scalable, accurate multicore simulation in the 1000-core range. Hornet permits tradeoffs

between perfect timing accuracy and high speed with very good accuracy (Lis, et al. 2011)

(Ren, et al. 2012).

Gem52 is a simulation infrastructure introduced from the merger of the best

aspects of the M5 and GEMS simulators. M5 provides a highly-different configuration

infrastructures, multiple ISAs, and diverse central processor unit (CPU) models. GEMS

simulator complements these features with a detailed and flexible multicore system

features. Such features include memory system and support for multiple cache coherence

protocols and interconnect models except MESIF. Although Gem5’s simple CPU models

are much faster than their detailed counterparts, they are still considerably slower than

binary translation-based simulators (Binkert, et al. 2011).

Finally, Carlson et al. (A,2014) concluded that the good simulator should have

simulation infrastructure that has many important requirements; particularly:

 Efficiency, both in time and space, by only simulating relevant parts of the

benchmark in detail, avoiding long warm-up time; and occupying a small disk

footprint for storing workloads.

 Accuracy: simulation results should be representative of running the

complete workload.

 Reproducible: the unit of work must be fixed across architectures to allow

for valid comparisons to be made; workloads must be easily shareable while

guaranteeing (mostly) identical simulation results.

http://csg.csail.mit.edu/hornet/
http://gem5.org/Main_Page

16

2.4 Multicore Benchmarks

Modern processors are designed as a SoC, which can execute many independent

threads in parallel. Hence, the performance measurement should be done on

multithreaded benchmarks.

There are many general proposed benchmark suites such as Standard Performance

Evaluation Corporation (SPEC), SPEC CPU2006 suite (SPEC, 2014), which is a

collection of compute-intensive applications and is a representative of scientific and

engineering applications. These applications are serial programs that are not suitable for

studies of multicore platforms.

SPLASH2 suite (Woo, et al., 1995) is a collection of multithreaded applications,

which is representative of scientific, engineering, and graphic applications. These

applications are widely used in the HPC domain.

PARSEC suite (Bienia, et al., 2008) is a collection of multithreaded commercial

and new applications in recognition, data mining, and synthesis (RMS) (Dubey, 2005),

which is representative of animation, media processing, computer vision, enterprise

servers, and computational finance applications.

The PARSEC benchmark suite is often used in studies related to multicore

processors. Bienia, et al. (2008) characterized PARSEC benchmarks to show that their

benchmark suit has diverse types of multi-threaded behaviors. Bhattacharjee and

Martonosi (2009) characterized the translation look-aside buffer (TLB) behavior of the

PARSEC benchmark applications. Contreras and Martonosi (2008) characterized a subset

of PARSEC benchmark applications that were compiled with Intel threading building

block (TBB) on AMD dual-core processors to determine the sources of overhead within

the TBB. The recent threading library TBB is a C++ template library developed by Intel

17

for writing software programs that take advantage of multi-core processors. These entire

tools target helping the programmers to develop efficient parallel applications.

Dey, et al. (2011) characterized PARSEC benchmark applications to measure the

effect of shared resource contention on performance. They classified resource contention

into intra-application contention, which is the contention among threads from the same

application, and inter-application contention, which is the contention among threads from

different applications.

Natarajan and Chaudhuri (2013) characterized a set of multi-threaded applications

selected from the PARSEC, SPEC openMP, and SPLASH to understand the last level

cache (LLC) behavior of multi-threaded applications. They proposed a generic design

that introduces sharing-awareness in LLC replacement policies. They showed that their

design could significantly improve the performance of LLC replacement policies.

 Despite that SPLASH was released at the beginning of the 1990s for the HPC

domain, it is widely used beside PARSEC in the recent multicore research (Shi and Khan,

2013), (Shriraman et al., 2013), (Krishna et al., 2013).

Bienia, et al. (2008b) showed that SPLASH and PARSEC complement each other

in terms of the diversity of working set size, cache miss rate, and distribution of

instructions. Heirman, et al. (2011) characterized a set of multithreaded benchmarks from

SPLASH2, PARSEC, and Rodinia suites in order to understand scaling bottlenecks in

multi-threaded workloads. They concluded that the three benchmark suites cover similar

areas in the workload space.

18

Mohammad and Abandah (2016) used SPLASH2 besides PARSEC in their

multicore applications characterization independently on hardware configurations. They

used eight applications from the two benchmark suites, which were selected as they

represent a wide range of multicore applications.

Researchers prefer doing their simulations on the parallel region of the benchmark

called the region of interest (ROI) (Southern, G. 2016), i.e. Sniper simulator has the

feature of running all simulation on just the ROI of the multithreaded benchmarks.

Furthermore, it can eliminate the initialization (warm up) and finalization transient times

of any simulation, which could give more accurate results on max processor

parallelization performance and give hints on max run-time peak power (Jha, et al. 2017).

2.5 Multicore Studies

The multicore studies branched out in more than one direction in studying the

multicore processors. Researchers proposed and discussed various design options like

the number and speed of chip cores, the interconnection networks, cache hierarchies, and

cache coherence protocols. They study how these issues affect the important metrics of

performance of multicore processors like throughput, execution time, energy, CPU clock

speed, memory bandwidth, inter-core communication overhead, and scalability ability.

Shukla, et al. (2015), in their literature survey, conclude that all studies attempt to

address some isolated issues and some common issues. Less research is available about

the correlation between multicore performance parameters, or about obtaining the

performance issues when many parameters influence each other.

19

Some researchers tried generally to summarize many multicore processor

performance parameters. Ubal, et al. (2007) proposed Multi2sim tool: a simulation

framework to evaluate multicore-multithreaded processors for the analysis of multicore

architecture performance. They studied three major performance elements of multicore

architecture: processor cores, memory hierarchy, and the interconnection network. By

this tool, they can graphically show how cores execute threads, how many cores are idle,

and how the interconnection network is utilized by all cores for the inter-core

communication.

Blake, et al. (2009) studied five major attributes common among multicore

architectures and discussed the tradeoffs for each attribute in the context of actual

commercial products. These areas were application domain, power/performance,

processing elements, memory, and accelerators/integrated peripherals.

Other studies are about the multicore interconnection networks. Bononi, et al.

(2007) study four NoC topologies; ring, 2d mesh, spidergon and unbuffered crossbar.

They found that ring forces some packets to follow longer paths than other

topologies although that mesh has more channels for data transfer. Also, they found that

ring and spidergon have the best performance of elapsed execution cycles while mesh and

crossbar perform worse than expected. In percentage, the difference between the

performances, spidergon and ring behave equivalently being 3.3% faster than mesh

and 6.2% faster than crossbar. And by considering the total buffer size for the 12-node

architectures, they note that mesh and crossbar have less buffering memory: 204 flits

for mesh and 0 for crossbar vs. 288 flits for ring and 216 for spidergon.

20

Mohanty, et al. (2013) had concluded that the evaluation of performance is

dependent on the internal network, e.g., ring network and a hybrid network. They used

the metrics execution time and speed-up to show the performance of ring network and a

hybrid network.

 Ingle, et al (2013) studied the performance of mesh topology of NoC architecture

using Source routing algorithm. They observed that topology and routing algorithm are

two key features which distinguish various NoC platforms. And, 2D mesh topology is

one of the most frequently mentioned topologies for an NoC design due to its natural

layout mapping onto an SoC. and because of its network Scalability and the use of a

simple routing algorithm.

Some researchers try to analyze only one processor architecture. Molka, et al.

(2015) studied cache coherence protocol and memory performance of the Intel Haswell

architecture. In addition, Molka, et al. (2009) have pointed out some of the fundamental

details of the Intel Nehalem microarchitecture with its integrated memory controller,

quick path interconnects, and non-uniform memory access (NUMA) architecture. They

used benchmarks to measure the latency and bandwidth between various locations in the

memory subsystem.

Rolf (2009) also studied Intel’s Nehalem architecture and has summarized the

major improvements to the architecture of Intel’s previous multicore architectures with a

special focus on the memory organization and cache coherency scheme.

Rahman, R. (2013) studied the Intel Xeon Phi architecture and presented tools and

guides for the application developers.

21

 Jarus, et al. (2013) presented performance evaluation and energy efficiency of

high-density HPC platforms based on Intel, AMD and ARM processors. They discussed

the trade-off that could exist between computing and power efficiency.

Another point of view, some researchers create new hardware techniques.

Kakoullie, (2012) created a hot spot router, which is responsible for the data exchange

among the cores in the multicore processor. He showed that the hot spot has major

improvements in the performance of multicore architecture.

Duarte, et al. (2010) proposed the Accelerator scheme. With the help of this

scheme, data movement between the main memory and the cache memory can be

increased. It can improve the performance of multicore architecture. They showed that

this scheme has a power enhancement just in case of copy data from memory to cache

and not suitable in the case of real-time applications.

Cache coherence protocols have a high impact on multicore performance.

Therefore, many researches concentrate on this hot topic. Tiwari, et al. (2014) used the

GEM5 simulator and SPLASH benchmark to compare the performance of cache

coherence protocols on multicore architectures such as snoopy and directory protocols.

Snoopy coherence is studied with Modified MOESI coherence protocol and directory

coherence is studied with MI, MESI TWO LEVEL, MESI THREE LEVEL, MOESI, and

MOESI TOKEN coherence protocols.

Martin, et al (2012) concluded that cache coherence protocols can be affected by

many factors including parallel programming communication and synchronization.

Marty, (2008) contributed a hierarchical coherence protocol, directory CMP, that uses

two directory-based protocols bridged together to create a highly scalable system. He

compared this protocol with token CMP and extended the later to create a multiple-CMP

22

system. His simulation results showed that the token CMP has better performance than

directory CMP. He also proposed a new cache coherence protocol that exploits a ring’s

natural round robin order.

Other researchers studied and analyzed cache and memory hierarchy in multicore

processors. Ramasubramanian, et al., (2011) used M5sim tool for analyzing cache

memory performance and have found that cache memory plays a crucial role in deciding

the performance of the multicore system.

Jaleel, et al. (2006) characterized LLC memory behavior of parallel

bioinformatics data mining workloads on multicore processors. They concluded that

shared last-level cache memory is better than private last-level cache memory for high-

performance systems.

Tudor and Young, (2011) concluded that memory contention is a big issue in the

performance of the multicore architecture. The cache misses depend +on the problem

size. If it is small, then there are fewer cache misses. Their model has many limitations

but it is useful when there are large memory requirements.

 Zhou, et al. (2009) proposed a concept of performance fairness metric depending

on management mechanism. They also designed an adaptive hardware mechanism for

enforcing performance fairness on the shared cache.

Some studies evaluate different multicore designs like a single chip and

superscalar multiprocessor. Chaturvedi, et al. (2013) compared a single chip

multiprocessor design with the dynamically scheduled superscalar processor. They used

GEM5 full system functional simulator extended with multi-facet GEMS. Their results

show that the single chip multiprocessor performs 50–100% better than the wide

superscalar processor with the applications that have full parallelism. On applications that

23

can not be parallelized, the superscalar processor performs marginally better than one

processor of the multiprocessor architecture.

Fasiku, et al. (2014) worked on performance evaluation studies on AMD dual core

and Intel dual core processors to find which of processor has better execution time and

throughput. They studied the architecture of AMD and Intel dual core processors and used

SPEC CPU2006 benchmarks suite to measure their performance. The results of overall

execution and throughput time measurement showed that the execution time of CQ56

Intel Pentium Dual-Core processor is about 6.62% faster than AMD Turion II P520 dual-

core processor while the throughput of Intel Pentium dual-core processor is 1.06 times

higher than AMD Turion (tm) II P520 dual core processor. They concluded that Intel

Pentium dual-core processors exhibit better performance probably due to the following

architectural features: faster core-to-core communication, dynamic cache sharing

between cores, and smaller size of level 2 cache.

There is also another research comparison of memory write policies for multicore

cache coherent systems. Pierre, et al. (2012) showed that write-through-invalidate

protocols are a possible and simple solution to maintain coherency and this protocol

performs very well compared with a classic write-back-MESI protocol in both execution

time and generated traffic.

Some computer scientists saw the solution with working on improvements on

parallel programming and applications. Shukla, et al. (2015) concluded that the

development of parallel programming is useful in the growth of multicore architectures.

They said that operating system (OS), scheduling algorithms, and memory management

should be developed for the multicore architectures.

24

Eduardo et al. (2014) proposed a new thread mapping technique to optimize the

communication overhead. They also proposed algorithms to dynamically migrate the

threads. Using the NAS parallel benchmarks and with a producer-consumer benchmark,

they observed the importance of dynamic mapping over static mapping.

Several studies have proposed different techniques to characterize shared memory

behavior of several types of parallel applications on multicore platforms. Pan et al, (2014)

used a set of benchmarks from the PARSEC benchmark suite to evaluate their newly

creative model, which can be used to predict the private cache misses of a multi-threaded

application for different cache sizes. This approach can be used to guide program

optimizations to improve utilization of the private cache.

Woo, et al. (1995) used configuration dependent analysis to characterize several

aspects of the SPLASH benchmark suite. Abandah and Davidson (1998, a) proposed a

Configuration Independent Analysis Tool (CIAT) to characterize configuration

independent characteristics such as memory access instructions, concurrency,

communication patterns, and sharing behavior of shared-memory applications on a

varying number of processors. Abandah, (1998) proposed Configuration Dependent

Analysis Tool (CDAT) to characterize memory behaviors such as cache misses and false

sharing that depend on configuration parameters such as cache block size. CDAT is a

simulator that has memory, cache, bus, and interconnection models. By using a

configuration file, users can specify a system configuration through specifying the

coherence protocol, size and speed of system components, and processors and memory

banks interconnections.

Mohammed and Abandah, (2015) developed CIAT tool to characterize shared

memory multithreaded applications on recent common multicore processors. They

25

proposed an on-the-fly, configuration-independent characterization approach for

characterizing the inherent communication characteristics of multicore applications.

Recent research goes far energy and power-aware systems. They proposed techniques for

power consumption estimation. Priya, et al (2016) also presented a survey of different

techniques to improve the energy consumption of multicore processors. They considered

parameters in a survey like dynamic energy, area, throughput, performance, lifetime,

harmonic mean instruction per cycle, miss rate and latency.

Heinrich, et al, (2017) present an extension of the SimGrid simulation toolkit that

addresses these challenges. They firstly introduce a model for application energy

consumption that supports dynamic voltage/frequency scaling (DVFS) of simulated

processors. Secondly, they discuss means to account for coarse-grain memory effects in

multi-core architectures. The advantages of their approach, compared to cycle-level

simulators, are faster simulation run times and enhanced scalability with, retained

excellent accuracy if the target platform is correctly modeled.

Jho, et al (2017) proposed a two-tier hierarchical power management

methodology to exploit per tile voltage regulators and clustered last-level caches. In

addition, they included a novel thread migration layer that (i) analyzes threads running on

the tiled many-core processor for shared resource sensitivity in tandem with core, cache

and frequency adaptation, and (ii) co-schedules threads per tile with compatible behavior.

On a 256-core setup with 4 cores per tile. They showed that adding sensitivity-based

thread migration to a two-tier power manager improves system performance by 10% on

average (and up to 20%) while using 4× less on-chip voltage regulators. It also achieves

a performance advantage of 4.2% on average (and up to 12%) over existing solutions that

do not take DVFS sensitivity into account.

26

As we explained previously, the first aspect of multicore development is the

microarchitectural simulation, processors designers predict the processor performance by

using some efficient performance metrics (Eeckhout, et al. 2010); some of them indicates

the overall system performance. However, the most used metric is the system latency

which indicates the total execution time needed for execution of any selected

program/task or many simultaneous programs executed together. The other metric is the

system throughput, which is a measure of how many units of a specific unit of

workload/instructions the processor can process in a given amount of time. The other

specific performance metrics that affect overall performance include branches, caches,

and dynamic random access memory (DRAM) misses. The time loss due these misses

can be shown by using CPI stack (Eeckhout, et al. 2010).

 The processor power and energy consumption are the main constraints for

modern high-performance multicore systems. Some simulators give us hints on the

change of performance over time, ex. Sniper simulator can show the change of CPI stack

and consumed power over time (Jho, et al. 2017).

Our study differs from prior works in that we use configuration dependent

characterization technique to characterize the multithreaded applications depending on a

specific configuration of some system components. We will evaluate four common

multicore processors from state of the art multicore systems.

However, we will analyze the configuration dependent characteristics of

multithreaded applications (SPLASH2 and PARSEC benchmark suites) on different

multicore platforms. Our study will use Sniper, fast, accurate, and efficient multicore

simulator to determine the major system factors that have a large impact on system

performance.

27

 We use representative performance evaluation metrics for analysis; i.e. execution

time, average core IPC, CPI stack changes over time, average core utilization, cache

misses and finally, average run time power. We also study the changes on performance

due change of cache coherency protocol MESI to MEISF.

System designers can benefit from our benchmark applications characteristics

analysis to investigate much larger design space in the early design stages of their designs.

On the other hand, software researchers and developers can benefit from using cycle

stacks, they can easily identify the performance bottleneck of an application on a

particular platform and study how application behavior changes with varying hardware

configurations, while computer architects can use cycle stacks to optimize different

architectures (Heirman, et al. (2011).

CHAPTER 3: METHODOLOGY AND TOOLS

29

3.1 Introduction

This chapter summarizes our methodology for performance evaluation of multicore

design alternatives, and characterizing multi-core applications on these designs. Then,

describes Sniper simulator and the study metrics that are used to evaluate these multicore

design systems.

3.2 Overview

The methodology relies on choosing four commercial multicore designs that cover

different options of multicore processor parameters and choosing a set of benchmarks, which

are representative of multithreading applications based on the recent related studies. Then,

we determine best performance parameters that have the main impact on multicore

processors performance. The Sniper simulator is a fast and accurate system-based simulator

cooperative with the Pin dynamic instrumentation tool which instruments the multithreaded

applications dynamically during the simulation and sends application characteristics to

Sniper that analyze them. Sniper outputs many result files like the CPI stack and Power. It

gives us visualization results which explain how CPI changes over time.

We perform micro-architectural simulation using the Sniper x86-64 simulator on four

multicore design alternatives based on commercial Intel’s server processors.

3.3 Multicore Design Alternatives

In our study, we investigated the available commodity multicore processors in order

to determine their important features. We concentrated on the differences that cover

important multicore processor issues, which face designers in the processor design phase.

30

The main issues are multicore interconnection network (Bus-based, or NoC-based 2D

mesh (Tilera like), and ring topology), the memory hierarchy issues specified by the number

and type of the core caches, private, shared, or non-uniform cache access (NUCA) caches,

and the cache coherence protocols (we have intended to study the MESI and MESIF

protocols).

We have chosen four representative multicore processors from Intel’s server

multicore list, which cover all the previously mentioned design issues. We have performed

micro-architectural simulation and tradeoff between optimum performance and power

consumption. We also investigated their strengths and weaknesses points. By so, we can

recommend useful multicore design features.

 In this section, we discuss their design options and touch on their main features. We

choose Intel’s multicore server processors (Xeon brand X86-64 processors) in our study.

They have the same microarchitecture with the same line desktop-grade multicore

processors. However, they have some advantages over desktop processors, like limited power

consumption due to lower clock rates (since servers run more tasks in parallel than desktops

do), their multi-socket capabilities, higher core counts, larger cache sizes that support Error-

correcting code memory (ECC RAM), and more multiprocessing capabilities.

31

1https://ark.intel.com/products/36947/Intel-Xeon-Processor-X7460-16M-Cache-2_66-GHz-1066-MHz-FSB
2https://ark.intel.com/products/37106/Intel-Xeon-Processor-X5550-8M-Cache-2_66-GHz-6_40-GTs-Intel-
QPI
3 https://ark.intel.com/products/71992/Intel-Xeon-Phi-Coprocessor-5110P-8GB-1_053-GHz-60-core
4 http://ark.intel.com/products/83361/Intel-Xeon-Processor-E5-2667-v3-20M-Cache-3_20-GHz

Table 3.1 shows multicore design features for the four commercial Intel’s server

processors. The full details of their features are in Appendix B. These four processors are:

 1Intel Xeon Processor X7460 (Dunnington or Core 2 codenamed microarchitecture), Sep

2008

 2Intel Xeon Processor X5550 (Gainestown or Nehalem-EP codenamed microarchitecture),

Jan 2009

 3Intel Xeon Phi coprocessor (Knights Corner codenamed microarchitecture), Nov 2012

 4Intel Xeon Processor E5-2667 v3 (Haswell-EP codenamed microarchitecture), Sep 2014

 Table 3.1. Multicore design features for the four commercial Intel’s server processors.

1Intel Xeon

Processor

X7460

2Intel Xeon

processor

X5550

3Intel Xeon

Phi

Coprocessor

5110P

4Intel Xeon

processor

E5-2667 v3

Code Name

Dunnington/

Core 2-based

Gainestown/

Nehalem-based

Knights

Corner (KNC) Haswell

Launch Date Q3'08 Q1'09 Q4'12 Q3'14

Lithography 45 nm 45 nm 22 nm 22 nm

of Cores 6 4 60 8

Processor Base

Frequency

2.66 GHz

2.66 GHz

1,05 Ghz 3.20 GHz

Total LLC 16 MB L3 8MB L3 per socket 30 MB L2 20 MB NUCA L3

Bus Speed 1066 MHz FSB 6.4 GT/s QPI 5 GT/s QPI 9.6 GT/s QPI

Link bandwidth

(Bus BW)

8 GB/s for two

directions

25.6 GB/s for two

directions

256 GB/s for

two direcion

80 GB/s for two

directions

TDP 130 W 95 W 225 W 135 W

Dispatch width

4micro

operations 4 micro operations

2 micro

operations

4 micro

operations

Reorder buffer 96 entries 128 entries 32 entries 192 entries

Branch

predictor

Mispredict

penalty

Pentium M

15 cycles

Pentium M

8 cycles

Pentium M

5 cycles

Pentium M

14 cycles

of QPI Links No QPI 2 between sockets 2 between tiles 2 between tiles

Interconnection

network

Bus-based

network / FSB

Bus-based

network / QPI

NoC-based/

2D-mesh

network

NoC-based/ bi-

directional ring

network

32

1https://ark.intel.com/products/36947/Intel-Xeon-Processor-X7460-16M-Cache-2_66-GHz-1066-MHz-FSB
2https://ark.intel.com/products/37106/Intel-Xeon-Processor-X5550-8M-Cache-2_66-GHz-6_40-GTs-Intel-
QPI
3 https://ark.intel.com/products/71992/Intel-Xeon-Phi-Coprocessor-5110P-8GB-1_053-GHz-60-core
4 http://ark.intel.com/products/83361/Intel-Xeon-Processor-E5-2667-v3-20M-Cache-3_20-GHz

D-TLB

Size

Associativity

0

1

64

4

0

1

64

4

I-TLB Size

Associativity

0

1

128

4

0

1

128

4

S-TLB

Size

Associativity

0

1

512

4

0

1

1024

4

L1 features:

private/shared

Size

Associativity

Data access

time

Tags access

time

Private L1 x

6cores

32 KB

L1-D 8 way

L1-I 8 way

3 cycles

1 cycles

Private L1 x

8cores

32 KB

L1-D 4 way

L1-I 8 way

4 cycles

1 cycles

Private L1 x

60 cores

32 KB

L1-D 4 way

L1-I 8 way

3 cycles

1 cycles

Private L1 x

8cores

32 KB

L1-D 8 way

L1-I 8 way

3 cycles

1 cycles

L2 features:

private/shared

Size

Associativity

Data access time

Tags access time

Shared by 2 cores

x 3

3072 KB

12 way

14 cycles

3 cycles

Private cache x 8

256 KB

8 way

8 cycles

3 cycles

Private cache x

60

512 KB

8 way

22 cycles

5 cycles

Private cache x 8

256 KB

8 way

8 cycles

3 cycles

L3 features:

private/shared/

NUCA cache

Size

Associativity

Data access time

Tags access time

Shared by 6 cores

16384 KB

16 way

96 cycles

10 cycles

Shared by 4 cores

 x 2

8192 KB

16 way

30 cycles

10 cycles

No L3 cache NUCA cache

shared by 8 cores

8192 KB

16 way

30 cycles

10 cycles

DRAM :

Number of MC

Per controller

bandwidth

Latency

1 MC per 6 cores

2.5 GB/s

173 ns

2 MC per 8 cores

7.6 GB/s

45 ns

8 per 60 cores

32 GB/s

80 ns

1 per 8 cores

68 GB/s

45 ns

Memory type DDR2 DDR3 GDDR5 DDR4

Vdd 1.6 volts 1.2 volts 1.05 volts 1.2 volts

Cache

coherence

protocol

MESI MESI MESI MESI inside

socket

MESIF in case of

multi-socket

33

1. http://www.hardwarezone.com.sg/feature-intels-cpu-roadmap-nehalem-and-beyond
2. https://www.bjorn3d.com/2008/11/intel-core-i7-920-nehalem/

3.3.1 Dunnington / Core 2-based Microarchitecture

Intel Xeon X7460 is based on Intel Core 2 series, coden amed Dunnington, Intel’s

first multicore which was introduced on 15 September 2008. It features 45 nm technology

node running at 2.66 GHz. Figure 3.1 shows the die microarchitecture containing a six-

core design that contains three Core 2 dies put in one chip and 16 MB shared level three

cache. It features 1066 MHz FSB. Dunnington supports double data rate memory (DDR2-

533 MHz), and have a maximum thermal design power (TDP) below 130 W (see Table

3.1 for other design features).

The purpose of this study is to do a performance evaluation of different

commercial multicore processors dependent on the main system performance factors. The

number of cores per multicore per socket is known, that has a direct relation on

performance. By so, we fixed the number of cores to all design alternatives to eight cores.

The first performance evaluation technique is doing a raw comparison, for that purpose,

we made some minor modifications to the Dunnington microarchitecture. Hence, in

Dunnington microarchitecture, we use eight cores Intel Xeon X7460 based architecture,

2 sockets with two memory controller MC, one MC for each socket that will double the

memory bandwidth and the L3 total size. Figure 3.1 shows the 6 core Dunnington-based

system.

http://www.hardwarezone.com.sg/feature-intels-cpu-roadmap-nehalem-and-beyond
https://www.bjorn3d.com/2008/11/intel-core-i7-920-nehalem/

34

1. http://www.hardwarezone.com.sg/feature-intels-cpu-roadmap-nehalem-and-beyond
2. https://www.bjorn3d.com/2008/11/intel-core-i7-920-nehalem/

3.3.2 Gainestown / Nehalem-based Microarchitecture

Xeon X5550 Core microarchitecture is based on the Nehalem microarchitecture,

which used 45 nm manufacturing technology. Figure 3.2 shows a Core 2 die shot that

features 4 cores sharing 8MB cache and supports multi-socket. Each core has two levels

of private caches and works at 2.66 GHz. Intel Core i7 is the first processor released with

the Nehalem architecture. The server version for Nehalem has performance

improvements over the previous server processors. They mainly rely on using integrated

memory controller IMC that uses 3 channels of DDR3 and using QuickPath interconnect

(QPI) running at 6.40 GT/s. QPI is a new point-to-point processor interconnect replacing

the legacy front side bus (FSB). Other advantages are the support of simultaneous

multithreading by the multiple cores, hyper-threading (HT) of two threads per core.

Additionally, Nehalem has fewer branches miss-predict penalty cycles, equal to eight

cycles; Core2 has 15 cycles miss-predict penalty. See Table 3.1 for more Nehalem

features. Also, here we will use two sockets, 4 cores each, to reach the required eight

cores.

Figure 3.1 Dunnington microarchitecture1. Figure 3.2 Gainestown microarchitecture2.

http://www.hardwarezone.com.sg/feature-intels-cpu-roadmap-nehalem-and-beyond
https://www.bjorn3d.com/2008/11/intel-core-i7-920-nehalem/

35

1. https://www.pcper.com/reviews/Processors/Haswell-E-Intel-Core-i7-5960X-8-core-Processor-Review
2. http://gray.biji.us/xeon-architecture/

3.3.3 Haswell Microarchitecture

Haswell microarchitecture was introduced in September 2014. Figure 3.3 shows

the Haswell die shot. It features 22 nm technology node running at 3.20 GHz. Xeon

processor E5-2667 v3 consists of eight cores sharing an L3 NUCA cache (a distributed

shared LLC) connected in a ring topology. However, logically there are indeed a single

NUCA cache and a single tag directory that are shared by all cores. However, each

physical slice handles a distinct set of cache blocks. So, all slices can operate completely

independently from each other (see Table 3.1 for other features).

3.3.4 Xeon Phi Knights Corner (KNC) Microarchitecture

Intel introduced the first commercial product of the Xeon Phi line/ Knights Corner

(KNC) in November 2012 that belongs to the many integrated core (MIC) design space.

This product contains many Intel CPU cores combined in a single chip by a high

bandwidth Bi-directional ring topology.

Figure 3.3 Haswell Microarchitecture1. Figure 3.4 Xeon Phi Microarchitecture2.

https://www.pcper.com/reviews/Processors/Haswell-E-Intel-Core-i7-5960X-8-core-Processor-Review
http://gray.biji.us/xeon-architecture/

36

 Figure 3.4 shows the block diagram for a KNC die, which targets the highly

parallel workloads. Each core has private small L1/L2 caches, directory-based coherency

with MESI protocol, and high memory bandwidth (see Table 3.1 for more details). The

main purpose of the Intel Xeon Phi coprocessor is offloading the main processor for doing

the heavy computations. Designers classify the Intel Xeon Phi coprocessor as Symmetric

Multiprocessor (SMP) with shared uniform access memory. However, each core has

access to all memory at the same priority.

For our study target, as mentioned in the previous section, we choose eight cores

for all multicore alternatives to be equally evaluated, and also, Sniper doesn’t model ring

topology without NUCA cache. Therefore, we modify the network to be Tilera-like 2d

mesh network (4x2 2d mesh size). Actually, the 2D mesh network is used by Intel in the

next generation Xeon Phi line (KNL). So, it is preferable to study how it affects the system

performance. The new design is explained further in Chapter 4.

3.4 Experimental Setup

 This section represents all environmental requirements for installing Sniper

multicore simulator, describes its features and validation method.

3.4.1 Host Machine

We do all simulations with Sniper multicore simulator on HP ProBook 4530s

laptop which features Core i3-2310M multicore processor, 64-bit operating system, 4 GB

RAM, and 320 GB HDD.

3.4.2 Operating System, Compiler, and Libraries

We have installed Sniper multicore simulator on Linux 2 Ubuntu 14.04.3 LTS 64

bit. Sniper needs a special environment to successfully works, like the GNU Compiler

37

Collection (GCC 4.8.2), Python library 2.7.6, Pin tool 2.14-71313 (Dynamic Binary

Instrumentation Tool), Perl, Perl base, and Perl modules version 5.14.2-21.

After setting the environment and libraries, we have installed the latest version of

Sniper multicore simulator 6.1 (more details in Section 3.5). Then, we installed and built

the benchmarks. Sniper is compatible with SPLASH2 and PARSEC benchmark suites,

which are described in the next section.

3.5 Sniper Multicore Simulator

By reviewing the literature searching for an efficient multicore simulator, we

choose Sniper multicore simulator for its valuable features. In this section, we will explain

how it works and what its features are. Sniper is an execution-driven simulator that uses

functional-first simulation with timing feedback based on the Pin dynamic

instrumentation framework and the Graphite simulation infrastructure (Miller et al.

2010). It implements parallel simulation by keeping threads synchronized using a

quantum-based barrier synchronization with a quantum of 100ns. Each thread in the

benchmark application is pinned to its own simulated core. Sniper is a user-space

simulator, hence, it does not model the operating system nor a scheduler, although

emulation of some aspects that impact performance, such as system call overhead, have

been added.

 Sniper is designed for fast and accurate simulation and makes a good tradeoff

between accuracy and speed. It is validated against multicore two-socket Intel Core 2

processor with an average error of 25% against the real hardware (Carlson et al., 2011),

at simulation speed of several million instructions per second (MIPS). It was enhanced

by introducing the instruction window-centric (IWC) core model which is used and

38

validated on Nehalem processors against real hardware (Carlson et al., 2014a). It shows

good accuracy with an average single-core error of 11.1% and a maximum of 18.8% for

the IW-centric model with only 1.5 slowdown factor and is more accurate compared to

interval simulation. Eyerman et al. (2009) proposed the interval core simulation.

One of the key features of Sniper simulator is its utility in unicore and system-

level studies because it gives more details than the typical one-IPC models. However, this

happens by “jumping” between miss events called intervals. Miss events include branch

misprediction and cache misses. So, there is an added benefit for the interval core model.

Sniper can generate CPI stacks that show the number of cycles lost due to different

characteristics of the system, like the cache hierarchy or branch predictor or

interconnection network. Therefore, Sniper offers a better understanding of each

component’s effect on total system performance. By so, we could use it to characterize

applications on different designs (Al-Manasia et al., 2015).

Modern multicore and many-core designs show high numbers of core counts and

more cache hierarchies’ complexity. Instruction window-centric (IWC) core model was

introduced to support these new configurations and can simulate new many-core designs.

Cycle accurate simulation can give more accurate results, but also tends to be slow. This

model limits the number of configurations that can be evaluated. Hence, resulting in a

large simulation bottleneck. Interval simulation provides a middle ground that is needed

for fast simulation of complex many-core processors while still providing accurate results

(Carlson et al., 2014a). IW- centric take new core features in details making it easy to

implement dispatch stage and reorder buffer (ROB) in the out of order (OoO) core model,

in addition to the previous interval configurations. Sniper supports a wide range of

flexible simulation options for exploring different homogeneous and heterogeneous

39

multi-core architectures, different types of workloads like multi-threading and multi-

program workloads, and support parallel applications like OpenMP, etc. Sniper runs

SPLASH2, PARSEC, Rodinia, and SPEC OMP. It is compatible with modern Linux OS

(Redhat EL 5,6/Debian Lenny+/Ubuntu 10.04-15.04+/etc.) and supports DVFS scaling

and integrate with MCPAT for generating a Power and energy results. Sniper uses barrier

synchronization with a 100ns quantum to minimize simulation error by decreasing

synchronization periods (Carlson, et al., 2014a).

Sniper uses the timing model feedback instrumented by the Pin dynamic

instrumentation framework (Luk et al., 2005), which is available on Linux and Windows.

It is just in time (JIT)-based dynamic instrumentation tool. It instruments single and

multiple threaded applications and it supports different types of processors including

Intel’s instruction set IA-32bit, IA-64 bit (Intel, 2017).

One of the Sniper key features is its integration with MCPAT; an integrated

power, area, and timing modeling framework for multicore architectures. It is an

analytical modeling framework that gives an estimation of power and area consumption,

like CPI stacks. Sniper has high-quality visualization power results plotted over time,

leading to better understanding of individual runs (Ahn et al., 2013), (Ahn et al., 2009).

Sniper implements snooping coherency between caches on a socket (or a tile in

the NoC based configuration) and directory-based coherency across sockets/tiles. In

addition, it supports MSI/MESI/MESIF protocols (which applies to both snooping and

directory-based protocols). The MESIF protocol is always used across the socket/tile

because the LLC is always inclusive in Sniper so it provides the data and the Forward

state is not needed. Sniper supports different core interconnection network, multi-socket

bus-based and NoC architectures. The two types of networks will be explained in Chapter

four.

40

3.6 Benchmarks

Almost all the new multicore processors have abilities to run applications using a

high number of threads in parallel by the multithreading features. Thus, it is very

important to choose a representative multithreaded workload when evaluating

multithreaded processor designs. Applications should cover the compute intensive and

memory intensive applications and belong to the well-scaling benchmarks and poorly

scaling benchmarks. However, after studying all the available workload types in current

practice in computer architecture research and development, we chose eight

multithreaded applications belonging to the two representative multicore benchmark

suites; SPLASH2 and PARSEC (M. Sultan and G. Abandah, 2015). To make the analysis

meaningful, we use two input sets (small and large data sets). Benchmarks in general are

executed with eight threads on our eight core processors. Each thread pinned to a core.

We run each benchmark to completion and report many performance metrics like total

execution time, average IPC per core, processor utilization, and energy consumption.

Simulation speed for all benchmarks in our research is around 2 MIPS, which allows us

to complete the simulation of a typical benchmark used in this study in around 1 to 3

hours on a modern dual core (i3) host machine.

3.6.1 SPLASH2 Benchmark Suite

 Radix is a sorting algorithm that carries out one iteration on radix r digits of the

keys, which are a series of integers. In each iteration, a processor sorts its assigned keys

and creates a local histogram. After that, the local histograms are accumulated into a

global histogram. Finally, each processor uses the global histogram to permute its keys

into a new array for the next iteration. Radix does not have floating point operations. It is

integer kernel application (Mohammad and Abandah, 2015) (Bienia, e al. 2008).

41

LU is a kernel benchmark that decomposes a dense square matrix into the product

of a lower triangular and an upper triangular matrix. The n×n matrix is divided into a

N×N array of B×B blocks, where n=NB. The blocks are divided among the processors

and each processor updates its blocks. To reduce communication, a2-D scatter

decomposition is used to assign blocks to processors (Mohammad and Abandah, 2015)

(Bienia, e al. 2008).

FFT is a one-dimensional kernel of the radix-6 steps Fast Fourier Transform

(FFT) algorithm that is optimized to minimize inter-processor communication. The

dataset is organized as a number of √𝑛 × √𝑛 matrices, which are distributed, in a

neighboring set of rows, on the processors and assigned to each processor’s local memory.

The all-to-all inter-processor communication occurs in three matrix transpose steps. Each

processor transposes a neighboring sub-matrix of √𝑛/𝑝 × √𝑛/𝑝 from each other

processor. To avoid high contention, each processor starts by transposing a submatrix

from the next processor (Mohammad and Abandah, 2015) (Bienia, e al. 2008).

Cholesky is a kernel benchmark that decomposes a sparse matrix into the product

of a lower triangular matrix and an upper triangular matrix by using blocked Cholesky

decomposition. As LU, it divides a sparse matrix into blocks that are divided among the

processors and each processor updates its blocks (Mohammad and Abandah, 2015)

(Bienia, e al. 2008).

3.6.2 PARSEC Benchmark Suite

Canneal is a kernel benchmark that uses a cache-aware Simulated Annealing

(SA) algorithm to minimize routing cost of a chip design. The SA algorithm is a generic

probabilistic metaheuristic for locating a good approximation to the global minimum of

a given function in a large search space.

42

Canneal simulates putting elements on a chip with minimum routing cost. Like

Radix benchmark, Canneal is an integer kernel application (Mohammad and Abandah,

2015) (Bienia, e al. 2008).

Blackscholes is an Intel recognition, data mining, and synthesis (RMS)

application. It calculates the prices for a portfolio of European options analytically by

using the Black-Scholes partial differential equation solution. It partitions the portfolio

work among the threads and processes them simultaneously (Mohammad and Abandah,

2015) (Bienia, e al. 2008).

Fluidanimate is an Intel RMS application that uses an extension of the smoothed

particle hydrodynamics approach to simulate an incompressible fluid for interactive

animation purposes. Fluidanimate partitions the work among the threads and each thread

handles its portion and interacts with the other threads to handle shared work (Mohammad

and Abandah, 2015) (Bienia, e al. 2008).

Swaptions is an Intel RMS application that uses the Heath Jarrow Morton (HJM)

framework to price a portfolio of swaptions. The HJM framework describes how interest

rates evolve for risk management and asset liability management for a class of models.

Its central insight is that there is an explicit relationship between the drift and volatility

parameters of the forward-rate dynamics in a no-arbitrage market. Swaptions uses Monte

Carlo simulation to compute the prices (Mohammad and Abandah, 2015) (Bienia, e al.

2008).

We use two input sets for each benchmark application, small input set and large

input set to make the study meaningful. Table 3.2 shows the input sets for all applications.

43

Table 3.2 Two input sets for thesis studied applications.

Benchmark application Small input size Large input size

SPLASH2-FFT 64 K points 1 M points

SPLASH2-Radix 256 K integers 2 M integers

SPLASH2-Lu.cont 256 x 256 512 x 512

SPLASH2-Cholesky tk15.0 file Tk29.0 file

PARSEC-Canneal
100.000 elements, 32

temperature steps

200.000 elements, 32

temperature steps

PARSEC-Blackscholes 4 K options 16 K options

PARSEC-Fluidanimate 5 frames, 35 K particles 5 frames, 100 K particles

PARSEC-Swaptions
16 swaptions, 10,000

simulations

32 swaptions, 20.000

simulations

3.7 Performance Evaluation Metrics

Choosing suitable multicore performance metrics helps in evaluating design

alternatives in system software and architecture in the multicore era. Performance metrics

are classified into two sets: user-oriented metrics like the response time (simulation total

execution time) that indicates how long it takes to do a task, and system-oriented metrics

like throughput that focuses on the total work done per unit of time. Here, we use average

instructions per cycle (IPC) the inverse of cycles per instruction (CPI). We use the

visualization CPI stacks to interpret the change of CPI characterization over time, and we

use the utilization metric (U %), mainly, the total processor utilization.

 To take the power consumption into account, we use average runtime power

consumed from the MCPAT tool integration. Therefore, designers can make tradeoffs

and optimize performance within an allocated power budget.

The performance of multicore design alternatives is evaluated in two techniques;

a raw comparison which compares original processors features without any

modifications, and normalized comparison (Abandah et al., 1998) which normalizes the

technology-related features and focuses on three main parameters in multicore design:

memory hierarchy, interconnection network, and cache coherence protocol.

44

The normalized comparison better exposes the performance differences due to

microarchitecture main features rather than the underlying technology and component

sizes.

3.8 Validation

The Sniper paper (Carlson, et al. 2011) and its validation journal version (Carlson,

et al. 2014a) validated Sniper multicore simulator on Intel Core 2 and Nehalem real

hardware, respectively. For validation issue, we have validated Sniper multicore

simulator version 6.1 by reproducing their validation work (Carlson, et al. 2014a) on Intel

Xeon X5550 (Nehalem codename). See Table 3.3 for the validated Nehalem core

configuration. We reproduce 39 simulations of 13 applications from SPLASH2

benchmark suite (see Table 3.4 for SPLASH2 benchmark applications and its input sets).

Table 3.3 Validated Nehalem core configuration.

Component Configuration

Processor 1 and 2 sockets, 4 cores per socket

Core 2.66GHz, 4-way dispatch, 128-entry ROB

Branch predictor 8 cycles penalty

L1-I 32KB, 4 way, 4 cycle access time

L1-D 32KB, 8 way, 4 cycle access time

L2 cache 256KB per core, 8 way, 8 cycle

L3 cache 8MB per 4 cores, 16 way, 30 cycle

Main memory QPI, 12.8GB/s per direction

Carlson, et al. (2014a) used 3 types of core models: IW-Centric that supports

reorder buffer ROB, Interval for in order execution, and One-IPC on a single core and

large input size of SPLASH2 suite. They compare simulation results with their collected

results from running the same applications on real hardware. We reproduced the same

simulations’ results by taking the SPLASH2 applications and simulate them using the

three core models. By so, we got the 39 results shown in Table 3.5.

45

We tried to match exact configurations, but we keep in mind that any absolute

numbers we found in the validation paper are for a specific version of Sniper, with very

specific application binaries and command lines, etc. Also, Nehalem core model in the

current version of Sniper has some improvements to suite the recent processors like

instruction extensions, and branch prediction techniques.

Table 3.4 Validated benchmarks and input sets.

SPLASH2 Benchmarks Input Set

Barnes 32,768 particle

Cholesky tk29.O

FFT 4M points

Fmm 32,768 particles

Lu.cont 1,024×1,024 matrix

Lu.ncont 1,024×1,024 matrix

Ocean.cont 1,026×1,026 ocean

Ocean.ncont 1,026×1,026 ocean

Radiosity -room

Radix 1M integers

Raytrace car –m64 –a4

Raytrace_opt car –m64 –a4

Water.nsq 2,197 molecules

Water.sp 2,197 molecules

Figure 3.5 Validation of Sniper multicore simulator, the first column for real hardware. Each two

consecutive columns are from the new and old results from the same core model.

0

0.5

1

1.5

2

2.5

3

Real hardware New-IWC Old-IWC New-Interval

Old-Interval New-OneIPC Old-OneIPC

46

The comparison between the old and new IPC results in Figures 3.5 showed the

similarity results view. In addition, that the results of recent simulations tend to be more

accurate than the old results relative to hardware results in most of the simulations. Hence,

the results agree in general with negligible differences and the same results relations.

Table 3.5 IPC results of our validation and the results of Sniper1 validation paper 2014.

SPLASH2

Applications

IWC

results
Interval results

IPC

results

Real hardware

results
Old New Old New Old New

Barnes 1.42 1.28 1.58 0.73 0.88 0.89 1.166

Cholesky 2.44 2.13 2.31 1.73 0.83 0.79 2.281

FFT 1.416 1.83 1.58 1.93 0.63 0.64 1.166

Fmm 2.22 2.42 2.66 2.66 0.93 0.97 1.80

Lu.cont 2.5 2.45 2.42 2.31 0.92 0.95 2.375

Lu.ncont 2.42 2.32 2.27 2.10 0.80 0.76 2.00

Ocean.cont 0.55 0.61 0.75 0.68 0.20 0.23 0.5

Ocean.ncont 0.63 0.66 0.75 0.68 0.20 0.21 0.55

Radiosity 1.65 1.56 2.38 1.09 0.92 0.98 1.63

Radix 0.38 0.42 0.38 0.41 0.92 0.95 0.38

Raytrace 1.24 1.30 1.88 0.97 0.83 0.85 1.08

Raytrace_opt 1.08 0.85 1.80 0.98 0.81 0.85 1.06

Water.nsq 1.94 2.01 2.35 1.88 0.87 0.96 1.82

Water.sp 1.75 1.85 2.13 2.03 0.83 0.92 1.50

CHAPTER 4: RAW AND NORMALIZED EVALUATIONS

48

1. https://www.slideshare.net/IntelSoftwareBR/numa-i-step2014
2. http://slideplayer.com/slide/7090758/

4.1 Introduction

In this chapter, we present the results of our comparative study of the four commodity

multicore processors. The purpose of this study is to evaluate alternative multicore and many

core designs, and identify system strengths and bottlenecks in current processors. Also, we

determine design aspects that have high positive impact on such processors, we identify areas

that need further investigation and improvement.

We used the Sniper simulator to evaluate the four common Intel’s server multicore

processors (Xeon brand). Recall that two of them are bus based multi-socket architectures

(Dunnington/Core2 based and Gainestown/Nehalem based microarchitectures). The others

are NoC based architectures (2d mesh and bidirectional ring interconnection network). They

are state of the art multicore and many core processors (Haswell and Xeon Phi based

processors). Although the four multicore processors share many similarities, they have

significant differences that lead to large performance differences.

 For fair comparison, we used eight multi-threaded benchmark applications with small

and large input sets. Four of these applications are from SPLASH benchmark suite, which

are Radix, FFT, LU, and Cholesky. The other four are from PARSEC benchmark suite, which

are Canneal, Blackscholes, Fluidanimate, and Swaptions. The eight benchmarks have

interesting differences (Mohammad and Abandah 2016).

We used total execution time (Ex. time) in milliseconds, instructions per cycle (IPC),

and cycles per instruction (CPI) stack changes over time. In addition to the average thread

utilization, we used average dynamic run time power (P) in Watts.

The next section presents the raw comparison, and Section 4.3 presents the

normalized comparison.

https://www.slideshare.net/IntelSoftwareBR/numa-i-step2014
http://slideplayer.com/slide/7090758/

49

1. https://www.slideshare.net/IntelSoftwareBR/numa-i-step2014
2. http://slideplayer.com/slide/7090758/

4.2 Raw Comparison

This section presents the raw comparison where we use Sniper configuration files that

select components of the same size and speed as those used in the four case-study processors.

The four processors design alternatives are explained in Chapter 3. Figures 4.1, 4.2, 4.3, and

4.4 show the four case-study multicore design alternatives as plotted by Sniper multicore

simulator. These figures show the multi-core processors networks, memory hierarchy

organizations that contain number of caches and their sizes, and number of memory

controllers.

Parameterizing the configuration files of the Dunnington and Gainestown were easy

because there are detailed publications (Carlson, et al. 2011), (Carlson, et al. 2014a), and

(Rolf, Trent. 2009). Also, parameterizing the Xeon Phi configuration file was easy because

it is supported as an open source example from the Sniper multicore simulator and also there

are detailed publications, e.g., (Rahman, R. 2013). The last Haswell configuration is the

hardest design to collect all of its detailed features. We used few specifications that are

provided from Intel home page, and some related publications, e. g., (Molka, et al. (2015).

https://www.slideshare.net/IntelSoftwareBR/numa-i-step2014
http://slideplayer.com/slide/7090758/

50

1. https://www.slideshare.net/IntelSoftwareBR/numa-i-step2014
2. http://slideplayer.com/slide/7090758/

Figure 4.1 Multi-socket Dunnington based microarchitecture (Sniper simulator output).

Figure 4.2 Multi-socket Gainestown based microarchitecture (Sniper simulator output).

https://www.slideshare.net/IntelSoftwareBR/numa-i-step2014
http://slideplayer.com/slide/7090758/

51

1. https://www.slideshare.net/IntelSoftwareBR/numa-i-step2014
2. http://slideplayer.com/slide/7090758/

Figure 4.3 Haswell based microarchitecture (Sniper simulator output).

Figure 4.4 Xeon Phi based microarchitecture (Sniper simulator output).

https://www.slideshare.net/IntelSoftwareBR/numa-i-step2014
http://slideplayer.com/slide/7090758/

52

1. https://www.slideshare.net/IntelSoftwareBR/numa-i-step2014
2. http://slideplayer.com/slide/7090758/

Some of the factors that affect multicore performance are:

• Number, type and size of cache levels.

• Core interconnection network and network link bandwidth.

• Number of memory controllers, memory type, memory link bandwidth and

speed, and number of memory channels per memory controller.

• Technology node.

• Branch predictor type and penalty.

• TLB size and associativity.

• Processor base frequencies.

The overall processor performance has a positive relationship with processor clock

frequiency. The following equation is the CPU performance equation.

𝑆𝑒𝑐𝑜𝑛𝑑𝑠

𝑃𝑟𝑜𝑔𝑟𝑎𝑚
=
𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠

𝑃𝑟𝑜𝑔𝑟𝑎𝑚
×

𝐶𝑙𝑜𝑐𝑘𝑠

𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠
×
𝑆𝑒𝑐𝑜𝑛𝑑𝑠

𝐶𝑙𝑜𝑐𝑘

The performance equation describes the three main factors of any processor

performance: which are, in order, instruction count (IC), clocks per instruction (CPI), and

clock time (CT). Processor frequency is the reciprocal of clock time. Hence, higher processor

frequency generally gives lower execution time. Therefore, higher performance.

The network in multicore processors is conceptually between the different LLC and

DRAM. We can configure processor network in two ways: either as a multi-socket system

where each socket has a shared LLC and locally connected DRAM. In this case, the network

models the QPI interface. This mode is used in the Gainestown configuration which models

an Intel Nehalem-like system. Figure 4.5 shows how local and remote communications

happen over the two QPI links. Although Gainestown and Dunnington use buses to connect

sockets together, but Dunnington uses legacy FSB.

https://www.slideshare.net/IntelSoftwareBR/numa-i-step2014
http://slideplayer.com/slide/7090758/

53

1. https://www.slideshare.net/IntelSoftwareBR/numa-i-step2014
2. http://slideplayer.com/slide/7090758/

Figure 4.5 Local and remote communications in multi-socket Gainestown microarchitecture1.

The second network type is where we have a single processor chip with multiple

LLCs connected through an NoC, such as an Intel Xeon Phi Knights Corner implementing

2D mesh NoC with L2 as LLC. The second example is Haswell architecture that implements

bi-directional ring NoC over L3 NUCA cache slices. Figure 4.6 shows the two NoC

topologies, 2d mesh and ring network. The squares in graphs represent processing elements

(PE) or cores and the black circles represent routers that are responsible of routing packets

between cores.

Figure 4.6 The two common NoC; a) 2D mesh topology, b) ring topology2.

https://www.slideshare.net/IntelSoftwareBR/numa-i-step2014
http://slideplayer.com/slide/7090758/

54

4.2.1 Total Execution Time

This subsection presents and analyzes the user perspective performance metric and

the first order performance insight; total execution time (Ex. time) in milliseconds. Figure

4.7 and Figure 4.8 show the total execution time for running the eight multithreaded

applications on the four multicore alternatives with the small and large input data sets (Table

3.2).

Figure 4.7 Execution times for running eight benchmark applications with small input size over the

four multicore design alternatives.

FFT Radix Lu.cont Cholesky
Blacksch

oles
Canneal

Fluidani
mate

Swaption
s

Dunnington 4.535 5.664 9.854 25.18 10.7 52.76 152.7 56.84

Gainestown 2.893 5.08 8.368 16.34 9.201 24.67 81.72 42.26

Xeon Phi 12.62 13.32 29.49 64.92 31.99 96.33 373.3 182.2

Haswell 2.182 4.443 7.376 13.24 7.63 25.2 77.54 35.37

0

50

100

150

200

250

300

350

400

Ex
.t

im
e

 (
m

s)

55

Figure 4.8 Execution times for running eight benchmark applications with large input size over the

four multicore design alternatives.

We see big differences in performance amongst all multicore alternatives. Also, we

see how benchmark applications execution times depend on the workload data set. There is

positive relationship between the application input set size and the application execution

times. Haswell design shows high performance in all multithreaded applications, due to its

high component speeds and sizes. It’s the most recent technology relative to the other

systems. Haswell has the highest clock rate (3.2 GHz) and highest bus speed (9.6 GT/s). The

bus based systems, Gainestown and Dunnington have the same frequency (2.66 GHz), but

Gainestown has higher bus speed than Dunnington. Xeon Phi has the minimal processor

frequency (1.05 GHz), but its communication speed is higher than the other two bus based

systems.

FFT Radix Lu.cont Cholesky
Blacksch

oles
Canneal

Fluidani
mate

Swaption
s

Dunnington 257.5 20.31 61.94 26.37 41.88 183.2 384.7 226.4

Gainestown 97.32 19.55 59.58 18.55 36.52 93.51 212.5 168.4

Xeon Phi 233.7 55.53 252.2 76 125.8 300.4 951.8 728.6

Haswell 57.08 17.6 52.78 15.81 30.3 78.3 192.5 141.1

0

100

200

300

400

500

600

700

800

900

1000

Ex
.t

im
e

 (
m

s)

56

1. https://en.wikipedia.org/wiki/DDR_SDRAM

In fact, the data transfer rates and memory bandwidth are highly dependable on the

memory type. Figure 4.9 shows common memory types and their corresponding data rates.

Furthermore, each multicore microarchitecture supports several types of DRAM memory and

has different number of channels. So, the max memory bandwidth varies depending on these

two factors. Dunnington has three channels of double data rate memory (DDR2-533 MHz)

for each socket, Gainestown has four channels of DDR3 for each socket, Haswell has four

channels of DDR4, and Xeon Phi has two channels of the new graphic memory (GDDR5)

for one memory controller. GDDR5 memory type supports high memory bandwidth and is

suitable for graphics and HPC. Also, the lack of TLB buffer makes it less efficient in terms

of throughput and latency in Dunnington and Xeon Phi microarchitectures. The TLB

improves overall CMP performance (Lustig, et al. 2013) (Mittal, S. 2016).

Figure 4.9 Various memory types and their corresponding data rates1.

It’s clear that Xeon Phi has the least performance. Although it is designed for HPC

and low memory latency, but the target performance of its design is aggregated over many

core architecture (60+ cores). Its low frequency, small L1 and L2 cache sizes, and the lack

of L3 cache are main reasons behind this low performance.

 The two medium performance values are for the two bus-based systems. In fact, in

all multithreaded applications, Gainestown shows better performance than Dunnington.

https://en.wikipedia.org/wiki/DDR_SDRAM

57

One important reason is the high speed quick path interconnect (QPI) instead of

Dunningtons FSB. Although that Dunnington has larger cache L2 and lower miss rates as

shown in Figures 4.10 and 4.11. Gainestown hides these misses better by its high-speed

communications using high speed QPI.

There is an exceptional case of the Canneal benchmark application with small input

data set. Gainestown has execution time better than Haswell with small difference value. This

can be interpreted due to the number of L3 cache sharing cores. In Gainestown there is 8 MB

L3 cache shared by four cores for each socket, but Haswell has 8 MB L3 cache shared by

eight cores. Hence, with small data set size of Canneal, most of instructions and data fit into

L1 and L2 caches and the rest data lies in L3 cache. Thus, most of the work in Gainestown

is done locally, there is small ratio of remote memory or DRAM accesses. Haswell has fewer

available L3 banks and hence more misses and more DRAM accesses.

4.2.2 L2 Cache Miss Rate

Figure 4.10 and Figure 4.11 show L2 miss rates for the four multicore design

alternatives when running the eight benchmark applications with small and large input data

sets, respectively. We observe that the size and sharing property are playing a large impact

on processor performance.

The best performance design, from L2 miss rate point of view, is Dunnington

processor, due to its largest L2 cache size (3072KB), despite it is shared by two cores. Xeon

Phi comes in the second rank as it has larger cache size (512 KB private L2) than Haswell

and Gainestown (256 KB L2).

Although Haswell has L2 miss rates fewer than Gainestown processor, they have the

same L2 cache sizes. We think that the larger ROB size in Haswell leads to more data space

58

locality hits in the L2 cache. Although the L2 cache misses affects the over all performance,

but Haswell and Gainestown hides these misses by their higher clock rates, higher

parallelizing features, and higher speed of QPIs.

Most benchmarks behave similiraly, but Swaptions benchmark has low miss rates in

the four multicore alternatives with the small and large data sets. Swaptions is a highly

memory intensive application and is a data streaming workload where there is a large working

set and little data reuse. Sniper simulator gives the number of L2 accesses and the number of

total instructions. By so, we can compute the probability of accesses to the L2 cache. In

Swaptions benchmark the average probablility of L2 accesses over all cores is very small. As

an example, the L2 accesse propability in Haswell design is equall to 0.0039 with large data

set.

Figure 4.10 L2 Miss rates for running eight benchmark applications with small input size over the

four multicore design alternatives.

FFT Radix Lu.cont Cholesky
Blacksch

oles
Canneal

Fluidani
mate

Swaption
s

Dunnington 65.835 24.19 14.216 27.036 7.653 55.367 29.478 6.901

Gainestown 97.58 34.38 32.47 41.95 13.863 90.7 74.066 8.45

Xeon Phi 80.76 28.29 17.5 33.84 9.501 84.745 61.63 8.413

Haswell 81.603 34.35 27.8 38.9 13.7 89.76 67.226 8.571

0

20

40

60

80

100

120

L2
 M

is
s

ra
te

 (
%

)

59

Figure 4.11 L2 Miss rates for running eight benchmark applications with large input size over the four

multicore design alternatives.

FFT Radix Lu.cont Cholesky
Blacksch

oles
Canneal

Fluidani
mate

Swaption
s

Dunnington 42.421 20.712 5.635 16.717 6.94 67.898 48.118 6.56

Gainestown 42.498 40.908 54.485 41.225 16.69 93.615 75.302 8.3225

Xeon Phi 42.142 34.58 34.535 24.533 13.45 89.526 66.612 7.916

Haswell 42.215 40.777 37.151 35.661 13.3 51.487 68.792 8.2

0

10

20

30

40

50

60

70

80

90

100

L2
 M

is
s

ra
te

 (
%

)

60

4.3 Normalized Comparison

This section presents the normalized comparison where we use Sniper configuration

files that preserve the architectural and network differences, but put the four multicore design

alternatives on the same technological level, i.e., same network speeds and same component

sizes and speeds. The configuration files configure Sniper to simulate the four derived

systems: nDunnington, nGainestown, nXeon Phi, and nHaswell. We select modern

component sizes and speeds like those used in Haswell (Table 3.1). The four derived systems,

unlike the original Haswell, have high memory bandwidth as Xeon Phi processors. See

Figures 4.12, 4.13, 4.14, and 4.15 for further detail about the cache sizes and normalized

design features.

Figure 4.12 Normalized multi-socket Dunnington based microarchitecture (Sniper simulator

output).

61

Figure 4.13 Normalized multi-socket Gainestown based microarchitecture (Sniper simulator

output).

Figure 4.14 Normalized one socket Haswell based microarchitecture (Sniper simulator output).

The network in Figure 4.14 is bidirectional ring topology as plotted by the Sniper

simulator. However, the two sides of the network graph are connected via QPI links to

perform the ring.

62

Figure 4.15 Normalized one socket Xeon Phi based microarchitecture (Sniper simulator output).

The following subsections present the performance evaluation results using

performance metrics for their normalized comparison with analysis. It is worth mentioning

that we used the multithreaded application characterization results concluded by Mohammad

and Abandah, (2015) in analyzing the behaviours of the multithreaded applications on these

multicore design alternatives.

4.3.1 Total execution Time

This subsection presents and analyzes the user perspective performance metric; total

execution time in milliseconds. Figure 4.16 and Figure 4.17 show the total execution times

for running the eight benchmark applications with small and large input sizes over the four

normalized multicore design alternatives, respectively.

63

Comparing the results shown in Figures 4.16 and 4.17 gives a general view of the

overall system performance for the four normalized systems. Another advantage for this

comparison is identifying the impact of changing the data set input size on performance for

all the applications from SPLASH2 and PARSEC suites. As application problem size is

scaled up, the execution time increases.

The nHaswell time shown in Figure 4.16 is the best performance for six benchmarks;

FFT, Radix, Lu.cont, Cholesky, Canneal, and Fluidanimate. The system of worst

performance is the nXeon Phi in most cases because it lacks L3 cache and due to the time

spent on the routing protocol. However, the 2D mesh spent is relatively more time in

computing the shortest path because of many paths possibilities. The two multi-socket bus

based systems (nDunnington and nGaineston) behave very close to each other with minor

differences. Further investigation and evaluation for the multicore design alternatives are

done through evaluatinging the CPI stack for all multithreaded workloads in Section 4.3.3.

Also, we evaluate the multithreaded benchmarks behaviors.

 Most multithreaded benchmarks have small differences between execution times of

the four multicore designs except Canneal benchmark. It shows big differences in the

execution time of simulation over the four designs. However, Canneal is a memory intensive

application, it has around 70% of memory contribution on the CPI stack (will be discussed

later in the CPI stack section). The mem-DRAM contribution is the reason behind the large

memory access latency. Also, the multicore designs have various memory designs, such as

different cache levels, private or shared caches, and existence of NUCA cache.

64

Figure 4.16 Execution times for running eight benchmark applications with small input size over the

four normalized multicore design alternatives.

Figure 4.17 Execution times for running eight benchmark applications with large input size over the

four normalized multicore design alternatives.

FFT Radix Lu.cont Cholesky
Blacksch

oles
Canneal

Fluidani
mate

Swaptio
ns

nDunnington 2.362 4.616 7.706 14.43 7.699 25.63 78.77 35.44

nGainestown 2.34 4.541 7.552 13.96 7.702 25.33 78.7 35.45

nXeon Phi 2.679 4.577 7.736 15.1 7.713 31.61 80.99 35.42

nHaswell 1.888 4.476 7.329 12.53 7.699 17.36 77 35.43

0

10

20

30

40

50

60

70

80

90

Ex
.t

im
e

 (
m

s)

FFT Radix Lu.cont Cholesky
Blacksch

oles
Canneal

Fluidani
mate

Swaptio
ns

nDunnington 45.28 17.88 54.5 17.17 30.42 86.82 190 141

nGainestown 44.92 17.88 54.54 16.34 30.41 85.58 198.4 141.1

nXeon Phi 45.34 18.66 58 18.43 30.57 102.8 203.1 141.1

nHaswell 45.77 17.49 52.36 14.72 30.38 57.96 193.5 141

0

50

100

150

200

250

Ex
.t

im
e

 (
m

s)

Chart Title

65

4.3.2 Average Core IPC

The average number of instructions per clock cycle, or IPC, is a function of the

machine and program. The IPC or its reciprocal CPI is a system throughput metric (Eeckhout,

et al. 2010). The CPI depends on the actual instructions appearing in the program, for

example, a floating-point intensive application might have a higher CPI than an integer-based

program. Also. It depends on the processor features. When each instruction takes one cycle,

CPI or IPC = 1. The IPC can be <1 due to memory stalls and slow instructions. The IPC can

be > 1 on machines that execute more than 1 instruction per cycle (superscalar).

Figures 4.18 and 4.19 show the average IPC for running the eight benchmark

applications with the small and large input sizes over the four normalized multicore design

alternatives. The normalized Haswell (nHaswell) with its ring topology and NUCA L3 cache

shows high throughput IPC over all benchmarks with large and small input sizes. Multi-

socket nGainestown with its QPI interconnect comes in the second performance position.

The nDunnington has IPC performance less than nGainestown, because of the sharing

property of L2 every two cores in nDunnington, where that decreases the L2 cache

availability and increases cache misses. The least performance is the nXeonPhi processors.

The evaluation of IPC or CPI stacks performance metrics are explained briefly in the next

Section.

 The two figures show large differencies in IPC among the eight benchmarks, these

differencies relate to the high differencies in cache misses in each benchmark. As an example,

the average L2 miss rate for Cholesky is about 54% for nDunnington but it is about 7.8% for

the same multicore design, and so for the others. Radix benchmark has very close IPC values

over multicore design alternatives, high percent of CPI loss due to compute time (close to

66

95% CPI), and negligable synchronization contribution (around 0.05%). Mohammad and

Abandah, (2015) mentioned that Radix has a small sharing degree where 90% of shared data

are shared with only one thread. Because we configure all designs at the same in-core

configurations, most of the designs have the same time spent due to computation components.

FFT, Radix, Blackscholes, Fluidanimate, and Swaptions show very close IPC values

over the four design alternatives. This happens becuase they are mostly compute intensive

applications, like FFT, Radix and Blackscholes. As all designs put at the same computation

technological components, the show same time spent to compute. The Fluidanimate and

Swaptions have the same behavior even they are highly memory intensive applications

because they have large working memory sets but without data reuse or minimum

communication slack.

Figure 4.18 Average core IPC for running the eight benchmark applications with the small input

sizes over the four normalized multicore design alternatives.

FFT Radix Lu.cont Cholesky
Blacksch

oles
Canneal

Fluidani
mate

Swaption
s

nDunnington 2.156 0.392 1.878 2.272 1.396 0.434 0.695 1.059

nGainestown 2.176 0.399 1.917 2.347 1.396 0.438 0.695 1.059

nXeon Phi 1.901 0.396 1.871 2.25 1.394 0.351 0.674 1.06

nHaswell 2.698 0.405 1.975 2.605 1.396 0.64 0.709 1.059

0

0.5

1

1.5

2

2.5

3

IP
C

67

Figure 4.19 Average core IPC for running the eight benchmark applications with the large input

sizes over the four normalized multicore design alternatives.

4.3.3 CPI Cycle Stack

 The CPI stack equals 1/IPC, and depends on performance for one specific

architecture. However, the CPI components can provide a breakdown in base components

CPI, and gives more insight than looking at IPC alone. Hence, we use CPI stacks to evaluate

performance. By cycle stacks we can understand and analyze performance of multi-threaded

workloads over different microarchitectures. CPI stacks can quantify where the cycles have

gone, and provide more information than raw event rates, such as miss rates of the memory

hierarchy and branch predictors. A cycle stack is typically plotted as a stacked bar with the

different components showing the relative contribution of each component to overall

performance. The main benefit of a CPI cycle stack is that it provides quick insight into the

major performance bottlenecks, which hints towards optimization opportunities. This is

particularly interesting for analyzing parallel software and hardware performance.

FFT Radix Lu.cont Cholesky
Blacksch

oles
Canneal

Fluidani
mate

Swaption
s

nDunnington 2.112 0.4 2.119 2.325 1.413 0.397 0.68 1.063

nGainestown 2.129 0.4 2.118 2.425 1.414 0.403 0.682 1.062

nXeon Phi 2.109 0.383 1.991 2.238 1.407 0.335 0.666 1.062

nHaswell 2.088 0.409 2.206 2.656 1.415 0.595 0.699 1.061

0

0.5

1

1.5

2

2.5

3

IP
C

68

By analyzing how the cycle stacks change with changing the different processor

designs, one can understand whether designing bottlenecks come from synchronization

overhead, poor performance in the memory hierarchy, load imbalance, etc. Figure 4.20 is an

example to show how Sniper can visualize performance CPI stack over time. The shown

output is from simulation of Haswell-like design running Canneal benchmark with large data

input set. Figure 4.20(a) shows the simple CPI stack (compute, memory, branch, and

synchronization contribution on system CPI). It also shows how CPI changes corresponds to

the IPC. Figure 4.20(b) shows detailed CPI stack which we used to interprent the simple CPI

stack. The base CPI is typically shown at the bottom of the CPI stack and represents useful

workdone. The other CPI components, which reflect ‘lost’ cycle opportunities due to miss

events such as branch mispredictions, and cache and TLB misses, are stacked on top of each

other. Figure 4.20(c) demonstrates Sniper ability to focus on a single CPI component

contribution.

69

Figure 4.20 An example of Haswell simulation output a) simple b) detailed c) single component.

a)

b)

c)

70

 In the following CPI stack graphs, from Figure 4.21 to Figure 4.36, we present the

multithreaded benchmarks CPI stack changes over time and correlating these CPI

downbreaks with the IPC changes over time. We used detailed CPI stack graphs and single

components contribution graphs as explained in the previous example in Figure 4.20.

Unfortunately, due to space limitation, we can not include the detailed and single components

graphs. They are large data statistics outputted from 64 simulations. But include all

simulation results on compact disk (CD) that is attached with this thesis.

Figure 4.21 shows FFT benchmark CPI stack with small input size. FFT is a compute

and memory intensive application. The CPI stack shows how the computation (in red) has

significant ration in the CPI stack. The time spent on computation doesn’t change over all

designs (around 0.21 CPI). However, we fixed all in-core and branch prediction

specifications. The other key design bottleneck is memory components. It is the reason for

performance changes over the four case-study designs. nHaswell has the smallest execution

time (1.88 ms) and largest IPC. The worst case is with nXeon phi microarchitecture (2.679

ms). The memory contribution in nXeon takes place in more misses in CPI. The lack for L3

stresses maximize the need for off-chip DRAM accesses. The medium performance of the

two bus based systems put them in the second and third performance ranking levels (2.105

ms and 2.138 ms) for nGainestown and nDunnington, respectively. We can point the more

role for private L2 cache in nGainestown over shared L2 cache of nDunnington. The more

L2 cache available per core, the more hit rates. Also, the more IPC.

71

Figure 4.22 shows the second FFT IPC stack with the large input data set, we can see

that in all applications as the problem scaled up the memory contributions increases, because

the parallel applications stresses more the memory hierarchy which results in a significant

fraction of time spent on cache misses and off-chip DRAM accesses.

The other interesting conclusion is when the FFT problem scaled up the

synchronization overhead becomes very small percent. Mohammad and Abandah, (2015)

presented that the number of synchronization calls per 106 memory accesses generally

decreases because these synchronization calls either are at fixed points of the code and they

do not increase as the problem size increases. From FFT CPI stacks, we showed that the

synchronization contribution becomes dominant factor in three positions in the execution

time; in the start, middle and final. But with more than of three quarters of the time execution,

synchronization has negligible contribution on CPI loss. As the problem scaled up, FFT

behaves unexpectedly. The L3 cache accesses becomes overhead for memory contribution.

The needed data were lied in DRAM. In addition, FFT has small sharing degree, 100% of

shared data are shared by one thread Mohammad and Abandah, (2015). Therfore, nHaswell

has the largest CPI losses due to off tile-LLCs L3 contribution. nXeon on the other hand, has

high memory cycle stalls due to the lack of upper cache levels. Therefore, more off-chip

DRAM accesses. In the case of bus based systems. They are the more suitable for FFT like

benchmarks. Gaining 2.390 IPC and 2.377 IPC for nGainestown and nDunnington

processors, respectively. The IPC drop for nDunnington because sharing property of L2

cache.

72

Figure 4.21 CPI stack over time for running SPLASH2-FFT benchmark application with small

input size over the four normalized multicore design alternatives.

0

20

40

60

80

100

0 200 400 600 800 1000 1200 1400 1600 1800 2000
time
(µs)

0

20

40

60

80

100

0 200 400 600 800 1000 1200 1400 1600 1800 2000
time
(µs)

0

20

40

60

80

100

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600
time
(µs)

0

20

40

60

80

100

0 200 400 600 800 1000 1200 1400 1600 1800
time
(µs)

CPI (%)

nDunnington

CPI (%)

nGainestown

CPI (%)

nXeon Phi

CPI (%)

nHaswell

73

Figure 4.22 CPI stack over time for running SPLASH2-FFT benchmark application with large input

size over the four normalized multicore design alternatives.

0

20

40

60

80

100

0 500 1000 1500 2000 2500 3000 3500 4000
time
(µs)

0

20

40

60

80

100

0 500 1000 1500 2000 2500 3000 3500 4000
time
(µs)

0

20

40

60

80

100

0 500 1000 1500 2000 2500 3000 3500 4000 4500
time
(µs)

0

20

40

60

80

100

0 500 1000 1500 2000 2500 3000 3500 4000 4500
time
(µs)

CPI (%)

nDunnington

CPI (%)

nGainestown

CPI (%)

nXeon Phi

CPI (%)

nHaswell

74

Radix benchmark CPI stacks are shown in Figures 4.23 and 4.24. The design

bottleneck is the integer and floating-point computation (24% Floating-point operations),

high percent of CPI loss due to compute time (close to 95% CPI), Radix has negligable

synchronization contribution (around 0.05%). Mohammad and Abandah, (2015) mentioned

that Radix has a small sharing degree where 90% of shared data are shared with only one

thread. Because we configure all designs at the same in-core configurations, most the designs

have the same time spent due to computation components. But at the last quarter of

simulation, Radix transfers to become memory intensive application (near 86% CPI). nXeon

spent more highest (relatively) time in waiting for memory stall cycles, therefore, it needs

4.577 ms execution time. On the other hand, nHaswell consumes the smallest Execution time

equal to 4.476 ms. It needs smallest time processing memory operations. nDunnington and

nGainestown also, have medium execution times (4.63 ms and 4.53 ms respectively).

nDunnington has more memory contribution. Its mem-L2 contribution is close to 1.2 % CPI

on average at the end of execution time, instead of nGainestown mem-L2 contribution about

1.15 % CPI.

Radix is the same as FFT benchmark, in case of large problem size. The

synchronization calls do not increase when number of memory accesses increases. Therefore,

memory contribution increases and synchronization decreases. All system designs exhibit the

same 0.33 IPC in the most of their execution times. But, at the end of simulation, the memory

components contribute the CPI stack and be a key role in varying the total overall

performance. The design systems have the same performance order as small problem size.

nHaswell, nGainestown, nDunnington and nXeon, we ordered them from the best

performance to the worst.

75

Figure 4.23 CPI stack over time for running SPLASH2-Radix benchmark application with small

input size over the four normalized multicore design alternatives.

0

20

40

60

80

100

0 500 1000 1500 2000 2500 3000 3500 4000 4500
time
(µs)

0

20

40

60

80

100

0 500 1000 1500 2000 2500 3000 3500 4000 4500
time
(µs)

0

20

40

60

80

100

0 500 1000 1500 2000 2500 3000 3500 4000 4500
time
(µs)

0

20

40

60

80

100

0 500 1000 1500 2000 2500 3000 3500 4000
time
(µs)

CPI (%)

nDunnington

CPI (%)

nGainestown

CPI (%)

nXeon Phi

CPI (%)

nHaswell

76

Figure 4.24 CPI stack over time for running SPLASH2-Radix benchmark application with large

input size over the four normalized multicore design alternatives.

0

20

40

60

80

100

0 200 400 600 800 1000 1200 1400 1600
time
(µs)

0

20

40

60

80

100

0 200 400 600 800 1000 1200 1400 1600
time
(µs)

0

20

40

60

80

100

0 200 400 600 800 1000 1200 1400 1600 1800
time
(µs)

0

20

40

60

80

100

0 200 400 600 800 1000 1200 1400 1600
time
(µs)

CPI (%)

nDunnington

CPI (%)

nGainestown

CPI (%)

nXeon Phi

CPI (%)

nHaswell

77

Lu.cont benchmark CPI stacks are shown in Figures 4.25 and 4.26 , it is a compute

intensive multithreaded application, that have 85 % floating-point and need to synchronize

data between cores every time period. So, the synchronization become design bottleneck in

performance evaluation as we scaled up for larger and larger data sets. Lu.cont needs design

that minimizes the core-to-core communication overhead. Mohammad and Abandah (2015)

presented that Lu.cont has more than 92% of the data sharing among each four threads.

Multicore that able to minimize memory contribution on CPI stack. In small problem size,

nHaswell has the hieghest performance or minimum execution time (7.32 ms). Due to its

efficient memory design that minimize time spent for the memory components, and for it is

high bidirectional speed ring which achieves good tolerance with core-to-core

communication overhead (less than 0.10 % on average). nXeon, on the other hand, exhibits

similar synchronization contribution, but the design bottleneck was the memory components.

Bus based systems behave differently. nDunnington suffers from large

synchronization contribution comparable to nGainestown. nGainestown benefits from QPI

to speed up core-to-core communication. The other advantage of nGainestown is its private

level 2 cache which minimize L2 cache misses leading to minimizing memory contribution

on CPI stack.

 Figure 4.26 shows Lu.cont benchmark CPI stacks in the case of large problem size.

We concluded that the four multicore design alternatives behave in the same manner of small

input size. The differences are increasing memory contribution and decreasing

synchronization contribution on CPI stacks. nHaswell has best performance, then

nGainestown, nDunnington, and finally nXeon, with 52.36 ms, 54.40 ms, 54.36 and 58.00

ms, respectively.

78

Figure 4.25 CPI stack over time for running SPLASH2-Lu.cont benchmark application with small

input size over the four normalized multicore design alternatives.

0

20

40

60

80

100

0 1000 2000 3000 4000 5000 6000 7000
time
(µs)

0

20

40

60

80

100

0 1000 2000 3000 4000 5000 6000 7000
time
(µs)

0

20

40

60

80

100

0 1000 2000 3000 4000 5000 6000 7000
time
(µs)

0

20

40

60

80

100

0 1000 2000 3000 4000 5000 6000 7000
time
(µs)

CPI (%)

nDunnington

CPI (%)

nGainestown

CPI (%)

nXeon Phi

CPI (%)

nHaswell

79

Figure 4.26 CPI stack over time for running SPLASH2-Lu.cont benchmark application with large

input size over the four normalized multicore design alternatives.

0

20

40

60

80

100

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
time
(µs)

0

20

40

60

80

100

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
time
(µs)

0

20

40

60

80

100

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000
time
(µs)

0

20

40

60

80

100

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
time
(µs)

CPI (%)

nDunnington

CPI (%)

nGainestown

CPI (%)

nXeon Phi

CPI (%)

nHaswell

80

Cholesky benchmark application is shown in Figures 4.27 and 4.28, for the small and

large problem sizes, respectively. It is classified as compute and memory intensive

application. Mohammad and Abandah (2015), concluded that it has minimum core-to-core

communication, each thread communicates with itself, i.e. each thread reads from or writes

to memory locations that it previously wrote to them and shared them with other threads.

Initial thread sometimes communicates with all other threads. We get same conclusion. All

figures present minimal synchronization CPI contribution (less than 0.01 % in most execution

time). nDunnington has larger memory contribution than nGainestown. The worst case refers

to the weaknesses of memory hierarchy of nXeon (max of 52% CPI to 17% at the end of

simulation at large problem size). The lack for level 3 cache is the main reason. On the other

hand, nHaswell exhibit highest performance because it has better memory efficiency (max

of 38% decreasing to 23% at the end of the simulation at large problem size). We get same

behavior of design alternatives in small input size. Notice that memory contribution for large

problem size increases their contribution. An interesting point that Cholesky, after period of

execution, benefits from its communication slack in decreasing far memory accesses and

therefore increasing IPC.

The branch prediction contribution on CPI starts to be one of the design bottlenecks

in PARSEC benchmark applications (Blackscholes, Swaptions and Fluidanimate), they

have larger contribution (relatively to SPLASH2 applications) valuable percent of

synchronization overhead near 25 % of overall system CPI. Branch prediction contribution

differences on all normalized systems will be negligible because we fixed their branch

prediction features.

81

Figure 4.27 CPI stack over time for running SPLASH2-Cholesky benchmark application with small

input size over the four normalized multicore design alternatives.

0

20

40

60

80

100

0 2000 4000 6000 8000 10000 12000 14000
time
(µs)

0

20

40

60

80

100

0 2000 4000 6000 8000 10000 12000
time
(µs)

0

20

40

60

80

100

0 2000 4000 6000 8000 10000 12000 14000
time
(µs)

0

20

40

60

80

100

0 2000 4000 6000 8000 10000 12000
time
(µs)

CPI (%)

nDunnington

CPI (%)

nGainestown

CPI (%)

nXeon Phi

CPI (%)

nHaswell

82

Figure 4.28 CPI stack over time for running SPLASH2-Cholesky benchmark application with large

input size over the four normalized multicore design alternatives.

0

20

40

60

80

100

0 2000 4000 6000 8000 10000 12000 14000 16000
time
(µs)

0

20

40

60

80

100

0 2000 4000 6000 8000 10000 12000 14000 16000
time
(µs)

0

20

40

60

80

100

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
time
(µs)

0

20

40

60

80

100

0 2000 4000 6000 8000 10000 12000 14000
time
(µs)

CPI (%)

nDunnington

CPI (%)

nGainestown

CPI (%)

nXeon Phi

CPI (%)

nHaswell

83

Blackscholes application CPI stacks changes over time which are shown in Figures

4.29 and 4.30, Blackscholes have small sharing degree between threads, minimum core-to-

core communication, like FFT benchmark (Mohammed and Abandah, 2015). We get the

same application characterization. Figure 4.29 show that synchronization contribution on CPI

of all multithreaded workload does not exceed 2% of their CPI stacks.

Blackscholes is a compute intensive application more than 80 % of CPI in most of

design alternatives, the floating-point units in Blackscholes are design bottlenecks. But, as

we normalized all in-core specifications and without core-to-core communications. There are

negligible differences on alternatives performance due to computation contribution.

Furthermore, nDunnington exhibit more memory contribution than nGainestown. nXeon the

largest (relatively) memory contribution. nHaswell the best design that behaves will for

memory design bottleneck.

 Mohammad and Abandah (2015), presented that Blackscholes communication has a

large percent of slack in the ranges of 99.5% for small input size, and 99.9% of slack for

large problem size. That interprets why memory contribution decreases as we go to end of

execution time.

84

Figure 4.29 CPI stack over time for running PARSEC-Blackscholes benchmark application with

small input size over the four normalized multicore design alternatives.

0

20

40

60

80

100

0 1000 2000 3000 4000 5000 6000 7000
time
(µs)

0

20

40

60

80

100

0 1000 2000 3000 4000 5000 6000 7000
time
(µs)

0

20

40

60

80

100

0 1000 2000 3000 4000 5000 6000 7000
time
(µs)

0

20

40

60

80

100

0 1000 2000 3000 4000 5000 6000 7000
time
(µs)

CPI (%)

nDunnington

CPI (%)

nGainestown

CPI (%)

nXeon Phi

CPI (%)

nHaswell

85

Figure 4.30 CPI stack over time for running PARSEC-Blackscholes benchmark application with

large input size over the four normalized multicore design alternatives.

0

20

40

60

80

100

0 5000 10000 15000 20000 25000 30000
time
(µs)

0

20

40

60

80

100

0 5000 10000 15000 20000 25000 30000
time
(µs)

0

20

40

60

80

100

0 5000 10000 15000 20000 25000 30000
time
(µs)

0

20

40

60

80

100

0 5000 10000 15000 20000 25000 30000
time
(µs)

CPI (%)

nDunnington

CPI (%)

nGainestown

CPI (%)

nXeon Phi

CPI (%)

nHaswell

86

Canneal is a memory intensive application because it has around 70% of memory

contribution on CPI stack for small problem size and around 72% for large problem size, as

shown in Figures 4.31 and 4.32, respectively. For large input size, nHaswell has the largest

IPC (0.595) and smallest execution time (57.96ms). The mem-DRAM contribution is the

reason behind the large memory access latency, nXeon Phi clearly shows larger memory

contribution on CPI stack rather than other designs (a round 65% of processor CPI). On the

other hand, nHaswell drops its mem-DRAM contribution from 8% at the start of simulation

to 0.06 % at the end of simulation. However, Mohammad and Abandah (2015) concluded

that Canneal’s communication has a large percent of slack in the ranges of tens of millions

of instructions and more, where it has 86.5% of slack in these ranges for small problem size

and 90.4% of slack in these ranges for large problem size. This behavior indicates that cache

hierarchy of L1, L2, and NUCA L3 slices in nHaswell satisfies the benchmarks data

requirements. More cache hits due to communication slack. Hence, minimize DRAM

accesses. This type of applications needs efficient memory hierarchies. Larger cache sizes

and more than two levels of caches. Also, ring NoC serviced synchronization overhead better

than others (0.23 to max of 0.25 CPI over time). nXeon with 2d mesh has synchronization

CPI of (0.4 to 0.43 CPI over time). The bus-based two systems exhibit medium performance

values (IPC and ex. times) from the other nHaswell and nXeon alternatives, but with small

differences between them. nDunnington presents more memory contribution on CPI stack

(1.54- 1.55 CPI) rather than nGainestown memory contribution (1.51 -1.52 CPI) over

simulation time. The reason is the shared L2 per 2 cores in ndunnington versus the same size

private L2. Higher mem-l2 contribution is for nDunnington which starts from (0.51% to

minimum 0.40) at the end of simulation time (benifiting from communication slack). And

(0.46 % to 0.40) for nGainestown. Because there are more available L2 memory banks for

87

each core. All multicores have the same integer compute contribution on CPI stack which

equals (0.28 CPI).

Fluidanimate application CPI stacks change over time are shown in Figures 4.33 and

4.34. Fluidanimate has large percent of synchronization overhead (close to 50% of CPI stack)

for all multicore design alternatives. This overhead is due to Fluidanimate’s partitioning of

the work among the threads and each thread handles its portion, also they interact with other

threads to handle the shared data (Mohammed and Abandah, 2015). The nHaswell design

presents better performance over other multicore design alternatives. There execution times

are 193.5ms, 196.4ms, 196.9ms and 203.1ms, for nHaswell, nGainestown, nDunnington and

nXeon, respectively. The higher memory contribution in nXeon is responsible for higher CPI.

On the other hand, nHaswell LLCs minimize the time loss due to memory components.

nGainestown’s private L2 cache exihipit smaller contribution than nDunnington shared L2

cache. Swaptions application CPI Stacks in Figures 4.35 and 4.36. It shows different

behavior versus other applications. The performance CPI statistics, for large problem size,

behave more like some constant lines over two partitions of execution time. In the first half

of application execution time, the CPI contribution is mainly on the compute components

(arround 52.5 % of CPI stack) and (12.5 % of CPI satck) for synchronization and (20% of

CPI) for branch prediction, finally, (15 % CPI) for memory components. Then, in the second

half of execution time, the main contribution component transfers to be the synchronization

(87% of CPI stack), due to the high percent of core-to-core communication overheads.

Therefore, that explain the huge decreases in IPC in the second half of of application

execution. We saw that Swaptions performance statistics have negligible differencess over

the four normalized systems. In small input size, the memory contribution becomes less

slightly than it in large problem size.

88

Figure 4.31 CPI stack over time for running PARSEC-Canneal benchmark application with small

input size over the four normalized multicore design alternatives.

0

20

40

60

80

100

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000 24000
time
(µs)

0

20

40

60

80

100

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000 24000
time
(µs)

0

20

40

60

80

100

0 5000 10000 15000 20000 25000 30000
time
(µs)

0

20

40

60

80

100

0 2000 4000 6000 8000 10000 12000 14000 16000
time
(µs)

CPI (%)

nDunnington

CPI (%)

nGainestown

CPI (%)

nXeon Phi

CPI (%)

nHaswell

89

Figure 4.32 CPI stack over time for running PARSEC-Canneal benchmark application with large

input size over the four normalized multicore design alternatives.

0

20

40

60

80

100

0 10000 20000 30000 40000 50000 60000 70000 80000
time
(µs)

0

20

40

60

80

100

0 10000 20000 30000 40000 50000 60000 70000 80000
time
(µs)

0

20

40

60

80

100

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
time
(µs)

0

20

40

60

80

100

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000
time
(µs)

CPI (%)

nDunnington

CPI (%)

nGainestown

CPI (%)

nXeon Phi

CPI (%)

nHaswell

90

Figure 4.33 CPI stack over time for running PARSEC-Fluidanimate benchmark application with

small input size over the four normalized multicore design alternatives.

0

20

40

60

80

100

0 10000 20000 30000 40000 50000 60000 70000
time
(µs)

0

20

40

60

80

100

0 10000 20000 30000 40000 50000 60000 70000
time
(µs)

0

20

40

60

80

100

0 10000 20000 30000 40000 50000 60000 70000 80000
time
(µs)

0

20

40

60

80

100

0 10000 20000 30000 40000 50000 60000 70000
time
(µs)

CPI (%)

nDunnington

CPI (%)

nGainestown

CPI (%)

nXeon Phi

CPI (%)

nHaswell

91

Figure 4.34 CPI stack over time for running PARSEC-Fluidanimate benchmark application with

large input size over the four normalized multicore design alternatives.

0

20

40

60

80

100

0 20000 40000 60000 80000 100000 120000 140000 160000 180000
time
(µs)

0

20

40

60

80

100

0 20000 40000 60000 80000 100000 120000 140000 160000 180000
time
(µs)

0

20

40

60

80

100

0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000
time
(µs)

0

20

40

60

80

100

0 20000 40000 60000 80000 100000 120000 140000 160000 180000
time
(µs)

CPI (%)

nDunnington

CPI (%)

nGainestown

CPI (%)

nXeon Phi

CPI (%)

nHaswell

92

Figure 4.35 CPI stack over time for running PARSEC-Swaptions benchmark application with small

input size over the four normalized multicore design alternatives.

0

20

40

60

80

100

0 5000 10000 15000 20000 25000 30000 35000
time
(µs)

0

20

40

60

80

100

0 5000 10000 15000 20000 25000 30000 35000
time
(µs)

0

20

40

60

80

100

0 5000 10000 15000 20000 25000 30000 35000
time
(µs)

0

20

40

60

80

100

0 5000 10000 15000 20000 25000 30000 35000
time
(µs)

CPI (%)

nDunnington

CPI (%)

nGainestown

CPI (%)

nXeon Phi

CPI (%)

nHaswell

93

Figure 4.36 CPI stack over time for running PARSEC-Swaptions benchmark application with large

input size over the four normalized multicore design alternatives.

0

20

40

60

80

100

0 20000 40000 60000 80000 100000 120000 140000
time
(µs)

0

20

40

60

80

100

0 20000 40000 60000 80000 100000 120000 140000
time
(µs)

0

20

40

60

80

100

0 20000 40000 60000 80000 100000 120000 140000
time
(µs)

0

20

40

60

80

100

0 20000 40000 60000 80000 100000 120000 140000
time
(µs)

CPI (%)

nDunnington

CPI (%)

nGainestown

CPI (%)

nXeon Phi

CPI (%)

nHaswell

94

As conclusion, high speed synchronization over ring NoC in nHaswell and 2d mesh

in nXeon Phi play a main role in minimizing the core-to-core communication overheads. But,

the synchronization design bottleneck due to core-to-core communication overhead appears

on the two bus-based microarchitectures. Moreover, nDunnington suffers more from shared

L2 losses. Also, nXeon Phi suffers from large memory contribution on CPI losses especially

in large data set. In compute-intensive or communication-intensive applications the memory

weakness design has a negligible affect on the overall system performance. The different

behaviour with FFT and Canneal, nHaswell consumes higher execution times because it has

minimum interprocessor communication and not benefits from high speed ring network.

4.3.4 Average Core Utilization

The elapsed idle time is the inverse of system utilized time. The processor idle time

relates to the core time spent without usefull work. The core is called idle when it is waiting

for threads synchronization futex or core-to-core communication. In addition, when it suffers

from system stall cycles waiting for data from low level cache hierarchies. Hence, leading to

larger delay and larger execution time. The sytem waiting futex simply occures when we are

tracing the original parent thread, and it is doing nothing but waiting for some other threads

to finish. We conclude that the high utilization multicore system is the one which can hide

losses and minimizes synchronization and memory bottlenecks.

For the tilization metric, we use average core utilization percent (%). The following

equations are used to calculate this metric:

Utilization % = per thread utilization time * 100 % (1)

Per thread utilization time = total execution time – thread idle time (2)

95

 Figures 4.37 and 4.38 show the average core utilization for running the eight

benchmark applications with the small and large input sizes over the four normalized

multicore design alternatives.

Low time utilization percent and high performance are two opposite goals. However,

sometimes the higher utilization is not required, like with power aware systems. However,

power consumption increases in case of higher utilization percent. Utilization and power

consumption are a budjet factors in designing multicore processors. They are often used in

trade-off performance evaluations.

Although the design utilization differencies look small but they show some

indications. nXeon exhibits minimum utilization relative to the other designs. It has more

idle time due the memory contribution in Radix, Lu.cont, Blackscholes, Fluidanimate, and

Swaptions. nHaswell exhipits larger utilization percent in many benchmarks such as Radix,

Lu.cont, Cholesky, Blackscholes. It minimizes the cycle stalls and idle time leading to

minimum execution times. An interesting conclusion from these graphs is that a linear

relation between minimum execution times and higher utilization is not always agiven. The

reason for the exception may refer to applicatiom load imbalance.

It is worth mentioning that not all benchmarks are good scaling application. However,

Fluidanimate only uses five cores in all simulations, the rest of three cores are idle all the

time. Thus, Fluidanimate is classified as poor scaling application. Fluidanimate averaged

cache L2 miss rates that appeare in Figures 4.10 and 4.11 are averaged and calculated over

five cores. All other seven workloads make use of all eight cores.

96

The second interesting behavior that we can concluded is that some multithreaded

benchmarks have poor load balance. Blackscholes, Canneal, Swaptions and Fluidanimate

have idle time percent larger than or equal to 99.5 % for a working core and its cache miss

rate is large relatively to the other cores in the other design alternatives. This core is

responsiple for application initialization and communicates with other threads in the

processor. Cholesky, FFT, Lu.cont, and Radix on the other hand, have a good load balance,

all threads in the benchmarks have the same percent of instructions executed and the same

percent of idle time.

Swaptions and Fluidanimate have low utilization compared with the other

benchmarks, because they have high communication overhead. The cores stay idle more than

50% of the time waiting for data from each other. The synchronization contribution for

Fluidanimate is around 50% of the CPI stack (Figures 4.33 and 4.34). Swaptions has

synchronization contribution around 25% in the first half of execution then transfer to be

87% in the second half of the execution time.

97

Figure 4.37 Average core utilization for running the eight benchmark applications with the small

input sizes over the four normalized multicore design alternatives.

Figure 4.38 Average core utilization for running the eight benchmark applications with the large

input sizes over the four-normalized multicore

FFT Radix Lu.cont Cholesky
Blacksch

oles
Canneal

Fluidani
mate

Swaption
s

nDunnington 91.8875 95.6625 80.2875 97.65 85.9625 84.975 49.225 49.975

nGainestown 92.2875 95.7875 80.55 97.5 85.9625 84.8875 49.3 49.975

nXeon Phi 93.2125 95.2625 79.85 97.5875 85.9 84.8375 49.1 49.95

nHaswell 91.2375 95.45 80.4125 97.75 85.95 84.6125 49.1625 49.8875

40

50

60

70

80

90

100

110

U
ti

liz
at

io
n

 (
%

)

FFT Radix Lu.cont Cholesky
Blacksch

oles
Canneal

Fluidani
mate

Swaptio
ns

nDunnington 99.675 98.775 90.15 98.1375 87.025 85.8875 47.1375 49.9875

nGainestown 99.5875 98.75 90.175 97.9875 87.05 85.875 47.15 49.9875

nXeon Phi 99.4 98.85 89.9125 98.0625 86.7375 85.7875 46.9875 49.9875

nHaswell 98.7125 98.8125 90.3875 98.0625 87.125 85.8625 46.8 49.9875

40

50

60

70

80

90

100

110

U
ti

liz
at

io
n

 (
%

)

98

4.3.5 Power Consumption

Figures 4.39 and 4.40 show the average runtime dynamic power for running the eight

benchmark applications with the small and large input sizes over the four normalized

multicore design alternatives.

The higher power dissipation for nHaswell in most benchmarks is due to high

utilization time percent and minimum idle time. Also, due to the FLow control unITs (FLITs)

size of ring topology, a FLIT is a unit or amount of data when the message is transmitting in

any network link. However, the message or packet size is the dominant deciding factor among

many others in deciding the flit width. Based on the message size, there are two design

choices, if we want to keep the size of each packet small, then the number of packets must

increase, hence, increasing the traffic. The alternative option is to keep the size of the packet

large and make lesser transactions. So, based on the size of the packets, the width of the

physical link between two routers have to be increased. Meaning, larger link width leads to

more area and higher power dissipation.

The small power dissipation in 2D mesh relates to the large (relatively) core idle time.

Because the cores spend more time in waiting due to the memory stalls. Also, the lower size

of link transfer unit becomes the second reason for lower power consumption. However, 2D

mesh network has small FLITs relative to the ring topology. In addition, the relative smaller

area of Xeon Phi leads to small power consumption because of the lack of L3 cache.

The power consumption for bus-based systems is less than the power of Haswell

architecture and larger than Xeon Phi processors. Bus based systems have more time spent

for synchronization issues, then minimum utilization.

99

Figure 4.39 Average runtime dynamic power for running the eight benchmark applications with the

small input sizes over the eight normalized multicore design alternatives.

Figure 4.40 Average runtime dynamic power for running the eight benchmark applications with the

large input sizes over the four normalized multicore design alternatives.

FFT Radix Lu.cont Cholesky
Blacksch

oles
Canneal

Fluidani
mate

Swaptio
ns

nDunnington 73.26 17.69 71.45 87.12 51.654 18.927 28.1305 41.0461

nGainestown 72.66 17.83 72.79 89.41 51.636 18.591 28.1402 41.0355

nXeon Phi 64.01 17.7 71.19 85.46 51.566 15.786 27.4532 41.0583

nHaswell 89.29 18.01 74.91 98.87 51.652 25.038 28.6447 41.0498

0

20

40

60

80

100

120

Po
w

er
(W

)

FFT Radix Lu.cont Cholesky
Blacksch

oles
Canneal

Fluidani
mate

Swaptio
ns

nDunnington 73.02 17.94 80.07 90.07 52.2276 17.9803 27.5121 41.1597

nGainestown 71.51 17.89 80.01 93.49 52.2515 17.3892 27.5145 41.1261

nXeon Phi 70.73 17.3 75.6 86.15 52.001 15.2441 26.9821 41.1225

nHaswell 70.24 18.16 83.35 102.3 52.2878 23.5519 28.1061 41.1212

0

20

40

60

80

100

120

Po
w

er
(W

)

100

The L3 cache in bus based designs plays a key role in increasing power consumption

rather than nXeon Phi architecrure. More area a multicore has, more power it consumes. In

fact, nGainestown consumes more power than nDunnington, due to the higher utilization of

processors because that QPI links decreases the time of synchronization cycles. FFT and

Canneal benchmark applications have different behaviour with large problem size. However,

nHaswell consumes minimum power because it has minimum core-to-core communication

and minimum synchronization waiting cycles.

An exception case appears with Swaptions and Fluidanimate. The rule that higher

utilization gives higher power consumption is not present here. They have the lowest

utilization, but they consume larger power than two of the other benchmarks. This behavior

can be interpreted by their high core to core communication as mentioned in the previous

section (they have more than 50% synchronization contribution of the CPI stack). The cores

stay idle waiting each other but the whole processor works on synchronization between them.

We perform Kiviat chart for the four-metrics used in performance evaluation. It summarizes

all the above explanations.

Figure 4.41. Kiviat chart for performance evaluation for the four multicore design alternatives.

80

85

90

95

100
IPC

Power(W)Execution time(ms)

nDunnington

nGainestown

nXeon Phi

nHaswell

101

1. http://www.realworldtech.com/common-system-interface/5/

4.3.6 Cache Coherence Protocol

In the MESI protocol, when a processor requests a cache line that is stored in multiple

locations, every location might reply with the data. However, the requesting processor just

needs a single copy of the data, so the system is wasting link bandwidth for sending extra

data. The added F state changes the role of the Shared (S) state. In the MESIF protocol, only

a single copy of a cache line may be in the F state and that instance is the only one that may

be duplicated the cache line in the F state is used to respond to any read requests, while the

S state cache lines are now silent and do not respond. By designating a single cache line to

respond to requests, coherency traffic is substantially reduced. Figure 4.42 demonstrates the

advantages of MESIF versus the old MESI protocol, reducing two data responses to a single

response (acknowledgements are not shown). Note that a peer node is simply any node in the

system that contains a cache line. Normalized Haswell does not benefit from MESIF protocol

because all cores share L3 NUCA cache which has the inclusive property. Hence, any cache

request will found in L3 or in DRAM not in other core caches. Swaptions and Fluidanimate

have performance drop. MESIF sometimes adds relative overhead to executing some

benchmarks; like Fluidanimate and Swaptions due to their low sharing degree. Figures 4.43

and 4.44 show how the MESIF cache coherence protocol enhances the system performance.

Figure 4.42. MESI versus MESIF Protocol1.

http://www.realworldtech.com/common-system-interface/5/

102

Figure 4.43 Average core IPC for running four SPLASH2 benchmark applications with large input

size over the four studied multicore design alternatives with MESI/MESIF cache coherence

protocols.

1.9

2

2.1

2.2

2.3

2.4

nDunnington nGainestown nXeon Phi nHaswell

2.112 2.129 2.109 2.088

2.375 2.39

2.112 2.088

IP
C

SPLASH2-FFT

MESI

MESIF

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

nDunnington nGainestown nXeon Phi nHaswell

2.325

2.425

2.238

2.656

2.341

2.435

2.299

2.656

IP
C

SPLASH2-Cholesky

MESI

MESIF

1.85
1.9

1.95
2

2.05
2.1

2.15
2.2

2.25

nDunnington nGainestown nXeon Phi nHaswell

2.119 2.118

1.991

2.206

2.122 2.125

2.016

2.206

IP
C

SPLASH2-Lu.cont

MESI

MESIF

0.37

0.38

0.39

0.4

0.41

nDunnington nGainestown nXeon Phi nHaswell

0.4 0.4

0.383

0.409

0.4 0.4

0.384

0.409

IP
C

SPLASH2-Radix

MESI

MESIF

103

Figure 4.44 Average core IPC for running four PARSEC benchmark applications with large input

size over the four studied multicore design alternatives with MESI/MESIF cache coherence

protocols.

1.402

1.404

1.406

1.408

1.41

1.412

1.414

1.416

nDunnington nGainestown nXeon Phi nHaswell

1.413
1.414

1.407

1.416

1.414
1.415

1.412

1.416

IP
C

PARSEC-Blackscholes

MESI

MESIF

0

0.1

0.2

0.3

0.4

0.5

0.6

nDunnington nGainestown nXeon Phi nHaswell

0.397 0.403
0.335

0.595

0.403 0.409
0.344

0.595

IP
C

PARSEC-Canneal

MESI

MESIF

0.64

0.65

0.66

0.67

0.68

0.69

0.7

0.71

nDunnington nGainestown nXeon Phi nHaswell

0.68 0.682

0.666

0.703

0.685
0.68

0.661

0.703

IP
C

PARSEC-Fluidanimate

MESI

MESIF

1.06

1.0605

1.061

1.0615

1.062

1.0625

1.063

nDunnington nGainestown nXeon Phi nHaswell

1.063

1.062 1.062 1.0621.062 1.062

1.061

1.062

IP
C

PARSEC-Swaptions

MESI

MESIF

104

CHAPTER 5: THESIS CONCLUSION AND FUTURE WORK

105

5.1 Introduction

This chapter presents the conclusions regarding the thesis’s methodology, raw and

normalized multicores comparisons, and results analyses. Also, it presents some proposed

future work.

5.2 Conclusions

 The purpose of this thesis is to evaluate the performance of commodity multicore

processors and find the strengths and weaknesses of their design features to help designers

to develop multicore applications and design new processors. To achieve this goal, first, we

chose four commercial multicore processors from Intel’s server list (Xeon brand), two of

them are bus based multi-socket architectures (Core2 and Nehalem based multicores). And

two are NoC based architectures (2d mesh and bidirectional Ring interconnection network)

where they are Haswell and Xeon Phi based processors. They were chosen because they

cover wide range of recent multicore design options.

Second, we chose a set of parallel applications that are representative of multi-core

applications and are widely used in recent multi-core research. This set consists of eight

applications from two benchmark suits. Four of these applications are from SPLASH suite,

where they are Radix, FFT, LU, and Cholesky. The other four are from PARSEC suite, which

are Canneal, Blackscholes, Fluidanimate, and Swaptions. These applications were selected

because they represent a wide range of applications and are often used in multi-core research.

To study the impact of application problem size on the communication behavior, we worked

on two problem sizes of each application: small and large sizes (Table 3.2).

106

Third, Sniper multicore simulator is used to evaluate performance of the selected

multicore design alternatives. We chose Sniper simulator because it is relatively fast and is

an accurate execution driven simulator and is validated under real hardware (Carlson, et al.

2014a).

Multithreaded benchmark applications behave differently due to scaling input sets.

When using a small input, most of the working set of multithreaded workloads fits in the last-

level cache LLC, and the time that is spent on the compute units contributes (relatively) more

to the total run time. On the other hand, with a large input, most benchmarks stress the

memory hierarchy which results in a significant fraction of time spent on cache misses and

off-chip DRAM accesses.

By characterizing benchmarks performance, we show how different these

benchmarks are with respect to each other, some of them have steady cmponents contribution

like Blackscholes and Canneal. However, the contribution of CPI component seems to be

constant over all the time of simulation. Swaptions applications is computation and memory

intensive workload in the first half of the execution time, then transfers to become large

synchronization and communication intensive workload. This parallel application needs

multicore processor design that have high level of core compute units beside high speed

communication and efficient memory designs. Memory contribution on CPI stack of some

benchmarks gradually decreases over time due to its high percent of communication slack;

like Cholesky and Lu.cont benchmarks.

107

 Most benchmarks have good scaling feature and make use of all processor cores

except Fluidanimate benchmarks. However, it uses only five cores out of eight cores in all

multicore alternatives. Another load imbalance appers in using initial core for benchmarks.

Blackscholes, Fluidanimate, Canneal, and Swaptions benchmarks have this initial thread with

nearly 99.9% idle time. Cholesky, FFT, Lu.cont, and Radix have good load balancing.

Using cycle stacks provides excellent indication on how design bottlenecks change

as multicore configurations changes. As we change sytem design features, the contributions

of individual cycle components vary significantly. From nHaswell and nXeon Phi to bus-

based microarchitectures (nDunnington and nGainestown) an interesting system strengths

and weaknesses are concluded.

We found that normalized Haswell exhibits better performance in forms of execution

time (69 ms) and system throughput (1.39 IPC) averaged over the eight multithreaded

benchmarks for the large data sets. This relatively high performance is probably due to the

following architectural features: private level 2 cache, large level 3 shared non-uniform cache

access (NUCA). And the high-speed core-to-core communication through the bidirectional

ring NoC. On the other hand, it relatively consumes large power (52.3 watts).

We concluded that the bus-based microarchitectures are no longer able to meet the

requirements of new HPC workloads due to the obvious weakness in their handling of the

synchronization and communication overheads, which for sure will increase in future many-

core architectures. The normalized Gainestown and normalized Dunnington have average

execution times of 74 ms and 73 ms, respectively and have average throughput of 1.33 IPC

and 1.31 IPC, respectively. Also, they consume power equal to 50.14 watts and 49.99 watts

on average, respectively.

108

When analyzing nXeon Phi architecture, we concluded that although it shows lower

power consumptions (48.14 watts). Designers should do further research in developing its

memory components. Xeon Phi suffers relatively from larger CPI loss in memory intensive

applications (1.27 IPC) leading to larger execution times (77.25 ms on average). Most of the

performance bottleneck concentrates on the off-chip DRAM access and smaller in core units.

Finally, we have shown that the Modified Exclusive Shared Invalid Forward (MESIF)

cache coherence protocol enhances the multicore performance, compared with the older

MESI protocol. Normalized Dunnington has speedup of 1.028x. normalized Gainestown has

1.027x of speed up. Normalized Xeon Phi has 1.01x speed up. But normalized haswell does

not benefit from MESIF protocol because it has only one socket and all cores share NUCA

cache. MESIF sometimes adds relative overhead to executing some benchmarks; like

Fluidanimate and Swaptions, because of their low sharing degree.

5.3 Future work

In our work, we did microarchitectural simulations for common Intel multicore

processors. Therefore, the future work is to do performance evaluations for other multicore

processors from other vendors like AMD, ARM, and Nvidia, etc.

In addition, we plan to develop Sniper multicore simulator to support MOESI cache

coherence protocol which it is the recent cache coherence protocol for AMD multicore

processors. The workload which is used in this research is multithreaded benchmark

applications. So, one of the future works is to use multi-program workload in simulations

(Multi multithreaded workload).

109

The studied multicore processors are homogenuous processors, that mean all cores

have the same specifications, but there is a new open research studies about hetrogenuous

multicore designs, which is a good future work. The hyper multithreading SMT property

and Intel over clocking are implemented in recent multicore processors. Hence, adding these

features to the simulations will be a future work.

 Finally, Sniper supports simulating many core processors from 10 to 100 cores. We

plan to study our design alternatives with more than eight cores and evaluate their

performance. By so, we can examine their scalability bottlenecks.

110

APPENDIX A: USAGE INSTRUCTIONS

All simulator files and the studied applications are put in one compressed file, which is

called Sniper.tar.gz. Extract the compressed file in the home directory. The Sniper directory

contains three directories, which are Sniper files, pin_kit, Boost, and Benchmarks,

which contains both PARSEC and SPLASH suites.

A.1 Environment Setup

 First, the environment should be prepared to run Sniper successfully. Make sure the

required libraries shown in Table A.1 are installed. This table specifies the required libraries and

how to install them.

Table A.1. The required libraries.

Library Method of installation

g++ sudo apt-get install g++

x11 sudo apt-get install libx11-dev

zlib1g sudo apt-get install zlib1g-dev

libbz2 sudo apt-get install libbz2-dev

libsqlite3 sudo apt-get install libsqlite3-dev

Libboost sudo apt-get install libboost-dev

xsltproc sudo apt-get install xsltproc

Libxmu sudo apt-get install libxmu-dev

gfortran sudo apt-get install gfortran

Expat sudo apt-get install libexpat1-dev

Xt sudo apt-get install libxt-dev

111

Xext sudo apt-get install libxext-dev

Xmu sudo apt-get install libxmu-dev

Xi sudo apt-get install libxi-dev

m4 sudo apt-get install m4

perl5
1- Download perl, perl-base, and perl-module of version 5.14.2-21 from

https://launchpad.net/ubuntu/raring/amd64/perl/5.14.2-21

2- Force install by "sudo dpkg --force-all -i perl*",

 Where you must run it from the same downloaded files directory.

Note: If system deny downgrade perl package, type in terminal:

sudo rm /var/lib/dpkg/lock then downgrade perl.

Boost
1- Download Boost version 1_59_0 from the link below

 http://sourceforge.net/projects/boost/files/boost/1.59.0/

2- Extract the downloaded package in the Sniper directory.

gnuplot
1- Download gnuplot-5.0.2 from the link below

 https://sourceforge.net/projects/gnuplot/files/

2- Extract and Install it by the print following commands:

$ tar xzf gnuplot-5.0.1.tar.gz

$ cd gnuplot-5.0.1

$./configure

$ make

$ sudo make install

A.2 Downloading Sniper

Sniper simulator is an open source, so we request the the download link for the latest version

Sniper 6.1 from their website http://www.Snipersim.org/w/Download

Then extract it in the home directory by running the following commands.

112

Cd Downloads

Wget < download link you got by mail>

A.3 PIN Installation

First, download pin, binary instrumentation tool, version pin-2.14-71313-gcc.4.4.7-linux, from

this link https://software.intel.com/en-us/articles/pin-a-binary-

instrumentation-tool-downloads

Extract the downloaded pin tool in a folder pin_kit then copy to a Sniper directory, for note;

we now have 2 folders in you Sniper directory; pin and pin_kit.

A.4 Compiling Sniper

Now, the environment is ready for installing Sniper, install it by running the following

commands:

cd Sniper

~/Sniper$ Make –j 2 (to take advantage of parallel simulation) here our host machine has 2

cores.

Next, you can verify your installation by running a small test Application.

 ~/Sniper$ cd test/fft

~/Sniper/test/fft$ make run

https://software.intel.com/en-us/articles/pin-a-binary-instrumentation-tool-downloads
https://software.intel.com/en-us/articles/pin-a-binary-instrumentation-tool-downloads

113

A.5 Benchmarks Downloading, Installation and Building

Sniper is compatible with SPLASH2 and PARSEC, the selected multithreaded applications, to

downloading and building the benchmarks, run the following command:

 cd Sniper

~/Sniper$ wget http://Snipersim.org/packages/Sniper-benchmarks.tbz

Extract the benchmarks compressed file:

~/Sniper$ tar xjf Sniper-benchmarks.tbz

Enter the banchmarks folder and set the roots:

~/Sniper$ cd benchmarks

~/Sniper/benchmarks$ export GRAPHITE_ROOT=/path/to/Sniper

Here, you should write your Sniper folder path, an example of my Sniper path is:

/home/aiesha/Sniper instead of /path/to/Sniper

~/Sniper/benchmarks$ export BENCHMARKS_ROOT=$(pwd

~/Sniper/benchmarks$ make

SPLASH2 has four input sets: tiny, small, test (this is the defualt input size for all benchmarks

applications), and large (this is the best to show the performance of multicores) on the other hand,

PARSEC has simsmall, test, simdev, simlarge, simmedium sizes. Table A.2 show the studied eight

multithreaded applications from the two selected representative benchmarks SPLASH2 and

PARSEC, and also, there input sets.

http://snipersim.org/packages/sniper-benchmarks.tbz

114

Table A.2. The names of the studied benchmarks applications and input sets.

Suite Benchmarks Applications Input sets

SPLASH2

Radix Small large

Fft Small large

lu.cont Small large

Cholesky Small large

PARSEC

Canneal Simsmall simmeduim

Blackscholes Simsmall simmeduim

 Fluidanimate Simsmall simmeduim

Swaptions Simsmall simmeduim

A.6 Running Simulations

Sniper supports python user configuration files which passing configuration options to the

simulations. We use four configuration files original and normalized design alternatives, these files

in Appendix B., For example, to characterize FFT on eight threads and using problem Size “small”

on Haswell microarchitecture, providing the power and visualization option, run the following

command.

cd Sniper/benchmarks

~/Sniper/benchmarks$./run-Sniper -p SPLASH2-fft -i small -n 8 –viz --

power -c haswell

115

APPENDIX B: Sniper configuration files

Core2/Dunnington

Microarchitecture

[bbv]

sampling = 0

[caching_protocol]

type =

"parametric_DRAM_directory_msi"

variant = "mesi"

[clock_skew_minimization]

report = "false"

scheme = "barrier"

[clock_skew_minimization/barrier]

quantum = 100

[core]

spin_loop_detection = "false"

[core/cheetah]

enabled = "false"

max_size_bits_global = 36

max_size_bits_local = 30

min_size_bits = 10

[core/hook_periodic_ins]

ins_global = 1000000

ins_per_core = 10000

[core/light_cache]

num = 0

[dvfs]

transition_latency = 10000

type = "simple"

[dvfs/simple]

cores_per_socket = 4

[fault_injection]

injector = "none"

type = "none"

[general]

enable_icache_modeling = "true"

enable_pinplay = "false"

enable_signals = "false"

enable_smc_support = "false"

enable_syscall_emulation = "true"

inst_mode_end = "fast_forward"

inst_mode_init = "cache_only"

inst_mode_output = "true"

inst_mode_roi = "detailed"

issue_memops_at_functional = "false"

magic = "true"

Nehalem core/Gainestown

Microarchitecture

[bbv]

sampling = 0

[caching_protocol]

type =

"parametric_DRAM_directory_msi"

variant = "mesi"

[clock_skew_minimization]

report = "false"

scheme = "barrier"

[clock_skew_minimization/barrier]

quantum = 100

[core]

spin_loop_detection = "false"

[core/cheetah]

enabled = "false"

max_size_bits_global = 36

max_size_bits_local = 30

min_size_bits = 10

[core/hook_periodic_ins]

ins_global = 1000000

ins_per_core = 10000

[core/light_cache]

num = 0

[dvfs]

transition_latency = 2000

type = "simple"

[dvfs/simple]

cores_per_socket = 1

[fault_injection]

injector = "none"

type = "none"

[general]

enable_icache_modeling = "true"

enable_pinplay = "false"

enable_signals = "false"

enable_smc_support = "false"

enable_syscall_emulation = "true"

inst_mode_end = "fast_forward"

inst_mode_init = "cache_only"

inst_mode_output = "true"

inst_mode_roi = "detailed"

issue_memops_at_functional =

"false"

Haswell Microarchitecture

[bbv]

sampling = 0

[caching_protocol]

type =

"parametric_DRAM_directory_msi"

variant = "mesif"

[clock_skew_minimization]

report = "false"

scheme = "barrier"

[clock_skew_minimization/barrier]

quantum = 100

[core]

spin_loop_detection = "false"

[core/cheetah]

enabled = "false"

max_size_bits_global = 36

max_size_bits_local = 30

min_size_bits = 10

[core/hook_periodic_ins]

ins_global = 1000000

ins_per_core = 10000

[core/light_cache]

num = 0

[dvfs]

transition_latency = 2000

type = "simple"

[dvfs/simple]

cores_per_socket = 1

[fault_injection]

injector = "none"

type = "none"

[general]

enable_icache_modeling = "true"

enable_pinplay = "false"

enable_signals = "false"

enable_smc_support = "false"

enable_syscall_emulation = "true"

inst_mode_end = "fast_forward"

inst_mode_init = "cache_only"

inst_mode_output = "true"

inst_mode_roi = "detailed"

issue_memops_at_functional =

"false"

magic = "true"

Xeon Phi Microarchitecture

[bbv]

sampling = 0

[caching_protocol]

type =

"parametric_DRAM_directory_msi"

variant = "mesi"

[clock_skew_minimization]

report = "false"

scheme = "barrier"

[clock_skew_minimization/barrier]

quantum = 100

[core]

spin_loop_detection = "false"

[core/cheetah]

enabled = "false"

max_size_bits_global = 36

max_size_bits_local = 30

min_size_bits = 10

[core/hook_periodic_ins]

ins_global = 1000000

ins_per_core = 10000

[core/light_cache]

num = 0

[dvfs]

transition_latency = 2000

type = "simple"

[dvfs/simple]

cores_per_socket = 1

[fault_injection]

injector = "none"

type = "none"

[general]

enable_icache_modeling = "true"

enable_pinplay = "false"

enable_signals = "false"

enable_smc_support = "false"

enable_syscall_emulation = "true"

inst_mode_end = "fast_forward"

inst_mode_init = "cache_only"

inst_mode_output = "true"

inst_mode_roi = "detailed"

issue_memops_at_functional =

"false"

magic = "true"

116

num_host_cores = 0

roi_script = "false"

suppress_stderr = "false"

suppress_stdout = "false"

syntax = "intel"

total_cores = 8

[hooks]

[instruction_tracer]

type = "none"

[log]

circular_log = "false"

disabled_modules = ""

enabled = "false"

enabled_modules = ""

mutex_trace = "false"

pin_codecache_trace = "false"

stack_trace = "false"

[loop_tracer]

iter_count = 36

iter_start = 0

[network]

collect_traffic_matrix = "false"

memory_model_1 = "bus"

memory_model_2 = "bus"

system_model = "magic"

[network/bus]

bandwidth = 8

ignore_local_traffic = "false"

[network/bus/queue_model]

type = "contention"

[network/emesh_hop_by_hop]

concentration = 1

dimensions = 2

hop_latency = 2

link_bandwidth = 64

size = ""

wrap_around = "false"

[network/emesh_hop_by_hop/broadca

st_tree]

enabled = "false"

[network/emesh_hop_by_hop/queue_

model]

enabled = "true"

type = "history_list"

[network/emesh_hop_counter]

hop_latency = 2

link_bandwidth = 64

[osemu]

magic = "true"

num_host_cores = 0

roi_script = "false"

suppress_stderr = "false"

suppress_stdout = "false"

syntax = "intel"

total_cores = 8

[hooks]

[instruction_tracer]

type = "none"

[log]

circular_log = "false"

disabled_modules = ""

enabled = "false"

enabled_modules = ""

mutex_trace = "false"

pin_codecache_trace = "false"

stack_trace = "false"

[loop_tracer]

iter_count = 36

iter_start = 0

[network]

collect_traffic_matrix = "false"

memory_model_1 = "bus"

memory_model_2 = "bus"

system_model = "magic"

[network/bus]

bandwidth = 25.6

ignore_local_traffic = "true"

[network/bus/queue_model]

type = "contention"

[network/emesh_hop_by_hop]

concentration = 1

dimensions = 2

hop_latency = 2

link_bandwidth = 64

size = ""

wrap_around = "false"

[network/emesh_hop_by_hop/broadc

ast_tree]

enabled = "false"

[network/emesh_hop_by_hop/queue_

model]

enabled = "true"

type = "history_list"

[network/emesh_hop_counter]

hop_latency = 2

link_bandwidth = 64

num_host_cores = 0

roi_script = "false"

suppress_stderr = "false"

suppress_stdout = "false"

syntax = "intel"

total_cores = 8

[hooks]

[instruction_tracer]

type = "none"

[log]

circular_log = "false"

disabled_modules = ""

enabled = "false"

enabled_modules = ""

mutex_trace = "false"

pin_codecache_trace = "false"

stack_trace = "false"

[loop_tracer]

iter_count = 36

iter_start = 0

[network]

collect_traffic_matrix = "false"

memory_model_1 =

"emesh_hop_by_hop"

system_model = "magic"

[network/bus]

ignore_local_traffic = "true"

[network/bus/queue_model]

type = "contention"

[network/emesh_hop_by_hop]

concentration = 1

dimensions = 1

hop_latency = 2

link_bandwidth = 80

size = ""

wrap_around = "true"

[network/emesh_hop_by_hop/broadc

ast_tree]

enabled = "false"

[network/emesh_hop_by_hop/queue_

model]

enabled = "true"

type = "windowed_mg1"

[network/emesh_hop_counter]

hop_latency = 2

link_bandwidth = 64

[osemu]

clock_replace = "true"

num_host_cores = 0

roi_script = "false"

suppress_stderr = "false"

suppress_stdout = "false"

syntax = "intel"

total_cores = 8

[hooks]

[instruction_tracer]

type = "none"

[log]

circular_log = "false"

disabled_modules = ""

enabled = "false"

enabled_modules = ""

mutex_trace = "false"

pin_codecache_trace = "false"

stack_trace = "false"

[loop_tracer]

iter_count = 36

iter_start = 0

[network]

collect_traffic_matrix = "false"

memory_model_1 =

"emesh_hop_by_hop"

system_model = "magic"

[network/bus]

ignore_local_traffic = "true"

[network/bus/queue_model]

type = "contention"

[network/emesh_hop_by_hop]

concentration = 1

dimensions = 2

hop_latency = 4

link_bandwidth = 256

size = "4:2"

wrap_around = "false"

[network/emesh_hop_by_hop/broadc

ast_tree]

enabled = "false"

[network/emesh_hop_by_hop/queue_

model]

enabled = "true"

type = "windowed_mg1"

[network/emesh_hop_counter]

hop_latency = 2

link_bandwidth = 64

[osemu]

clock_replace = "true"

117

clock_replace = "true"

nprocs = 0

pthread_replace = "false"

time_start = 1337000000

[perf_model]

[perf_model/branch_predictor]

mispredict_penalty = 15

size = 1024

type = "pentium_m"

[perf_model/cache]

levels = 3

[perf_model/core]

core_model = "nehalem"

frequency = 2.666

logical_cpus = 1

type = "interval"

[perf_model/core/interval_timer]

dispatch_width = 4

issue_contention = "true"

issue_memops_at_dispatch = "false"

lll_cutoff = 30

lll_dependency_granularity = 64

memory_dependency_granularity = 8

num_outstanding_loadstores = 8

window_size = 96

[perf_model/core/static_instruction_c

osts]

add = 1

branch = 1

delay = 0

div = 18

dynamic_misc = 1

fadd = 3

fdiv = 6

fmul = 5

fsub = 3

generic = 1

jmp = 1

mem_access = 0

mul = 3

recv = 1

spawn = 0

string = 1

sub = 1

sync = 0

tlb_miss = 0

unknown = 0

[perf_model/DRAM]

controller_positions = ""

controllers_interleaving = 4

direct_access = "false"

latency = 173

num_controllers = -1

per_controller_bandwidth = 2.5

type = "constant"

[osemu]

clock_replace = "true"

nprocs = 0

pthread_replace = "false"

time_start = 1337000000

[perf_model]

[perf_model/branch_predictor]

mispredict_penalty = 8

size = 1024

type = "pentium_m"

[perf_model/cache]

levels = 3

[perf_model/core]

core_model = "nehalem"

frequency = 2.66

logical_cpus = 1

type = "rob"

[perf_model/core/interval_timer]

dispatch_width = 4

issue_contention = "true"

issue_memops_at_dispatch = "false"

lll_cutoff = 30

lll_dependency_granularity = 64

memory_dependency_granularity = 8

num_outstanding_loadstores = 10

window_size = 128

[perf_model/core/rob_timer]

address_disambiguation = "true"

commit_width 4

in_order = "false"

issue_contention = "true"

issue_memops_at_issue = "true"

mlp_histogram = "false"

outstanding_loads = 48

outstanding_stores = 32

rob_repartition = "true"

rs_entries = 36

simultaneous_issue = "true"

store_to_load_forwarding = "true"

[perf_model/core/static_instruction_c

osts]

add = 1

branch = 1

delay = 0

div = 18

dynamic_misc = 1

fadd = 3

fdiv = 6

fmul = 5

fsub = 3

generic = 1

jmp = 1

mem_access = 0

mul = 3

recv = 1

nprocs = 0

pthread_replace = "false"

time_start = 1337000000

[perf_model]

[perf_model/branch_predictor]

mispredict_penalty = 14

size = 4096

type = "pentium_m"

[perf_model/cache]

levels = 2

[perf_model/core]

core_model = "nehalem"

frequency = 3

logical_cpus = 1

type = "rob"

[perf_model/core/interval_timer]

dispatch_width = 4

issue_contention = "true"

issue_memops_at_dispatch = "false"

lll_cutoff = 30

lll_dependency_granularity = 64

memory_dependency_granularity = 8

num_outstanding_loadstores = 72

window_size = 192

[perf_model/core/rob_timer]

address_disambiguation = "true"

commit_width = 4

in_order = "false"

issue_contention = "true"

issue_memops_at_issue = "true"

mlp_histogram = "false"

outstanding_loads = 72

outstanding_stores = 42

rob_repartition = "true"

rs_entries = 60

simultaneous_issue = "true"

store_to_load_forwarding = "true"

[perf_model/core/static_instruction_c

osts]

add = 1

branch = 1

delay = 0

div = 10

dynamic_misc = 1

fadd = 5

fdiv = 10

fmul = 10

fsub = 5

generic = 1

jmp = 1

mem_access = 0

mul = 10

recv = 1

spawn = 0

string = 1

nprocs = 0

pthread_replace = "false"

time_start = 1337000000

[perf_model]

[perf_model/branch_predictor]

mispredict_penalty = 5

size = 1024

type = "pentium_m"

[perf_model/cache]

levels = 2

[perf_model/core]

core_model = "nehalem"

frequency = 1.0

logical_cpus = 1

type = "interval"

[perf_model/core/interval_timer]

dispatch_width = 2

issue_contention = "true"

issue_memops_at_dispatch = "false"

lll_cutoff = 30

lll_dependency_granularity = 64

memory_dependency_granularity = 8

num_outstanding_loadstores = 8

window_size = 64

[perf_model/core/static_instruction_c

osts]

add = 1

branch = 1

delay = 0

div = 18

dynamic_misc = 1

fadd = 3

fdiv = 6

fmul = 5

fsub = 3

generic = 1

jmp = 1

mem_access = 0

mul = 3

recv = 1

spawn = 0

string = 1

sub = 1

sync = 0

tlb_miss = 0

unknown = 0

[perf_model/DRAM]

controller_positions = ""

controllers_interleaving = 0

direct_access = "false"

latency = 80

num_controllers = 1

per_controller_bandwidth = 32

type = "constant"

118

[perf_model/DRAM/cache]

enabled = "false"

[perf_model/DRAM/normal]

standard_deviation = 0

[perf_model/DRAM/queue_model]

enabled = "true"

type = "history_list"

[perf_model/DRAM_directory]

associativity = 16

directory_cache_access_time = 10

directory_type = "full_map"

home_lookup_param = 6

interleaving = 1

locations = "DRAM"

max_hw_sharers = 64

total_entries = 1048576

[perf_model/DRAM_directory/limitle

ss]

software_trap_penalty = 200

[perf_model/dtlb]

associativity = 1

size = 0

[perf_model/fast_forward]

model = "oneipc"

[perf_model/fast_forward/oneipc]

include_branch_misprediction =

"false"

include_memory_latency = "false"

interval = 100000

[perf_model/itlb]

associativity = 1

size = 0

[perf_model/l1_dcache]

address_hash = "mask"

associativity = 8

cache_block_size = 64

cache_size = 32

data_access_time = 3

dvfs_domain = "core"

next_level_read_bandwidth = 0

outstanding_misses = 0

passthrough = "false"

perf_model_type = "parallel"

perfect = "false"

prefetcher = "none"

replacement_policy = "lru"

shared_cores = 1

tags_access_time = 1

writeback_time = 150

writethrough = 0

[perf_model/l1_dcache/atd]

spawn = 0

string = 1

sub = 1

sync = 0

tlb_miss = 0

unknown = 0

[perf_model/DRAM]

chips_per_dimm = 8

controller_positions = ""

controllers_interleaving = 4

dimms_per_controller = 4

direct_access = "false"

latency = 45

num_controllers = -1

per_controller_bandwidth = 7.6

type = "constant"

[perf_model/DRAM/cache]

enabled = "false"

[perf_model/DRAM/normal]

standard_deviation = 0

[perf_model/DRAM/queue_model]

enabled = "true"

type = "history_list"

[perf_model/DRAM_directory]

associativity = 16

directory_cache_access_time = 10

directory_type = "full_map"

home_lookup_param = 6

interleaving = 1

locations = "DRAM"

max_hw_sharers = 64

total_entries = 1048576

[perf_model/DRAM_directory/limitle

ss]

software_trap_penalty = 200

[perf_model/dtlb]

associativity = 4

size = 64

[perf_model/fast_forward]

model = "oneipc"

[perf_model/fast_forward/oneipc]

include_branch_misprediction =

"false"

include_memory_latency = "false"

interval = 100000

[perf_model/itlb]

associativity = 4

size = 128

[perf_model/l1_dcache]

address_hash = "mask"

associativity = 8

sub = 1

sync = 0

tlb_miss = 0

unknown = 0

[perf_model/DRAM]

chips_per_dimm = 1

controller_positions = ""

controllers_interleaving = 8

dimms_per_controller = 4

direct_access = "false"

latency = 45

num_controllers = -1

per_controller_bandwidth = 68

type = "constant"

[perf_model/DRAM/cache]

enabled = "false"

[perf_model/DRAM/normal]

standard_deviation = 0

[perf_model/DRAM/queue_model]

enabled = "true"

type = "history_list"

[perf_model/DRAM_directory]

associativity = 16

directory_cache_access_time = 10

directory_type = "full_map"

home_lookup_param = 6

interleaving = 1

locations = "llc"

max_hw_sharers = 64

total_entries = 1048576

[perf_model/DRAM_directory/limitle

ss]

software_trap_penalty = 200

[perf_model/dtlb]

associativity = 4

size = 64

[perf_model/fast_forward]

model = "none"

[perf_model/fast_forward/oneipc]

include_branch_misprediction =

"false"

include_memory_latency = "false"

interval = 100000

[perf_model/itlb]

associativity = 4

size = 128

[perf_model/l1_dcache]

address_hash = "mask"

associativity = 8

cache_block_size = 64

cache_size = 32

[perf_model/DRAM/cache]

enabled = "false"

[perf_model/DRAM/normal]

standard_deviation = 0

[perf_model/DRAM/queue_model]

enabled = "true"

type = "windowed_mg1"

[perf_model/DRAM_directory]

associativity = 64

directory_cache_access_time = 10

directory_type = "full_map"

home_lookup_param = 6

interleaving = 1

locations = "llc"

max_hw_sharers = 64

total_entries = 1048576

[perf_model/DRAM_directory/limitle

ss]

software_trap_penalty = 200

[perf_model/dtlb]

associativity = 1

size = 0

[perf_model/fast_forward]

model = "oneipc"

[perf_model/fast_forward/oneipc]

include_branch_misprediction =

"false"

include_memory_latency = "false"

interval = 100000

[perf_model/itlb]

associativity = 1

size = 0

[perf_model/l1_dcache]

address_hash = "mask"

associativity = 8

cache_block_size = 64

cache_size = 32

data_access_time = 3

dvfs_domain = "core"

next_level_read_bandwidth = 0

outstanding_misses = 0

passthrough = "false"

perf_model_type = "parallel"

perfect = "false"

prefetcher = "none"

replacement_policy = "lru"

shared_cores = 1

tags_access_time = 1

writeback_time = 0

writethrough = 0

[perf_model/l1_dcache/atd]

119

[perf_model/l1_icache]

address_hash = "mask"

associativity = 8

cache_block_size = 64

cache_size = 32

coherent = "true"

data_access_time = 3

dvfs_domain = "core"

next_level_read_bandwidth = 0

passthrough = "false"

perf_model_type = "parallel"

perfect = "false"

prefetcher = "none"

replacement_policy = "lru"

shared_cores = 1

tags_access_time = 1

writeback_time = 0

writethrough = 0

[perf_model/l1_icache/atd]

[perf_model/l2_cache]

address_hash = "mod"

associativity = 12

cache_block_size = 64

cache_size = 3072

data_access_time = 14

dvfs_domain = "core"

next_level_read_bandwidth = 0

passthrough = "false"

perf_model_type = "parallel"

perfect = "false"

prefetcher = "none"

replacement_policy = "lru"

shared_cores = 2

tags_access_time = 3

writeback_time = 60

writethrough = 0

[perf_model/l2_cache/atd]

[perf_model/l3_cache]

address_hash = "mask"

associativity = 16

cache_block_size = 64

cache_size = 16384

data_access_time = 96

dvfs_domain = "global"

passthrough = "false"

perf_model_type = "parallel"

perfect = "false"

prefetcher = "none"

replacement_policy = "lru"

shared_cores = 4

tags_access_time = 10

writeback_time = 390

writethrough = 0

[perf_model/l3_cache/atd]

[perf_model/l4_cache]

cache_block_size = 64

cache_size = 32

data_access_time = 4

dvfs_domain = "core"

next_level_read_bandwidth = 0

outstanding_misses = 10

passthrough = "false"

perf_model_type = "parallel"

perfect = "false"

prefetcher = "none"

replacement_policy = "lru"

shared_cores = 1

tags_access_time = 1

writeback_time = 0

writethrough = 0

[perf_model/l1_dcache/atd]

[perf_model/l1_icache]

address_hash = "mask"

associativity = 4

cache_block_size = 64

cache_size = 32

coherent = "true"

data_access_time = 4

dvfs_domain = "core"

next_level_read_bandwidth = 0

passthrough = "false"

perf_model_type = "parallel"

perfect = "false"

prefetcher = "none"

replacement_policy = "lru"

shared_cores = 1

tags_access_time = 1

writeback_time = 0

writethrough = 0

[perf_model/l1_icache/atd]

[perf_model/l2_cache]

address_hash = "mask"

associativity = 8

cache_block_size = 64

cache_size = 256

data_access_time = 8

dvfs_domain = "core"

next_level_read_bandwidth = 0

passthrough = "false"

perf_model_type = "parallel"

perfect = "false"

prefetcher = "none"

replacement_policy = "lru"

shared_cores = 1

tags_access_time = 3

writeback_time = 50

writethrough = 0

[perf_model/l2_cache/atd]

[perf_model/l3_cache]

address_hash = "mask"

associativity = 16

data_access_time = 3

dvfs_domain = "core"

next_level_read_bandwidth = 0

outstanding_misses = 10

passthrough = "false"

perf_model_type = "parallel"

perfect = "false"

prefetcher = "none"

replacement_policy = "lru"

shared_cores = 1

tags_access_time = 1

writeback_time = 0

writethrough = 0

[perf_model/l1_dcache/atd]

[perf_model/l1_icache]

address_hash = "mask"

associativity = 8

cache_block_size = 64

cache_size = 32

coherent = "true"

data_access_time = 3

dvfs_domain = "core"

next_level_read_bandwidth = 0

passthrough = "false"

perf_model_type = "parallel"

perfect = "false"

prefetcher = "none"

replacement_policy = "lru"

shared_cores = 1

tags_access_time = 1

writeback_time = 0

writethrough = 0

[perf_model/l1_icache/atd]

[perf_model/l2_cache]

address_hash = "mask"

associativity = 8

cache_block_size = 64

cache_size = 256

data_access_time = 8

dvfs_domain = "core"

next_level_read_bandwidth = 0

passthrough = "false"

perf_model_type = "parallel"

perfect = "false"

prefetcher = "none"

replacement_policy = "lru"

shared_cores = 1

tags_access_time = 3

writeback_time = 50

writethrough = 0

[perf_model/l2_cache/atd]

[perf_model/l3_cache]

address_hash = "mask"

associativity = 16

cache_block_size = 64

cache_size = 8192

[perf_model/l1_icache]

address_hash = "mask"

associativity = 4

cache_block_size = 64

cache_size = 32

coherent = "true"

data_access_time = 3

dvfs_domain = "core"

next_level_read_bandwidth = 0

passthrough = "false"

perf_model_type = "parallel"

perfect = "false"

prefetcher = "none"

replacement_policy = "lru"

shared_cores = 1

tags_access_time = 1

writeback_time = 0

writethrough = 0

[perf_model/l1_icache/atd]

[perf_model/l2_cache]

address_hash = "mask"

associativity = 8

cache_block_size = 64

cache_size = 512

data_access_time = 22

dvfs_domain = "core"

next_level_read_bandwidth = 0

passthrough = "false"

perf_model_type = "parallel"

perfect = "false"

prefetcher = "none"

replacement_policy = "lru"

shared_cores = 1

tags_access_time = 5

writeback_time = 1

writethrough = 0

[perf_model/l2_cache/atd]

[perf_model/l3_cache]

passthrough = "false"

perfect = "false"

[perf_model/l4_cache]

passthrough = "false"

perfect = "false"

[perf_model/llc]

evict_buffers = 8

[perf_model/nuca]

enabled = "false"

[perf_model/stlb]

associativity = 1

size = 0

[perf_model/sync]

reschedule_cost = 1000

120

passthrough = "false"

perfect = "false"

[perf_model/llc]

evict_buffers = 8

[perf_model/nuca]

enabled = "false"

[perf_model/stlb]

associativity = 1

size = 0

[perf_model/sync]

reschedule_cost = 1000

[perf_model/tlb]

penalty = 0

penalty_parallel = "true"

[power]

technology_node = 45

vdd = 1.6

[progress_trace]

enabled = "false"

filename = ""

interval = 5000

[queue_model]

[queue_model/basic]

moving_avg_enabled = "true"

moving_avg_type =

"arithmetic_mean"

moving_avg_window_size = 1024

[queue_model/history_list]

analytical_model_enabled = "true"

max_list_size = 100

[queue_model/windowed_mg1]

window_size = 1000

[routine_tracer]

type = "none"

[sampling]

enabled = "false"

[scheduler]

type = "pinned"

[scheduler/big_small]

debug = "false"

quantum = 1000000

[scheduler/pinned]

core_mask = 1

interleaving = 1

quantum = 1000000

cache_block_size = 64

cache_size = 8192

data_access_time = 30

dvfs_domain = "global"

passthrough = "false"

perf_model_type = "parallel"

perfect = "false"

prefetcher = "none"

replacement_policy = "lru"

shared_cores = 4

tags_access_time = 10

writeback_time = 0

writethrough = 0

[perf_model/l3_cache/atd]

[perf_model/l4_cache]

passthrough = "false"

perfect = "false"

[perf_model/llc]

evict_buffers = 8

[perf_model/nuca]

enabled = "false"

[perf_model/stlb]

associativity = 4

size = 512

[perf_model/sync]

reschedule_cost = 1000

[perf_model/tlb]

penalty = 30

penalty_parallel = "true"

[power]

technology_node = 45

vdd = 1.2

[progress_trace]

enabled = "false"

filename = ""

interval = 5000

[queue_model]

[queue_model/basic]

moving_avg_enabled = "true"

moving_avg_type =

"arithmetic_mean"

moving_avg_window_size = 1024

[queue_model/history_list]

analytical_model_enabled = "true"

max_list_size = 100

[queue_model/windowed_mg1]

window_size = 1000

[routine_tracer]

data_access_time = 30

dvfs_domain = "global"

passthrough = "false"

perf_model_type = "parallel"

perfect = "false"

prefetcher = "none"

replacement_policy = "lru"

shared_cores = 8

tags_access_time = 10

writeback_time = 0

writethrough = 0

[perf_model/l4_cache]

passthrough = "false"

perfect = "false"

[perf_model/llc]

evict_buffers = 8

[perf_model/nuca]

address_hash = "mask"

associativity = 16

bandwidth = 64

cache_size = 8192

data_access_time = 30

enabled = "true"

replacement_policy = "lru"

tags_access_time = 10

[perf_model/nuca/queue_model]

enabled = "true"

type = "history_list"

[perf_model/stlb]

associativity = 4

size = 1024

[perf_model/sync]

reschedule_cost = 1000

[perf_model/tlb]

penalty = 30

penalty_parallel = "true"

[power]

technology_node = 22

vdd = 1.2

[progress_trace]

enabled = "false"

filename = ""

interval = 5000

[queue_model]

[queue_model/basic]

moving_avg_enabled = "true"

moving_avg_type =

"arithmetic_mean"

moving_avg_window_size = 1024

[queue_model/history_list]

[perf_model/tlb]

penalty = 0

penalty_parallel = "true"

[power]

technology_node = 22

vdd = 1.05

[progress_trace]

enabled = "false"

filename = ""

interval = 5000

[queue_model]

[queue_model/basic]

moving_avg_enabled = "true"

moving_avg_type =

"arithmetic_mean"

moving_avg_window_size = 1024

[queue_model/history_list]

analytical_model_enabled = "true"

max_list_size = 100

[queue_model/windowed_mg1]

window_size = 1000

[routine_tracer]

type = "none"

[sampling]

enabled = "false"

[scheduler]

type = "pinned"

[scheduler/big_small]

debug = "false"

quantum = 1000000

[scheduler/pinned]

core_mask = 1

interleaving = 1

quantum = 100

[scheduler/roaming]

core_mask = 1

quantum = 1000000

[scheduler/static]

core_mask = 1

[tags]

[traceinput]

address_randomization = "false"

enabled = "false"

mirror_output = "false"

num_runs = 1

restart_apps = "false"

stop_with_first_app = "true"

121

[scheduler/roaming]

core_mask = 1

quantum = 1000000

[scheduler/static]

core_mask = 1

[tags]

[traceinput]

address_randomization = "false"

enabled = "false"

mirror_output = "false"

num_runs = 1

restart_apps = "false"

stop_with_first_app = "true"

trace_prefix = ""

type = "none"

[sampling]

enabled = "false"

[scheduler]

type = "pinned"

[scheduler/big_small]

debug = "false"

quantum = 1000000

[scheduler/pinned]

core_mask = 1

interleaving = 1

quantum = 1000000

[scheduler/roaming]

core_mask = 1

quantum = 1000000

[scheduler/static]

core_mask = 1

[tags]

[traceinput]

address_randomization = "false"

enabled = "false"

mirror_output = "false"

num_runs = 1

restart_apps = "false"

stop_with_first_app = "true"

trace_prefix = ""

analytical_model_enabled = "true"

max_list_size = 100

[queue_model/windowed_mg1]

window_size = 1000

[routine_tracer]

type = "none"

[sampling]

enabled = "false"

[scheduler]

type = "pinned"

[scheduler/big_small]

debug = "false"

quantum = 100

[scheduler/pinned]

core_mask = 1

interleaving = 1

quantum = 100

[scheduler/roaming]

core_mask = 1

quantum = 100

[scheduler/static]

core_mask = 1

[tags]

[traceinput]

address_randomization = "false"

enabled = "false"

mirror_output = "false"

num_runs = 1

restart_apps = "false"

stop_with_first_app = "true"

trace_prefix = ""

trace_prefix = ""

nDunington

[bbv]

sampling = 0

[caching_protocol]

type =

"parametric_DRAM_directory_msi"

variant = "mesi"

[clock_skew_minimization]

report = "false"

scheme = "barrier"

[clock_skew_minimization/barrier]

quantum = 100

[core]

spin_loop_detection = "false"

nGainestown

[bbv]

sampling = 0

[caching_protocol]

type =

"parametric_DRAM_directory_msi"

variant = "mesi"

[clock_skew_minimization]

report = "false"

scheme = "barrier"

[clock_skew_minimization/barrier]

quantum = 100

[core]

spin_loop_detection = "false"

nHaswell

[bbv]

sampling = 0

[caching_protocol]

type =

"parametric_DRAM_directory_msi"

variant = "mesif"

[clock_skew_minimization]

report = "false"

scheme = "barrier"

[clock_skew_minimization/barrier]

quantum = 100

[core]

spin_loop_detection = "false"

nXeon Phi

[bbv]

sampling = 0

[caching_protocol]

type =

"parametric_DRAM_directory_msi"

variant = "mesi"

[clock_skew_minimization]

report = "false"

scheme = "barrier"

[clock_skew_minimization/barrier]

quantum = 100

[core]

spin_loop_detection = "false"

122

[core/cheetah]

enabled = "false"

max_size_bits_global = 36

max_size_bits_local = 30

min_size_bits = 10

[core/hook_periodic_ins]

ins_global = 1000000

ins_per_core = 10000

[core/light_cache]

num = 0

[dvfs]

transition_latency = 2000

type = "simple"

[dvfs/simple]

cores_per_socket = 1

[fault_injection]

injector = "none"

type = "none"

[general]

enable_icache_modeling = "true"

enable_pinplay = "false"

enable_signals = "false"

enable_smc_support = "false"

enable_syscall_emulation = "true"

inst_mode_end = "fast_forward"

inst_mode_init = "cache_only"

inst_mode_output = "true"

inst_mode_roi = "detailed"

issue_memops_at_functional = "false"

magic = "true"

num_host_cores = 0

roi_script = "false"

suppress_stderr = "false"

suppress_stdout = "false"

syntax = "intel"

total_cores = 8

[hooks]

[instruction_tracer]

type = "none"

[log]

circular_log = "false"

disabled_modules = ""

enabled = "false"

enabled_modules = ""

mutex_trace = "false"

pin_codecache_trace = "false"

stack_trace = "false"

[loop_tracer]

iter_count = 36

iter_start = 0

[core/cheetah]

enabled = "false"

max_size_bits_global = 36

max_size_bits_local = 30

min_size_bits = 10

[core/hook_periodic_ins]

ins_global = 1000000

ins_per_core = 10000

[core/light_cache]

num = 0

[dvfs]

transition_latency = 2000

type = "simple"

[dvfs/simple]

cores_per_socket = 1

[fault_injection]

injector = "none"

type = "none"

[general]

enable_icache_modeling = "true"

enable_pinplay = "false"

enable_signals = "false"

enable_smc_support = "false"

enable_syscall_emulation = "true"

inst_mode_end = "fast_forward"

inst_mode_init = "cache_only"

inst_mode_output = "true"

inst_mode_roi = "detailed"

issue_memops_at_functional =

"false"

magic = "true"

num_host_cores = 0

roi_script = "false"

suppress_stderr = "false"

suppress_stdout = "false"

syntax = "intel"

total_cores = 8

[hooks]

[instruction_tracer]

type = "none"

[log]

circular_log = "false"

disabled_modules = ""

enabled = "false"

enabled_modules = ""

mutex_trace = "false"

pin_codecache_trace = "false"

stack_trace = "false"

[loop_tracer]

iter_count = 36

iter_start = 0

[core/cheetah]

enabled = "false"

max_size_bits_global = 36

max_size_bits_local = 30

min_size_bits = 10

[core/hook_periodic_ins]

ins_global = 1000000

ins_per_core = 10000

[core/light_cache]

num = 0

[dvfs]

transition_latency = 2000

type = "simple"

[dvfs/simple]

cores_per_socket = 1

[fault_injection]

injector = "none"

type = "none"

[general]

enable_icache_modeling = "true"

enable_pinplay = "false"

enable_signals = "false"

enable_smc_support = "false"

enable_syscall_emulation = "true"

inst_mode_end = "fast_forward"

inst_mode_init = "cache_only"

inst_mode_output = "true"

inst_mode_roi = "detailed"

issue_memops_at_functional =

"false"

magic = "true"

num_host_cores = 0

roi_script = "false"

suppress_stderr = "false"

suppress_stdout = "false"

syntax = "intel"

total_cores = 8

[hooks]

[instruction_tracer]

type = "none"

[log]

circular_log = "false"

disabled_modules = ""

enabled = "false"

enabled_modules = ""

mutex_trace = "false"

pin_codecache_trace = "false"

stack_trace = "false"

[loop_tracer]

iter_count = 36

[core/cheetah]

enabled = "false"

max_size_bits_global = 36

max_size_bits_local = 30

min_size_bits = 10

[core/hook_periodic_ins]

ins_global = 1000000

ins_per_core = 10000

[core/light_cache]

num = 0

[dvfs]

transition_latency = 2000

type = "simple"

[dvfs/simple]

cores_per_socket = 1

[fault_injection]

injector = "none"

type = "none"

[general]

enable_icache_modeling = "true"

enable_pinplay = "false"

enable_signals = "false"

enable_smc_support = "false"

enable_syscall_emulation = "true"

inst_mode_end = "fast_forward"

inst_mode_init = "cache_only"

inst_mode_output = "true"

inst_mode_roi = "detailed"

issue_memops_at_functional =

"false"

magic = "true"

num_host_cores = 0

roi_script = "false"

suppress_stderr = "false"

suppress_stdout = "false"

syntax = "intel"

total_cores = 8

[hooks]

[instruction_tracer]

type = "none"

[log]

circular_log = "false"

disabled_modules = ""

enabled = "false"

enabled_modules = ""

mutex_trace = "false"

pin_codecache_trace = "false"

stack_trace = "false"

[loop_tracer]

iter_count = 36

123

[network]

collect_traffic_matrix = "false"

memory_model_1 = "bus"

memory_model_2 = "bus"

system_model = "magic"

[network/bus]

bandwidth = 256

ignore_local_traffic = "false"

[network/bus/queue_model]

type = "contention"

[network/emesh_hop_by_hop]

concentration = 1

dimensions = 2

hop_latency = 2

link_bandwidth = 64

size = ""

wrap_around = "false"

[network/emesh_hop_by_hop/broadca

st_tree]

enabled = "false"

[network/emesh_hop_by_hop/queue_

model]

enabled = "true"

type = "windowed_mg1"

[network/emesh_hop_counter]

hop_latency = 2

link_bandwidth = 64

[osemu]

clock_replace = "true"

nprocs = 0

pthread_replace = "false"

time_start = 1337000000

[perf_model]

[perf_model/branch_predictor]

mispredict_penalty = 14

size = 4096

type = "pentium_m"

[perf_model/cache]

levels = 3

[perf_model/core]

core_model = "nehalem"

frequency = 3.2

logical_cpus = 1

type = "rob"

[perf_model/core/interval_timer]

dispatch_width = 4

issue_contention = "true"

issue_memops_at_dispatch = "false"

lll_cutoff = 30

[network]

collect_traffic_matrix = "false"

memory_model_1 = "bus"

memory_model_2 = "bus"

system_model = "magic"

[network/bus]

bandwidth = 256

ignore_local_traffic = "true"

[network/bus/queue_model]

type = "contention"

[network/emesh_hop_by_hop]

concentration = 1

dimensions = 2

hop_latency = 2

link_bandwidth = 64

size = ""

wrap_around = "false"

[network/emesh_hop_by_hop/broadc

ast_tree]

enabled = "false"

[network/emesh_hop_by_hop/queue_

model]

enabled = "true"

type = "windowed_mg1"

[network/emesh_hop_counter]

hop_latency = 2

link_bandwidth = 64

[osemu]

clock_replace = "true"

nprocs = 0

pthread_replace = "false"

time_start = 1337000000

[perf_model]

[perf_model/branch_predictor]

mispredict_penalty = 14

size = 4096

type = "pentium_m"

[perf_model/cache]

levels = 3

[perf_model/core]

core_model = "nehalem"

frequency = 3.2

logical_cpus = 1

type = "rob"

[perf_model/core/interval_timer]

dispatch_width = 4

issue_contention = "true"

issue_memops_at_dispatch = "false"

iter_start = 0

[network]

collect_traffic_matrix = "false"

memory_model_1 =

"emesh_hop_by_hop"

system_model = "magic"

[network/bus]

ignore_local_traffic = "true"

[network/bus/queue_model]

type = "contention"

[network/emesh_hop_by_hop]

concentration = 1

dimensions = 1

hop_latency = 2

link_bandwidth = 256

size = ""

wrap_around = "true"

[network/emesh_hop_by_hop/broadc

ast_tree]

enabled = "false"

[network/emesh_hop_by_hop/queue_

model]

enabled = "true"

type = "windowed_mg1"

[network/emesh_hop_counter]

hop_latency = 2

link_bandwidth = 64

[osemu]

clock_replace = "true"

nprocs = 0

pthread_replace = "false"

time_start = 1337000000

[perf_model]

[perf_model/branch_predictor]

mispredict_penalty = 14

size = 4096

type = "pentium_m"

[perf_model/cache]

levels = 2

[perf_model/core]

core_model = "nehalem"

frequency = 3.2

logical_cpus = 1

type = "rob"

[perf_model/core/interval_timer]

dispatch_width = 4

issue_contention = "true"

issue_memops_at_dispatch = "false"

iter_start = 0

[network]

collect_traffic_matrix = "false"

memory_model_1 =

"emesh_hop_by_hop"

system_model = "magic"

[network/bus]

ignore_local_traffic = "true"

[network/bus/queue_model]

type = "contention"

[network/emesh_hop_by_hop]

concentration = 1

dimensions = 2

hop_latency = 2

link_bandwidth = 256

size = "4:2"

wrap_around = "false"

[network/emesh_hop_by_hop/broadc

ast_tree]

enabled = "false"

[network/emesh_hop_by_hop/queue_

model]

enabled = "true"

type = "windowed_mg1"

[network/emesh_hop_counter]

hop_latency = 2

link_bandwidth = 64

[osemu]

clock_replace = "true"

nprocs = 0

pthread_replace = "false"

time_start = 1337000000

[perf_model]

[perf_model/branch_predictor]

mispredict_penalty = 14

size = 4096

type = "pentium_m"

[perf_model/cache]

levels = 2

[perf_model/core]

core_model = "nehalem"

frequency = 3.2

logical_cpus = 1

type = "rob"

[perf_model/core/interval_timer]

dispatch_width = 4

issue_contention = "true"

issue_memops_at_dispatch = "false"

lll_cutoff = 30

124

lll_dependency_granularity = 64

memory_dependency_granularity = 8

num_outstanding_loadstores = 72

window_size = 192

[perf_model/core/rob_timer]

address_disambiguation = "true"

commit_width = 4

in_order = "false"

issue_contention = "true"

issue_memops_at_issue = "true"

mlp_histogram = "false"

outstanding_loads = 72

outstanding_stores = 42

rob_repartition = "true"

rs_entries = 60

simultaneous_issue = "true"

store_to_load_forwarding = "true"

[perf_model/core/static_instruction_c

osts]

add = 1

branch = 1

delay = 0

div = 10

dynamic_misc = 1

fadd = 5

fdiv = 10

fmul = 10

fsub = 5

generic = 1

jmp = 1

mem_access = 0

mul = 10

recv = 1

spawn = 0

string = 1

sub = 1

sync = 0

tlb_miss = 0

unknown = 0

[perf_model/DRAM]

chips_per_dimm = 1

controller_positions = ""

controllers_interleaving = 8

dimms_per_controller = 4

direct_access = "false"

latency = 45

num_controllers = -1

per_controller_bandwidth = 68

type = "constant"

[perf_model/DRAM/cache]

enabled = "false"

[perf_model/DRAM/normal]

standard_deviation = 0

[perf_model/DRAM/queue_model]

enabled = "true"

lll_cutoff = 30

lll_dependency_granularity = 64

memory_dependency_granularity = 8

num_outstanding_loadstores = 72

window_size = 192

[perf_model/core/rob_timer]

address_disambiguation = "true"

commit_width = 4

in_order = "false"

issue_contention = "true"

issue_memops_at_issue = "true"

mlp_histogram = "false"

outstanding_loads = 72

outstanding_stores = 42

rob_repartition = "true"

rs_entries = 60

simultaneous_issue = "true"

store_to_load_forwarding = "true"

[perf_model/core/static_instruction_c

osts]

add = 1

branch = 1

delay = 0

div = 10

dynamic_misc = 1

fadd = 5

fdiv = 10

fmul = 10

fsub = 5

generic = 1

jmp = 1

mem_access = 0

mul = 10

recv = 1

spawn = 0

string = 1

sub = 1

sync = 0

tlb_miss = 0

unknown = 0

[perf_model/DRAM]

chips_per_dimm = 1

controller_positions = ""

controllers_interleaving = 8

dimms_per_controller = 4

direct_access = "false"

latency = 45

num_controllers = -1

per_controller_bandwidth = 68

type = "constant"

[perf_model/DRAM/cache]

enabled = "false"

[perf_model/DRAM/normal]

standard_deviation = 0

[perf_model/DRAM/queue_model]

enabled = "true"

type = "history_list"

lll_cutoff = 30

lll_dependency_granularity = 64

memory_dependency_granularity = 8

num_outstanding_loadstores = 72

window_size = 192

[perf_model/core/rob_timer]

address_disambiguation = "true"

commit_width = 4

in_order = "false"

issue_contention = "true"

issue_memops_at_issue = "true"

mlp_histogram = "false"

outstanding_loads = 72

outstanding_stores = 42

rob_repartition = "true"

rs_entries = 60

simultaneous_issue = "true"

store_to_load_forwarding = "true"

[perf_model/core/static_instruction_c

osts]

add = 1

branch = 1

delay = 0

div = 10

dynamic_misc = 1

fadd = 5

fdiv = 10

fmul = 10

fsub = 5

generic = 1

jmp = 1

mem_access = 0

mul = 10

recv = 1

spawn = 0

string = 1

sub = 1

sync = 0

tlb_miss = 0

unknown = 0

[perf_model/DRAM]

chips_per_dimm = 1

controller_positions = ""

controllers_interleaving = 8

dimms_per_controller = 4

direct_access = "false"

latency = 45

num_controllers = -1

per_controller_bandwidth = 68

type = "constant"

[perf_model/DRAM/cache]

enabled = "false"

[perf_model/DRAM/normal]

standard_deviation = 0

[perf_model/DRAM/queue_model]

enabled = "true"

type = "history_list"

lll_dependency_granularity = 64

memory_dependency_granularity = 8

num_outstanding_loadstores = 72

window_size = 192

[perf_model/core/rob_timer]

address_disambiguation = "true"

commit_width = 4

in_order = "false"

issue_contention = "true"

issue_memops_at_issue = "true"

mlp_histogram = "false"

outstanding_loads = 72

outstanding_stores = 42

rob_repartition = "true"

rs_entries = 60

simultaneous_issue = "true"

store_to_load_forwarding = "true"

[perf_model/core/static_instruction_c

osts]

add = 1

branch = 1

delay = 0

div = 10

dynamic_misc = 1

fadd = 5

fdiv = 10

fmul = 10

fsub = 5

generic = 1

jmp = 1

mem_access = 0

mul = 10

recv = 1

spawn = 0

string = 1

sub = 1

sync = 0

tlb_miss = 0

unknown = 0

[perf_model/DRAM]

chips_per_dimm = 1

controller_positions = ""

controllers_interleaving = 8

dimms_per_controller = 4

direct_access = "false"

latency = 45

num_controllers = -1

per_controller_bandwidth = 68

type = "constant"

[perf_model/DRAM/cache]

enabled = "false"

[perf_model/DRAM/normal]

standard_deviation = 0

[perf_model/DRAM/queue_model]

enabled = "true"

125

type = "history_list"

[perf_model/DRAM_directory]

associativity = 16

directory_cache_access_time = 10

directory_type = "full_map"

home_lookup_param = 6

interleaving = 1

locations = "llc"

max_hw_sharers = 64

total_entries = 1048576

[perf_model/DRAM_directory/limitle

ss]

software_trap_penalty = 200

[perf_model/dtlb]

associativity = 4

size = 64

[perf_model/fast_forward]

model = "oneipc"

[perf_model/fast_forward/oneipc]

include_branch_misprediction =

"false"

include_memory_latency = "false"

interval = 100000

[perf_model/itlb]

associativity = 4

size = 128

[perf_model/l1_dcache]

address_hash = "mask"

associativity = 8

cache_block_size = 64

cache_size = 32

data_access_time = 3

dvfs_domain = "core"

next_level_read_bandwidth = 0

outstanding_misses = 10

passthrough = "false"

perf_model_type = "parallel"

perfect = "false"

prefetcher = "none"

replacement_policy = "lru"

shared_cores = 1

tags_access_time = 1

writeback_time = 0

writethrough = 0

[perf_model/l1_dcache/atd]

[perf_model/l1_icache]

address_hash = "mask"

associativity = 8

cache_block_size = 64

cache_size = 32

coherent = "true"

data_access_time = 3

dvfs_domain = "core"

[perf_model/DRAM_directory]

associativity = 16

directory_cache_access_time = 10

directory_type = "full_map"

home_lookup_param = 6

interleaving = 1

locations = "llc"

max_hw_sharers = 64

total_entries = 1048576

[perf_model/DRAM_directory/limitle

ss]

software_trap_penalty = 200

[perf_model/dtlb]

associativity = 4

size = 64

[perf_model/fast_forward]

model = "oneipc"

[perf_model/fast_forward/oneipc]

include_branch_misprediction =

"false"

include_memory_latency = "false"

interval = 100000

[perf_model/itlb]

associativity = 4

size = 128

[perf_model/l1_dcache]

address_hash = "mask"

associativity = 8

cache_block_size = 64

cache_size = 32

data_access_time = 3

dvfs_domain = "core"

next_level_read_bandwidth = 0

outstanding_misses = 10

passthrough = "false"

perf_model_type = "parallel"

perfect = "false"

prefetcher = "none"

replacement_policy = "lru"

shared_cores = 1

tags_access_time = 1

writeback_time = 0

writethrough = 0

[perf_model/l1_dcache/atd]

[perf_model/l1_icache]

address_hash = "mask"

associativity = 8

cache_block_size = 64

cache_size = 32

coherent = "true"

data_access_time = 3

dvfs_domain = "core"

[perf_model/DRAM_directory]

associativity = 16

directory_cache_access_time = 10

directory_type = "full_map"

home_lookup_param = 6

interleaving = 1

locations = "llc"

max_hw_sharers = 64

total_entries = 1048576

[perf_model/DRAM_directory/limitle

ss]

software_trap_penalty = 200

[perf_model/dtlb]

associativity = 4

size = 64

[perf_model/fast_forward]

model = "oneipc"

[perf_model/fast_forward/oneipc]

include_branch_misprediction =

"false"

include_memory_latency = "false"

interval = 100000

[perf_model/itlb]

associativity = 4

size = 128

[perf_model/l1_dcache]

address_hash = "mask"

associativity = 8

cache_block_size = 64

cache_size = 32

data_access_time = 3

dvfs_domain = "core"

next_level_read_bandwidth = 0

outstanding_misses = 10

passthrough = "false"

perf_model_type = "parallel"

perfect = "false"

prefetcher = "none"

replacement_policy = "lru"

shared_cores = 1

tags_access_time = 1

writeback_time = 0

writethrough = 0

[perf_model/l1_dcache/atd]

[perf_model/l1_icache]

address_hash = "mask"

associativity = 8

cache_block_size = 64

cache_size = 32

coherent = "true"

data_access_time = 3

dvfs_domain = "core"

type = "history_list"

[perf_model/DRAM_directory]

associativity = 16

directory_cache_access_time = 10

directory_type = "full_map"

home_lookup_param = 6

interleaving = 1

locations = "llc"

max_hw_sharers = 64

total_entries = 1048576

[perf_model/DRAM_directory/limitle

ss]

software_trap_penalty = 200

[perf_model/dtlb]

associativity = 4

size = 64

[perf_model/fast_forward]

model ="oneipc"

[perf_model/fast_forward/oneipc]

include_branch_misprediction =

"false"

include_memory_latency = "false"

interval = 100000

[perf_model/itlb]

associativity = 4

size = 128

[perf_model/l1_dcache]

address_hash = "mask"

associativity = 8

cache_block_size = 64

cache_size = 32

data_access_time = 3

dvfs_domain = "core"

next_level_read_bandwidth = 0

outstanding_misses = 10

passthrough = "false"

perf_model_type = "parallel"

perfect = "false"

prefetcher = "none"

replacement_policy = "lru"

shared_cores = 1

tags_access_time = 1

writeback_time = 0

writethrough = 0

[perf_model/l1_dcache/atd]

[perf_model/l1_icache]

address_hash = "mask"

associativity =

cache_block_size = 64

cache_size = 32

coherent = "true"

data_access_time = 3

dvfs_domain = "core"

126

next_level_read_bandwidth = 0

passthrough = "false"

perf_model_type = "parallel"

perfect = "false"

prefetcher = "none"

replacement_policy = "lru"

shared_cores = 1

tags_access_time = 1

writeback_time = 0

writethrough = 0

[perf_model/l1_icache/atd]

[perf_model/l2_cache]

address_hash = "mask"

associativity = 8

cache_block_size = 64

cache_size = 256

data_access_time = 8

dvfs_domain = "core"

next_level_read_bandwidth = 0

passthrough = "false"

perf_model_type = "parallel"

perfect = "false"

prefetcher = "none"

replacement_policy = "lru"

shared_cores = 2

tags_access_time = 3

writeback_time = 50

writethrough = 0

[perf_model/l2_cache/atd]

[perf_model/l3_cache]

address_hash = "mask"

associativity = 16

cache_block_size = 64

cache_size = 8192

data_access_time = 96

dvfs_domain = "global"

passthrough = "false"

perf_model_type = "parallel"

perfect = "false"

prefetcher = "none"

replacement_policy = "lru"

shared_cores = 8

tags_access_time = 10

writeback_time = 0

writethrough = 0

[perf_model/l3_cache/atd]

[perf_model/l4_cache]

passthrough = "false"

perfect = "false"

[perf_model/llc]

evict_buffers = 8

[perf_model/nuca]

enabled = "false"

next_level_read_bandwidth = 0

passthrough = "false"

perf_model_type = "parallel"

perfect = "false"

prefetcher = "none"

replacement_policy = "lru"

shared_cores = 1

tags_access_time = 1

writeback_time = 0

writethrough = 0

[perf_model/l1_icache/atd]

[perf_model/l2_cache]

address_hash = "mask"

associativity = 8

cache_block_size = 64

cache_size = 256

data_access_time = 8

dvfs_domain = "core"

next_level_read_bandwidth = 0

passthrough = "false"

perf_model_type = "parallel"

perfect = "false"

prefetcher = "none"

replacement_policy = "lru"

shared_cores = 1

tags_access_time = 3

writeback_time = 50

writethrough = 0

[perf_model/l2_cache/atd]

[perf_model/l3_cache]

address_hash = "mask"

associativity = 16

cache_block_size = 64

cache_size = 8192

data_access_time = 96

dvfs_domain = "global"

passthrough = "false"

perf_model_type = "parallel"

perfect = "false"

prefetcher = "none"

replacement_policy = "lru"

shared_cores = 8

tags_access_time = 10

writeback_time = 0

writethrough = 0

[perf_model/l3_cache/atd]

[perf_model/l4_cache]

passthrough = "false"

perfect = "false"

[perf_model/llc]

evict_buffers = 8

[perf_model/nuca]

enabled = "false"

next_level_read_bandwidth = 0

passthrough = "false"

perf_model_type = "parallel"

perfect = "false"

prefetcher = "none"

replacement_policy = "lru"

shared_cores = 1

tags_access_time = 1

writeback_time = 0

writethrough = 0

[perf_model/l1_icache/atd]

[perf_model/l2_cache]

address_hash = "mask"

associativity = 8

cache_block_size = 64

cache_size = 256

data_access_time = 8

dvfs_domain = "core"

next_level_read_bandwidth = 0

passthrough = "false"

perf_model_type = "parallel"

perfect = "false"

prefetcher = "none"

replacement_policy = "lru"

shared_cores = 1

tags_access_time = 3

writeback_time = 50

writethrough = 0

[perf_model/l2_cache/atd]

[perf_model/l3_cache]

address_hash = "mask"

associativity = 16

cache_block_size = 64

cache_size = 8192

data_access_time = 30

dvfs_domain = "global"

passthrough = "false"

perf_model_type = "parallel"

perfect = "false"

prefetcher = "none"

replacement_policy = "lru"

shared_cores = 8

tags_access_time = 10

writeback_time = 0

writethrough = 0

[perf_model/l4_cache]

passthrough = "false"

perfect = "false"

[perf_model/llc]

evict_buffers = 8

[perf_model/nuca]

address_hash = "mask"

associativity = 16

bandwidth = 64

cache_size = 8192

next_level_read_bandwidth = 0

passthrough = "false"

perf_model_type = "parallel"

perfect = "false"

prefetcher = "none"

replacement_policy = "lru"

shared_cores = 1

tags_access_time = 1

writeback_time = 0

writethrough = 0

[perf_model/l1_icache/atd]

[perf_model/l2_cache]

address_hash = "mask"

associativity = 8

cache_block_size = 64

cache_size = 256

data_access_time = 8

dvfs_domain = "core"

next_level_read_bandwidth = 0

passthrough = "false"

perf_model_type = "parallel"

perfect = "false"

prefetcher = "none"

replacement_policy = "lru"

shared_cores = 1

tags_access_time = 3

writeback_time = 50

writethrough = 0

[perf_model/l2_cache/atd]

[perf_model/l3_cache]

passthrough = "false"

perfect = "false"

[perf_model/l4_cache]

passthrough = "false"

perfect = "false"

[perf_model/llc]

evict_buffers = 8

[perf_model/nuca]

enabled = "false"

[perf_model/stlb]

associativity = 4

size = 1024

[perf_model/sync]

reschedule_cost = 1000

[perf_model/tlb]

penalty = 30

penalty_parallel = "true"

[power]

technology_node = 22

vdd = 1.2

127

[perf_model/stlb]

associativity = 4

size = 1024

[perf_model/sync]

reschedule_cost = 1000

[perf_model/tlb]

penalty = 30

penalty_parallel = "true"

[power]

technology_node = 22

vdd = 1.2

[progress_trace]

enabled = "false"

filename = ""

interval = 5000

[queue_model]

[queue_model/basic]

moving_avg_enabled = "true"

moving_avg_type =

"arithmetic_mean"

moving_avg_window_size = 1024

[queue_model/history_list]

analytical_model_enabled = "true"

max_list_size = 100

[queue_model/windowed_mg1]

window_size = 1000

[routine_tracer]

type = "none"

[sampling]

enabled = "false"

[scheduler]

type = "pinned"

[scheduler/big_small]

debug = "false"

quantum = 100

[scheduler/pinned]

core_mask = 1

interleaving = 1

quantum = 100

[scheduler/roaming]

core_mask = 1

quantum = 100

[scheduler/static]

core_mask = 1

[tags]

[perf_model/stlb]

associativity = 4

size = 1024

[perf_model/sync]

reschedule_cost = 1000

[perf_model/tlb]

penalty = 30

penalty_parallel = "true"

[power]

technology_node = 22

vdd = 1.2

[progress_trace]

enabled = "false"

filename = ""

interval = 5000

[queue_model]

[queue_model/basic]

moving_avg_enabled = "true"

moving_avg_type =

"arithmetic_mean"

moving_avg_window_size = 1024

[queue_model/history_list]

analytical_model_enabled = "true"

max_list_size = 100

[queue_model/windowed_mg1]

window_size = 1000

[routine_tracer]

type = "none"

[sampling]

enabled = "false"

[scheduler]

type = "pinned"

[scheduler/big_small]

debug = "false"

quantum = 100

[scheduler/pinned]

core_mask = 1

interleaving = 1

quantum = 100

[scheduler/roaming]

core_mask = 1

quantum = 100

[scheduler/static]

core_mask = 1

[tags]

data_access_time = 30

enabled = "true"

replacement_policy = "lru"

tags_access_time = 10

[perf_model/nuca/queue_model]

enabled = "true"

type = "history_list"

[perf_model/stlb]

associativity = 4

size = 1024

[perf_model/sync]

reschedule_cost = 1000

[perf_model/tlb]

penalty = 30

penalty_parallel = "true"

[power]

technology_node = 22

vdd = 1.2

[progress_trace]

enabled = "false"

filename = ""

interval = 5000

[queue_model]

[queue_model/basic]

moving_avg_enabled = "true"

moving_avg_type =

"arithmetic_mean"

moving_avg_window_size = 1024

[queue_model/history_list]

analytical_model_enabled = "true"

max_list_size = 100

[queue_model/windowed_mg1]

window_size = 1000

[routine_tracer]

type = "none"

[sampling]

enabled = "false"

[scheduler]

type = "pinned"

[scheduler/big_small]

debug = "false"

quantum = 100

[scheduler/pinned]

core_mask = 1

interleaving = 1

quantum = 100

[progress_trace]

enabled = "false"

filename = ""

interval = 5000

[queue_model]

[queue_model/basic]

moving_avg_enabled = "true"

moving_avg_type =

"arithmetic_mean"

moving_avg_window_size = 1024

[queue_model/history_list]

analytical_model_enabled = "true"

max_list_size = 100

[queue_model/windowed_mg1]

window_size = 1000

[routine_tracer]

type = "none"

[sampling]

enabled = "false"

[scheduler]

type = "pinned"

[scheduler/big_small]

debug = "false"

quantum = 100

[scheduler/pinned]

core_mask = 1

interleaving = 1

quantum = 100

[scheduler/roaming]

core_mask = 1

quantum = 100

[scheduler/static]

core_mask = 1

[tags]

[traceinput]

address_randomization = "false"

enabled = "false"

mirror_output = "false"

num_runs = 1

restart_apps = "false"

stop_with_first_app = "true"

trace_prefix = ""

128

[traceinput]

address_randomization = "false"

enabled = "false"

mirror_output = "false"

num_runs = 1

restart_apps = "false"

stop_with_first_app = "true"

trace_prefix = ""

[traceinput]

address_randomization = "false"

enabled = "false"

mirror_output = "false"

num_runs = 1

restart_apps = "false"

stop_with_first_app = "true"

trace_prefix = ""

[scheduler/roaming]

core_mask = 1

quantum = 100

[scheduler/static]

core_mask = 1

[tags]

[traceinput]

address_randomization = "false"

enabled = "false"

mirror_output = "false"

num_runs = 1

restart_apps = "false"

stop_with_first_app = "true"

trace_prefix = ""

129

REFERENCES

Abandah, G. A. (1996), Tools for Characterizing Distributed Shared Memory Applications.

Technical Report, HPL-96-157, Hewlett-Packard Labs.

Abandah, G. A. (1997). Characterizing Shared-memory Applications: A Case Study of NAS

Parallel Benchmarks. Technical Report, HPL-97-24, Hewlett-Packard Labs.

Abandah, G. A. (1998), Reducing Communication Cost in Scalable Shared Memory Systems.

Doctoral Dissertation, University of Michigan, Ann Arbor, MI, USA.

Abandah, G. A. and Davidson, E. S. (1998), Configuration Independent Analysis for

Characterizing Shared-Memory Applications. In Proceedings of the 12th International

Parallel Processing Symposium (IPPS), Orlando, FL, USA, 30 March - 3 April 1998, 485-

491.

Abandah, Gheith A., and Edward S. Davidson. (1998), "A comparative study of cache-

coherent nonuniform memory access systems." High Performance Computing Systems and

Applications.Springer US, 1998.

Alam, S. R., Barrett, R. F., Kuehn, J. A., Roth, P. C., and Vetter, J. S. (2006), Characterization

of Scientific Workloads on Systems with Multi-Core Processors. In Proceedings of the 2006

IEEE International Symposium on Workload Characterization (IISWC), San Jose, CA,

USA, 25-27 October 2006, 225-236.

Agarwal, Virat, et al. (2010)."Scalable graph exploration on multicoreprocessors."Proceedings

of the 2010 ACM/IEEE International Conference for High Performance Computing,

Networking, Storage and Analysis. IEEE Computer Society.

Akhter, S., & Roberts, J. (2006). Multi-core programming (Vol. 33). Hillsboro: Intel press.

Al-Manasia, M., & Chaczko, Z. (2015). An Overview of Chip Multi-Processors Simulators

Technology. In Progress in Systems Engineering (pp. 877-884). Springer International

Publishing.

Ardestani, E. K., & Renau, J. (2013, February). ESESC: A fast multicore simulator using time-

based sampling. In High Performance Computer Architecture (HPCA2013), 2013 IEEE 19th

International Symposium on (pp. 448-459). IEEE.

Ardestani, E. K., Southern, G., Doung, J., Ebrahimi, E., & Renau, J. (2013). ESESC: A fast

performance, power, and temperature multicore simulator. Power (W), 8, 9.

Bhattacharjee, A. and Martonosi, M. (2009), Characterizing the TLB Behavior of Emerging

Parallel Workloads on Chip Multiprocessors. In Proceedings of the 18th International

Conference on Parallel Architectures and Compilation Techniques (PACT), Raleigh, NC,

USA, 12-16 September 2009, 29-40.

130

Bhople, S. S., & Gaikwad, M. A. (2013). Comparative study of different topologies for

network-on-chip architecture. International Journal of Computer Applications, 1-3.

Barbic, J. (2007). Multi-core architectures. Lecture Notes. [Online]. Available: http://www.

co-array. org/cafvsmpi. htm.

Binkert, N., Beckmann, B., Black, G., Reinhardt, S. K., Saidi, A., Basu, A., & Wood, D. A.

(2011). The gem5 simulator. ACM SIGARCH Computer Architecture News, 39(2), 1-7.

Bienia, C., Kumar, S., and Li, K. (2008). PARSEC vs. SPLASH: A quantitative comparison

of two multithreaded benchmark suites on chip-multiprocessors. In Proceedings of the 2008

IEEE International Symposium on Workload Characterization (IISWC), Seattle, WA,

USA, 14-16 September 2008, 47-56.

Blake, G., Dreslinski, R. G., Mudge, T., & Flautner, K. (2010, June). Evolution of thread-level

parallelism in desktop applications. In ACM SIGARCH Computer Architecture News (Vol.

38, No. 3, pp. 302-313). ACM.

Blake, Geoffrey, Ronald G. Dreslinski, and Trevor Mudge. "A survey of multi-core

processors." Signal Processing Magazine, IEEE 26.6 (2009): 26-37.

Bononi, L., Concer, N., Grammatikakis, M., Coppola, M., & Locatelli, R. (2007, August). NoC

topologies exploration based on mapping and simulation models. In Digital System Design

Architectures, Methods and Tools, 2007. DSD 2007. 10th Euromicro Conference on (pp.

543-546). IEEE.

Carlson, T. E., Heirman, W., Eyerman, S., Hur, I., & Eeckhout, L. (2014). An evaluation of

high-level mechanistic core models. ACM Transactions on Architecture and Code

Optimization (TACO), 11(3), 28.

Carlson, T. E., Heirman, W., Patil, H., & Eeckhout, L. (2014). Efficient, accurate and

reproducible simulation of multi-threaded workloads. In REPRODUCE: Workshop on

Reproducible Research Methodologies. IEEE.

Carlson, T. E., Heirman, W., Van Craeynest, K., & Eeckhout, L. (2014). Node performance

and energy analysis with the Sniper multi-core simulator. In Tools for High Performance

Computing 2013 (pp. 79-89). Springer International Publishing.

Carlson, T. E., Heirmant, W., & Eeckhout, L. (2011, November). Sniper: exploring the level

of abstraction for scalable and accurate parallel multi-core simulation. In High Performance

Computing, Networking, Storage and Analysis (SC), 2011 International Conference for

(pp. 1-12). IEEE.

Chaturvedi, N., & Gurunarayanan, S. (2013). Study of various factors affecting performance

of multi-core processors. International Journal of Distributed and Parallel Systems, 4(4),

37.

131

Cruz, Eduardo HM, et al. (2014) "Dynamic thread mapping of shared memory applications by

exploiting cache coherence protocols." Journal of Parallel and Distributed Computing 74.3

(2014): 2215-2228.

Contreras, G. and Martonosi, M. (2008), Characterizing and Improving the Performance of

Intel Threading Building Blocks. In Proceedings of the 2008 IEEE International Symposium

on Workload Characterization (IISWC), Seattle, WA, USA, 14-16 September 2008, 57-66.

DeMassas, Pierre Guironnet, and FrédéricPétrot. (2008) "Comparison of memory write

policies for NoC based multicore cache coherent systems." Design, Automation and Test in

Europe IEEE, 2008.DATE'08.

Dey, T., Wang, W., Davidson, J. W., & Soffa, M. L. (2011, April). Characterizing multi-

threaded applications based on shared-resource contention. In Performance Analysis of

Systems and Software (ISPASS), 2011 IEEE International Symposium on (pp. 76-86).

IEEE.

Ding, J. H., Chang, P. C., Hsu, W. C., & Chung, Y. C. (2011, December). PQEMU: A parallel

system emulator based on QEMU. In Parallel and Distributed Systems (ICPADS), 2011

IEEE 17th International Conference on (pp. 276-283). IEEE.

Duarte, Filipa, and Stephan Wong.(2010)"Cache-based memory copy hardware accelerator for

multicore systems." Computers, IEEE Transactions on 59.11 (2010): 1494-1507.

Dubey, P. (2005), Recognition, Mining and Synthesis Moves Computers to the Era of Tera.

Technology@Intel Magazine, 1-10.

Eeckhout, L. (2010). Computer architecture performance evaluation methods. Synthesis

Lectures on Computer Architecture, 5(1), 1-145.

Fasiku, A. I., Oyinloye, O. E., Falaki, S. O., & Adewale, O. S. (2014). Performance Evaluation

of Multicore Processors. International Journal of Engineering and Technology, 4(1).

Florea, A., Buduleci, C., Chis, R., Gellert, A., & Vintan, L. (2014, October). Enhancing the

Sniper simulator with thermal measurement. In System Theory, Control and Computing

(ICSTCC), 2014 18th International Conference (pp. 31-36). IEEE.

Furber, S. (2000). ARM System-on-Chip Architecture.

Heinrich, F., Carpen-Amarie, A., Degomme, A., Hunold, S., Legrand, A., Orgerie, A. C., &

Quinson, M. (2017). Predicting the Performance and the Power Consumption of MPI

Applications With SimGrid.

Heirman, W., Carlson, T. E., Che, S., Skadron, K., & Eeckhout, L. (2011, November). Using

cycle stacks to understand scaling bottlenecks in multi-threaded workloads. In Workload

Characterization (IISWC), 2011 IEEE International Symposium on (pp. 38-49). IEEE.

132

Heirman, W., Carlson, T., & Eeckhout, L. (2012). Sniper: scalable and accurate parallel multi-

core simulation. In 8th International Summer School on Advanced Computer

Architecture and Compilation for High-Performance and Embedded Systems (ACACES-

2012) (pp. 91-94). High-Performance and Embedded Architecture and Compilation

Network of Excellence (HiPEAC).

Heirman, W., Sarkar, S., Carlson, T. E., Hur, I., & Eeckhout, L. (2012, September). Power-

aware multi-core simulation for early design stage hardware/software co-optimization. In

Proceedings of the 21st international conference on Parallel architectures and compilation

techniques (pp. 3-12). ACM.

Ingle, V. V., Mahendra, A., & Gaikwad, C. Z. (2013). Review of mesh topology of NoC

architecture using source routing algorithms. International Journal of Computer

Applications, 30-34.

Jaleel, A., Cohn, R. S., Luk, C. K., & Jacob, B. (2008, June). CMP $ im: A Pin-based on-the-

fly multi-core cache simulator. In Proceedings of the Fourth Annual Workshop on

Modeling, Benchmarking and Simulation (MoBS), co-located with ISCA (pp. 28-36).

Jarus, M., Varrette, S., Oleksiak, A., & Bouvry, P. (2013, April). Performance evaluation and

energy efficiency of high-density HPC platforms based on Intel, AMD and ARM processors.

In European Conference on Energy Efficiency in Large Scale Distributed Systems (pp.

182-200). Springer Berlin Heidelberg.

Jha, S. S., Heirman, W., Falcón, A., Tubella, J., González, A., & Eeckhout, L. (2017). Shared

resource aware scheduling on power-constrained tiled many-core processors. Journal of

Parallel and Distributed Computing, 100, 30-41.

Johnsson, Lennart. "Multiple Caches–Shared Memory." (2013).

Kakoulli, Elena, VassosSoteriou, and Theocharis Theocharides. (2012) "Intelligent hotspot

prediction for network-on-chip-based multicore systems." Computer-Aided Design of

Integrated Circuits and Systems, IEEE Transactions on 31.3 (2012): 418-431.

Khan, Samira M., et al. (2013) "Improving multicore performance using mixed-cell cache

architecture." High Performance Computer Architecture (HPCA2013), 2013 IEEE the 19th

International Symposium on. IEEE.2013.

Krishna, T., Kwon, W. C., Subramanian, S., Chen, C. H. O., Park, S., Chandrakasan, A. P.,

and Peh, L. S. (2013), Single-Cycle Multihop Asynchronous Repeated Traversal: A SMART

Future for Reconfigurable On-Chip Networks. IEEE Computer, 46(10), 48-55.

Lecler, J. J., & Baillieu, G. (2011). Application driven network-on-chip architecture

exploration & refinement for a complex SoC. Design Automation for Embedded

Systems, 15(2), 133-158.

133

Lee, Chia Che, Weichun Xu, and Yutian Gui. "Memory Hierarchies-Effectiveness and

implementations."

Li, S., Ahn, J. H., Strong, R. D., Brockman, J. B., Tullsen, D. M., & Jouppi, N. P. (2009,

December). McPAT: an integrated power, area, and timing modeling framework for multicore

and manycore architectures. In Microarchitecture, 2009. MICRO-42. 42nd Annual

IEEE/ACM International Symposium on (pp. 469-480). IEEE.

Li, S., Ahn, J. H., Strong, R. D., Brockman, J. B., Tullsen, D. M., & Jouppi, N. P. (2013). The

McPAT framework for multicore and manycore architectures: Simultaneously modeling

power, area, and timing. ACM Transactions on Architecture and Code Optimization

(TACO), 10(1), 5.

Lis, M., Ren, P., Cho, M. H., Shim, K. S., Fletcher, C. W., Khan, O., & Devadas, S. (2011,

April). Scalable, accurate multicore simulation in the 1000-core era. In Performance Analysis

of Systems and Software (ISPASS), 2011 IEEE International Symposium on (pp. 175-

185). IEEE.

Luk, C. K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., ... & Hazelwood, K. (2005,

June). Pin: building customized program analysis tools with dynamic instrumentation. In Acm

sigplan notices (Vol. 40, No. 6, pp. 190-200). ACM.

Lustig, D., Bhattacharjee, A., & Martonosi, M. (2013). TLB improvements for chip

multiprocessors: Inter-core cooperative prefetchers and shared last-level TLBs. ACM

Transactions on Architecture and Code Optimization (TACO), 10(1), 2.

Malhotra, G., Aggarwal, P., Sagar, A., & Sarangi, S. R. (2014, March). ParTejas: A parallel

simulator for multicore processors. In Performance Analysis of Systems and Software

(ISPASS), 2014 IEEE International Symposium on (pp. 130-131). IEEE.

Martin, Milo MK, Mark D. Hill, and Daniel J. Sorin. "Why on-chip cache coherence is here to

stay." Communications of the ACM 55.7 (2012): 78-89.

Marty, M. R. (2008). Cache coherence techniques for multicore processors (Doctoral

dissertation, University of Wisconsin--Madison).

Miller, J. E., Kasture, H., Kurian, G., Gruenwald, C., Beckmann, N., Celio, C., ... & Agarwal,

A. (2010, January). Graphite: A distributed parallel simulator for multicores. In High

Performance Computer Architecture (HPCA), 2010 IEEE 16th International

Symposium on (pp. 1-12). IEEE.

Mittal, S. (2016). A Survey of Techniques for Architecting TLBs. Concurrency and

Computation: Practice and Experience, 1-35.

Mohammed, M. S., & Abandah, G. A. (2015, November). Communication characteristics of

parallel shared-memory multicore applications. In Applied Electrical Engineering and

Computing Technologies (AEECT), 2015 IEEE Jordan Conference on (pp. 1-6). IEEE.

134

Mohammed, M. S., & Abandah, G. A. (2016). Characterization of Shared-Memory Multi-Core

Applications. Jordanian Journal of Computers and Information Technology, 2(1), 37-54

Mohanty, Ram Prasad, Ashok Kumar Turuk, and BibhudattaSahoo. (2013) "Performance

evaluation of multicore processors with varied interconnect networks." Advanced

Computing, Networking and Security (ADCONS), 2013 2nd International Conference

on.IEEE, 2013.

Molka, Daniel, et al.(2009) "Memory performance and cache coherency effects on an intel

nehalem multiprocessor system." Parallel Architectures and Compilation Techniques,

2009.PACT'09.18th International Conference on.IEEE, 2009.

Molka, D., Hackenberg, D., Schöne, R., & Nagel, W. E. (2015, September). Cache coherence

protocol and memory performance of the intel haswell-ep architecture. In Parallel Processing

(ICPP), 2015 44th International Conference on (pp. 739-748). IEEE.

Natarajan, R., and Chaudhuri, M. (2013). Characterizing Multi-Threaded Applications for

Designing Sharing-Aware Last-Level Cache Replacement Policies. In Proceedings of the 2013

IEEE International Symposium on Workload Characterization (IISWC), Portland, OR,

USA, 22-24 September 2013, 1-10.

Olukotun, Kunle, et al.(1996) "The case for a single-chip multiprocessor." ACM Sigplan

Notices 31.9 (1996): 2-11.

Pan, Xiaoyue, and Bengt Jonsson.(2014) "Modeling cache coherence misses on multicores."

Performance Analysis of Systems and Software (ISPASS), 2014 IEEE International

Symposium on. IEEE, 2014.

Panourgias, Iakovos. "NUMA effects on multicore, multi socket systems." The University of

Edinburgh (2011).

Patel, A., Afram, F., & Ghose, K. (2011, March). Marss-x86: A qemu-based micro-

architectural and systems simulator for x86 multicore processors. In 1st International Qemu

Users’ Forum (pp. 29-30).

Patel, A., Afram, F., Chen, S., & Ghose, K. (2011, June). MARSS: a full system simulator for

multicore x86 CPUs. In Proceedings of the 48th Design Automation Conference (pp. 1050-

1055). ACM.

Pin -A Dynamic Binary Instrumentation Tool, Intel, Retrieved March 22, 2017, from

https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool.

Priya, B. K., Joshi, A. D., & Ramasubramanian, N. (2016, August). A Survey on Performance

of On-Chip Cache for Multi-core Architectures. In Proceedings of the International

Conference on Informatics and Analytics (p. 35). ACM.

Rahman, R. (2013). Intel® Xeon Phi™ Coprocessor Architecture and Tools: The Guide for

Application Developers. Apress.

135

Ramasubramanian, N., and N. Ammasai Gounden. "Performance of Cache Memory

Subsystems for Multi-core Architectures." arXiv preprint arXiv:1111.3056 (2011).

Ren, P., Lis, M., Cho, M. H., Shim, K. S., Fletcher, C. W., Khan, O., ... & Devadas, S. (2012).

Hornet: A cycle-level multicore simulator. Computer-Aided Design of Integrated Circuits

and Systems, IEEE Transactions on, 31(6), 890-903.

Ribeiro, Christiane Pousa. (2011) “ Contributions on memory affinity management for

hierarchical shared memory multicore platforms”.Diss. University of Grenoble.

Rico Carro, A. (2013). Raising the level of abstraction: simulation of large chip

multiprocessors running multithreaded applications.

Rolf, Trent. (2009) "Cache organization and memory management of the Intel Nehalem

computer architecture." University of Utah Computer Engineering.

Rusu, Stefan, et al. (2007) "A 65-nm dual-core multithreaded Xeon® processor with 16-MB

L3 cache." Solid-State Circuits, IEEE Journal of 42.1 (2007): 17-25.

Sanchez, D., & Kozyrakis, C. (2013, June). ZSim: fast and accurate microarchitectural

simulation of thousand-core systems. In ACM SIGARCH Computer Architecture News

(Vol. 41, No. 3, pp. 475-486). ACM.

Shukla, Surendra Kumar, C. N. S. Murthy, and P. K. Chande. (2015) "A Survey of Approaches

used in Parallel Architectures and Multicore Processors, For Performance Improvement."

Progress in Systems Engineering.Springer International Publishing, 2015.537-545.

Shukla, Surendra Kumar, C. N. S. Murthy, and P. K. Chande. (2015) "Parameter Trade-off and

Performance Analysis of Multicore Architecture." Progress in Systems Engineering.Springer

International Publishing, 2015.403-409.

Shriraman, A., Zhao, H., and Dwarkadas, S. (2013), An Application-Tailored Approach to

Hardware Cache Coherence. IEEE Computer, 46(10), 40-47.

Southern, G. (2016). Effective Performance Analysis of Modern CPUs.

Standard Performance Evaluation Corporation (SPEC), SPEC CPU2006, Retrieved March 25,

2017, from http://www.spec.org/cpu2006/.

Tendler, J. M., Dodson, J. S., Fields, J. S., Le, H., & Sinharoy, B. (2002). POWER4 system

microarchitecture. IBM Journal of Research and Development, 46(1), 5-25.

Tiwari, Anoop. (2014) "Performance comparison of cache coherence protocol on multicore

architecture. " Diss. 2014.

Ubal, Rafael, et al. (2007) "Multi2sim: A simulation framework to evaluate multicore-

multithreaded processors." Computer Architecture and High Performance Computing,

2007.SBAC-PAD 2007.19th International Symposium on. 2007.

http://www.spec.org/cpu2006/

136

Vajda, A. (2011). Multi-core and many-core processor architectures. In Programming Many-

Core Chips (pp. 9-43). Springer US.

Villanueva, J. C., Flich, J., Duato, J., Eberle, H., Gura, N., & Olesinski, W. (2009, December).

A performance evaluation of 2D-mesh, ring, and crossbar interconnects for chip multi-

processors. In Network on Chip Architectures, 2009. NoCArc 2009. 2nd International

Workshop on (pp. 51-56). IEEE.

Wang, J. (2011). Manifold: A parallel simulation framework for multicore systems (Doctoral

dissertation, GEORGIA INSTITUTE OF TECHNOLOGY).

Wang, J., Beu, J., Bheda, R., Conte, T., Dong, Z., Kersey, C., ... & Xu, P. (2014, March).

Manifold: A parallel simulation framework for multicore systems. In Performance Analysis

of Systems and Software (ISPASS), 2014 IEEE International Symposium on (pp. 106-

115). IEEE.

Woo, S. C., Ohara, M., Torrie, E., Singh, J. P., and Gupta, A. (1995), The SPLASH Programs:

Characterization and Methodological Considerations. ACM SIGARCH Computer

Architecture News, 23(2), 24-36.

X. Zhou, W. Chen, W. Zheng, (2009) “Cache Sharing Management for Performance Fairness

in Chip Multiprocessors”, in: International Conferenceon Parallel Architectures and

Compilation Techniques (PACT), 20.

137

 تعددة النوى باستعمال التحليل المعتمد على التركيبتصاميم مشهورة للحواسيب متقييم بدائل

 إعداد

 عائشة فالح المسلم بني صخر

 المشرف

 الأستاذ الدكتور غيث عبندة

 الملخص

 من يدالعد هناكو. العالي الأداء مجال في الأخيرة السنوات في متزايدة شعبية النواةمتعدد المعالج معماريات اكتسبت قدل

 على لتصميمل المتوفرة البدائل أداء بتقييم القيام المهم من ولذلك،. المشهورة التجارية النواة متعددة المعالجات من لعديدل التصاميم

 في وازيةتلما التطبيقات وتطوير ضبط في المبرمجين لمساعدة المنصات هذه على متعددةال التطبيقات توصيف أساس مؤشرات

 الدراسة هذه نم الغرض. إن المتوازية التطبيقات مع بكفاءة تعمل النوى متعددة تصاميم تطوير في المصممين ومساعدة .المستقبل

 وتحديد ية،الحال المعالجات في والضعف القوة نقاط وتحديد الجوهرية،التصاميم من والعديد النوى المتعددة التصاميم تقييم هو

مسببات يف والتحسين التحقيق من المزيد إلى تحتاج التي والمجالات المعالجات تلك على الإيجابي الأثر ذات التصميم جوانب

 .في الأنظمة ختناااتالا

 محاكاة تقدم الأطروحة هذه فإن وبالتالي،. المحاكاةعملية خلال من للغاية اد تطور النوى متعددة المعالجات تصميم إن

 عأرب لتقييم استخدام هذا المحاكيب امنا. النواة متعددةللمعالجات ال كاةمحا وهو نظام Sniper))ٍ محاكاة برمجيةباستخدام معمارية

لقد . Xeon Phi, Dnnington, Gainestown, Haswell: و هي النواة متعددة إنتل خوادممعالجات معالجات مشهورة من

 وازيةتم تطبيقات ثمانية اخترنا البحث، هذا في .النوى متعددة التصميم خيارات من واسعة مجموعة يغطوا لأنهم اختيارهم تم

 ستانفورد وتطبيقات(PARSEC) الذاكرة المشتركة الكمبيوتر لأجهزة برينستون تطبيق مستودع: مجموعتين اياسيتين من تمثيلية

نات من البيامختلفين حجمينل التصاميم مختلف مع التجارب من العديد أجريناولقد (. SPLASH2) المشتركة للذاكرة المتوازية

 .المختارة التطبيقات من كل المدخلة في

138

 وات :هيو بين أكثر من مقياس المفاضلة وتحقيقية الوااع على للحفاظ الأداء تقييمل مقاييسال من شاملة مجموعة استخدمنا

دد الدورات في عالتغير كما امنا بتحليل. الطااة واستهلاك الأساسي، الاستخدام متوسط ،عدد الأوامر في الدورة متوسط التنفيذ،

 .المستهلك لكل أمر مع الزمن

جم في الح مماثلة مكونات مع التكنولوجي المستوى نفس على النوى متعدد تصميم بدائل وضع عادلة تم مقارنة عملول

 لهرميا التسلسل تنظيم مثل الرئيسية المعمارية الميزات بسبب الأداء اختلافات عرضلانها ت أفضل المقارنةهذه و. والسرعة

 المكونات. وأحجام وسرع الحالية التكنولوجيا من بدلا ،المستخدمة والبروتوكولات الربط طوبولوجيا وشبكة للذاكرة،

 مللي Haswell (69هو من حيث سرعة التنفيذالمتوازية الحوسبة مع أفضل بشكل يتصرف تصميم أفضل أن جدنالقد وو

 ،ةمشترك L3 ذاكرة وجودو L2 خاصة بسبب اشتماله على ذاكرة سريعة ذلكيرجع و. IPC) 1.39) النظام إنتاج ومعدل(ثانية

 (.واط 52.3)ا نسبي كبيرة طااة يستهلك فإنه أخرى، ناحية من .الحلقية بسبب سرعة التواصل بين النوى العائد لسرعة الشبكةو

 متطلبات تلبية على اادرة تعد لم Gainestownو Dunningtonمثل المسارب على القائمة تصاميمال أن إلى أيضا وخلصنا

المتوازية تنفيذ التطبيقات في التواصل والتزامن الضغط الناجم عن مع التعامل في الواضح الضعف بسببالجديدة العمل أعباء

 على ثانية، مللي 73 و ثانية مللي 74 على متوسط زمن تنفيذ يساوي nDunningtonو nGainestownولقد حصل الحديثة.

 واط 50.14 تساوي طااة انكيستهل امأنه كما. التوالي على ،IPC 1.31 و IPC 1.33 يساوي الإنتاجية متوسط التوالي. وعلى

 .التوالي على المتوسط، في واط 49.99 و

 MESI بروتوكولات ايم عم النوى بالمقارنة متعددة التصميم بدائل أداء MESIFبروتوكول يعززعرضنا كيف وأخيرا،

 .1.027x فقد حصل على تسريع يساوي nGainestown. أما 1.028xحصل على تسريع بمقدار nDunnington .القديمة

nXeon Phi حصل على تسريع بمقدارx1.01 أما .nHaswell فلم يستفد من بروتوكولMESIF وحدة وذلك لأنه يتكون من

 لكل النوى. L3واحدة فيها ذاكرة مشتركة

