
 HYBRID APPROACH FOR AUTOMATIC ARABIC

TEXT DIACRITIZATION USING RECURRENT

NEURAL NETWORKS

By

Saba Amin Al-Qudah

Supervisor

Dr. Gheith Ali Abandah, Prof

This Thesis was submitted in Partial Fulfillment of the Requirements for

the Master’s Degree of Science in Computer Engineering and Networks

School of Graduate Studies

The University of Jordan

 ii

Dec, 2016

COMMITTEE DECISION

This Thesis (Hybrid Approach for Automatic Arabic Text Diacritization using

Recurrent Neural Networks) was successfully defended and approved on -------------

Examination Committee Signature

Prof. Gheith Abandah, (Supervisor) -----------------------------

Prof. of Computer Architecture

Dr. Iyad Jafar, (Member) -----------------------------

Assoc. Prof. of Digital Image Processing

Dr. Omar Al-Kadi (Member) -----------------------------

Assoc. Prof. of Pattern Recognition

Dr. Ali Al-Haj (Member) -----------------------------

Assoc. Prof. of Digital Image Processing

(Princess Sumaya University for Technology)

 iii

DEDICATION

To my parents for their prayers and endless support

To my supporter and my beloved Mutaz

To my little girls Kindah and Ellen

To auntie Um Motasem

 iv

ACKNOWLEDGEMENT

I would like to thank my supervisor Prof. Gheith Abandah for his advices, suggestions,

help and patience during our work on this thesis. I highly appreciate his efforts. He is an

excellent mentor and he taught me how to do research correctly. My gratitude is beyond

words.

I am grateful to Prof. Nizar Habash and Eng. Anas Shahrour for their help and cooperation

while we were working on the data preparation stage.

 v

List of Contents

Subject Page

 Committee Decision ……………..…………………………………... ii

 Dedication …………………….…………………………................... iii

 Acknowledgement ………………..……………………….................. iv

 List of Contents ……………….…………………………................... v

 List of Figures ……………….………………………………………. viii

 List of Tables ………………..…………………………….................. x

 List of Abbreviations ………..…………………………….................. xi

 Abstract (in English) ……….……………………………................... xii

Chapter I Introduction 1

1.1 Arabic Diacritics………….………………………………………….. 1

1.2 Diacritization Types: Lexemic and Inflectional.………..……………. 2

1.3 Importance of Arabic Text Diacritization….………….…................... 3

1.4 Research Objectives and Contributions …………….…...................... 4

1.5 Thesis Outline ……..………………………………….……………... 7

Chapter II Literature Review 8

2.1 Rule-based Approaches ……………………….…………………….. 8

2.2 Statistical Approaches …………………..…..…..…………………… 9

2.3 Hybrid Approaches …………………………….……………………. 10

Chapter III Technologies Used 17

3.1 Recurrent Neural Networks (RNN)….………..……………………… 17

 3.1.1 Feedforward Neural Network vs. Recurrent Neural Networks…..….. 18

 3.1.2 Long-Short Term Memory Networks (LSTM)..………………….….. 21

 3.1.3 Bidirectional Recurrent Neural Networks (BRNN)……………..….... 22

 3.1.4 Deep Recurrent Neural Network………………………………..……. 24

3.2 Some of The Most Important Arabic Morphological Analyzer……..... 26

 3.2.1 Linguistic Features of The Morphological Analyzer………………… 26

 vi

 3.2.2 Buckwalter Arabic Morphological Analyzer (BAMA)….................... 27

 3.2.3 Morphological Analysis and Disambiguation of Arabic (MADA)…... 28

 3.2.4 MADAMIRA (combines MADA and AMIRA toolkits)…………..… 28

3.3 GPU, CUDA and CURRENNT……………………………………… 30

 3.3.1 Graphics Processing Units (GPU) and Compute Unified Device

Architecture (CUDA)…………………………………………………

30

 3.3.2 CUDA RecurREnt Neural Network (CURRENNT)………………..... 30

Chapter IV Methodology 35

4.1 Introduction ……………………………………….…………………. 35

4.2 Data …………………………..…………………….………………... 38

4.3 Data Pre-processing …………………………………..……………... 39

 4.3.1 Data Encoding…………………………………………..……………. 39

 4.3.2 Using MADAMIRA ……………………………………..………....... 41

 4.3.3 Text Correction………………………………………….…………… 45

 4.3.3.1 Letter Correction ……………………………...................................... 45

 4.3.3.2 Target Normalization ………………………....................................... 46

4.4 Sequence Transcription ………………………………………..…….. 46

4.5 RNN Training Parameters………………………................................. 47

4.6 Data Post-processing……………………………................................. 47

 4.6.1 Letter Correction……………………………....................................... 47

 4.6.2 Sukun Correction……………………………....................................... 48

 4.6.3 Fatha Correction……….……………………....................................... 48

 4.6.4 Dictionary Correction……………………………................................ 48

Chapter V Experiments and Results 50

5.1 Accuracy Evaluation……………………………………….………… 50

5.2 RNN Tuning Experiments.……………………………………..……. 51

 5.2.1 Selection of Confidence Degree………………………………..…….. 51

 5.2.2 Network Size.…………………………………………………..…….. 54

 5.2.3 Training and Testing Time………………………………….….…….. 56

5.3 Experiments Results ...…………………………………...................... 58

 vii

5.4 Post-Processing Contribution …………………………………..……. 59

5.5 Discussion ………………..…………………………………….……. 60

 5.5.1 Comparison with State-Of-Art Systems.………………….…….….... 62

 5.5.2 Comparison between our Hybrid Approach and Arabiyat (2015)

Hybrid Approach…………………………………………………...…

64

 5.5.3 Acceleration Using CURRENNT………………………….………… 68

 5.5.4 Error Analysis……………………………………………….……….. 68

Chapter VI Conclusion and Future Work 72

 References 75

 Appendix A 82

 Abstract in Arabic 84

 viii

List of Figures

Number Figure Caption Page

1 An example on the importance of inflectional diacritics..… 3

2 A simple feed forward neural network…………………...... 19

3 A simple recurrent network………………………………... 20

4 Long short-term memory cell……………………………… 21

5 Bidirectional recurrent neural network……………………. 23

6 Deep RNN…………………………………………………. 24

7 Deep bidirectional LSTM architecture…………………….. 25

8 BAMA solutions for the word 28 .………………………يكتبون

9 The MADAMIRA online web displays all the

morphological features of Arabic word سياسه (seyassah)…..

29

10 The schematic diagram of the proposed diacritization

system (Training phase)……………………………………

36

11 The schematic diagram of the proposed diacritization

system (Production phase)…………………………………

37

12 An example of MADAMIRA output file………………….. 42

13 An example of MADAMIRA tokenization output file……. 43

14 DER values of the partial experiment that has two hidden

layers of 250 neurons ……………………………………...

52

15 WER values of the partial experiment that has two hidden

layers of 250 neurons ……………………………………...

53

16 DER values of the hybrid experiment that has two hidden

layers of 250 neurons ……………………………………...

53

17 WER values of the hybrid experiment that has two hidden

layers of 250 neurons …………………………………….

54

18
Effect of changing number of hidden layers on the partial

55

 ix

experiment of 60% confidence degree ……………………

19 Effect of changing number of hidden layers on the hybrid

experiment of 60% confidence degree and each hidden

layer consist of 250 nodes …………………………………

56

20 Training time of the four experiments when we change the

number of layers from 1 layer to 4 layers …………………

57

21 Testing time of the four experiments when we change the

number of layers from 1 layer to 4 layers………………….

57

22 DER results of the four experiments ……………………… 61

23 WER results of the four experiments……………………… 61

24 RNN classification error rates for all experiments………... 62

25 WER values of our hybrid approach and Arabiyat (2015)

hybrid approach…………………………………………….

67

26 DER values of our hybrid approach and Arabiyat (2015)

hybrid approach…………………………………………….

67

27 The effect of shadda diacritic on classification error……… 71

 x

List of Tables

Number Table Caption Page

1 The basic Arabic diacritization marks …………….......... 2

2 The possible diacritized forms of the word (كتب)………... 2

3 GPU specification of NVIDIA GTX 580……………….. 34

4 Statistics of LDC ATB3…………………………………. 38

5 The binary bit codes and hexadecimal Unicode of Arabic

diacritics…………………………………………….……

40

6 Diacritization results of the four experiments using LDC

ATB3 corpus…………………………………………….

58

7 The effect of the post-processing techniques on DER

reduction……………………………………………….…

59

8 Comparison between our diacritization system results

with related works………………………………………..

63

9 Comparison between our hybrid approach and Arabiyat

(2015) hybrid approach…………………………………..

65

10 Comparison between the two libraries using the training

time……………………………………………………….

68

11 The distribution of word errors for all experiments……... 69

12 Sample sequences that have errors……………………..... 70

 xi

List of Abbreviations

ASR Automatic Speech Recognition

BAMA Buckwalter Arabic Morphological Analyzer

BPC Base Phrase Chunker

BPTT Back Propagation Through Time

CA Classical Arabic

CUDA Compute Unified Device Architecture

DER Diacritic Error Rate

DNN Deep Neural Networks

DP Dynamic Programming

DRNN Deep Recurrent Neural Network

ECA Egyptian Colloquial Arabic

FFN Feedforward Networks

GPU Graphics Processing Units

HMM Hidden Markov Models

LDC ATB3 Linguistic Data Consortium’s Arabic Treebank Part 3

LSTM Long Short-Term Memory

MADA Morphological Analysis and Disambiguation of Arabic

MSA Modern Standard Arabic

NLP Natural Language Processing

POS Part of Speech

RNN Recurrent Neural Networks

SVM Support Vector Machines

TTS Text-To-Speech

WER Word Error Rate

https://en.wikipedia.org/wiki/Linguistic_Data_Consortium

 xii

HYBRID APPROACH FOR AUTOMATIC ARABIC TEXT

DIACRITIZATION USING RECURRENT NEURAL NETWORKS

By

Saba Amin Al-Qudah

Supervisor

Dr. Gheith Ali Abandah, Prof

ABSTRACT

Arabic is a Semitic language and one of the oldest languages in the world. In this

language, the letters of the same word can have many different diacritization marks and

this leads to different words with different meanings. Also, the lack of these diacritics

makes this language ambiguous for reading by non-native speakers and for processing by

Arabic automated system such as Automatic Speech Recognition (ASR), and Text-to-

speech (TTS).

Adding diacritics to Arabic text is an important step for Arabic Natural Language

Processing (NLP) applications and many researchers have developed tools to automatically

diacritize Arabic text because performing diacritization manually is inefficient and time

consuming.

Many methods in the literature have been developed to solve the automatic

diacritization problems using rule-based, statistical, and hybrid methods. The hybrid

approach combines rule based approach with statistical approach in order to exploit the

advantages of these two approaches and get better results.

One of the most important statistical approaches that are used to solve the

diacritization problem is the sequence transcription approach that uses Recurrent Neural

Networks (RNN) of deep bidirectional Long Short Term Memory (LSTM) architecture. In

this thesis, we propose a hybrid approach to automatically diacritize Arabic text. We use a

full morphological and syntactical analyzer called MADAMIRA which is one of the most

popular tools in this field and we investigate the use of Compute Unified Device

Architecture (CUDA) RecurREnt Neural Network (CURRENNT) library for solving a

sequence labeling problems and to speedup RNN training. To our knowledge,

CURRENNT is considered as the first publicly-available tool that has parallel

implementation of deep bidirectional LSTM RNN architecture. Also, we study the effect of

adding linguistic information to the input sequences of RNN at three different levels.

Our proposed system achieves state-of-the-art results over the best reported hybrid

system. Using LDC’s Arabic Treebank Part 3 corpus, we achieve a diacritic error rate of

2.39%, and a word error rate of 8.4%. When the case ending diacritics were not included,

we achieve a diacritic error rate of 0.78%, and a word error rate of 2.3%. This approach

reduces the diacritic error rate by 34% and the word error rate by 26% over the best

published results.

1

CHAPTER I

Introduction

This chapter demonstrates Arabic diacritics, diacritization types, importance of

Arabic text diacritization, research objectives and contributions and thesis outline.

1.1 Arabic Diacritics

The Arabic language consists of 28 basic alphabet letters and eight basic

diacritization marks. Diacritization marks insert phonetic information to Arabic

alphabet letters. The location of these marks could be above or below the letter.

Diacritics can be classified into three categories: short vowels, nunation, and

syllabification marks (Azmi and Almajed, 2013). Table 1 represents the eight basic

diacritization marks. The first category consists of three short vowels that could be

inserted on any constant of the word. The second category consists of three nunation

diacritics or double case ending diacritics that only inserted on the last letter of the

word. The third category consists of shaddah and sukon. Shaddah or germination

diacritic can be joined with any other diacritics and is pronounced like consonant

doubling. Sukon indicates that the letter does not have vowels. The fifth column

represents Buckwalter transliteration, which is the standard encoding that represents

Arabic characters and diacritics for computers (Habash, et al., 2007). For the

Buckwalter transliteration codes of Arabic characters and diacritics, see appendix A.

Arabic language has two forms: classical and modern. The Classical Arabic

(CA) denotes the pure language that is used in literary texts and Quran. The Modern

Standard Arabic (MSA) is based on CA but with the addition of recent words to meet

modern needs and challenges (Farghaly and Shaalan, 2009).

2

Table 1. The basic Arabic diacritization marks

Diacritic Types Diacritic name Diacritic shape Pronunciation
Buckwalter

Transliteration

Short vowels
Fatha َ /a/ A
Damma َ /u/ U

Kasra َ /i/ I

Nunation

(Double case ending)

Tanween fath َ /an/ F

Tanween damm َ /un/ N

Tanween kasr َ /in/ K

Syllabification marks
Shaddah َ consonant

doubling

doubling

~

Sukon َ vowel absence O

1.2 Diacritization Types: Lexemic and Inflectional

Arabic is highly inflective and derivative language so that the same Arabic word

can have different meanings and pronunciations depending on the related diacritics. The

diacritics can be classified into two kinds (Habash and Rambow, 2007): lexemic

diacritics and inflectional diacritics. Lexemic diacritics differentiate between lexemes

that have same spelling, as shown in Table 2. The form (كتب) has nine possible

diacritized dictionary forms and these lexemes have different meanings depending on

the diacritics (Kirchhoff, et al., 2002). The first word (ت ب is an active verb and the (ك

second word (ت ب ت ب) is passive verb and third word (ك is a noun and so on. These (ك

lexemic diacritics are morphology-dependent.

Table 2. The possible diacritized forms of the word (كتب)

3

Inflectional diacritics differentiate between different syntactic rules of the same

lexeme and usually appears on the final consonant of the word. These diacritics are

syntax-dependent. For example, Figure 1 represents the importance of the correct

diacritization. In the first example, the syntactic diacritic of the word اهيم ر ب إ is “Fatha”

since its “object” in the parsing tree, while in the second example the same word اهيم ر ب إ

has “Damma” since its “subject” in the parsing tree. This example shows that incorrect

syntactic diacritics on the last consonant of the words (ابراهيم) and (الناس) completely

changed the meaning.

Figure 1. An example on the importance of inflectional diacritics

1.3 Importance of Arabic Text Diacritization

Arabic is the language of Quran and currently considered as the fourth most

widely spoken language in the world. It is the official language of 58 countries, and the

estimated number of Arabic speakers is 267 million (Lewis et al., 2016).

Diacritization is considered as one of the Arabic Natural Language Processing

(NLP) applications in which researchers develop tools to diacritize the texts

automatically because performing diacritization manually is inefficient and time

consuming. However, Native speakers are able to restore diacritics of script based on

the context and their understanding of the grammar and the lexicon of Arabic. The lack

of diacritics results in a confusions for beginning readers, sufferers of dyslexia, and non-

native speakers. Also, applications as Automatic Speech Recognition (ASR) and Text-

to-speech (TTS) need diacritization to correctly process their data since these systems

will not be able to know the exact meaning of undiacritized words. Moreover, machine

 Ibrahim is afraid from peopleَََََََّّّّّّّاهيم َّر َّب َّإ ََّّاس َّالن َّأرهب

 People are afraid from Ibrahim اهيم َّر َّب َّإ َّ اس َّالن َّأرهب

4

translation from and to Arabic needs diacritization to obtain the correct translation.

Another reason for the diacritization is the information retrieval, when we search for an

Arabic word we will have many irrelevant words in the search results (Azim and

Almajed, 2013).

We note that most of Arabic text is written without diacritization marks and this

leads in some times to ambiguity even for the natives because they need to consider the

meaning through the context. Adding diacritization marks will remove the ambiguity of

Arabic sentences (Azim and Almajed, 2013).

Making diacritization system for Arabic is a complicated task because Arabic

language is highly inflectional and derivational. Text without diacritics can result in

considerable ambiguity, for example: (ق د ق د ,”contract“ →ع قَّد ,”necklace“ → ع → ع

“complicate”) (Said, et al., 2013). Also, the orthographic representation of the Arabic

word is not enough to correctly pronounce the word so we need diacritics.

For all the reasons that we discussed above, we identified the importance of

automatically adding diacritization marks to Arabic text.

1.4 Research Objectives and Contributions

The use of neural networks in this field can be considered as an emulation of the

brain behavior of a native speaker when attempting to add diacritics to undiacritized

text. The human brain is a Recurrent Neural Network (RNN) i.e. a network of neurons

with feedback connections that can learn many tasks. This was our motivation to work

on a novel approach that uses RNN to automatically adding diacritization marks to

Arabic text (Pineda, 1987).

We can use RNN to make sequence transcription task and to map the input

5

sequences to output sequences. The network is trained under supervised learning where

we give the input sequence, which is the undiacritized Arabic text, and the target

sequence, which is the fully diacritized Arabic text. Once this is done, we can use RNN

for diacritizing undiacritized text.

Using RNN approach is more powerful and biologically more reasonable than

other statistical approaches such as Hidden Markov Model (HMM) (Gal, 2002) because

it is unable to deal with complex memories of previous input, Feedforward Networks

(FFN) or Support Vector Machines (SVM) (Burges, 1998) because they depend only on

the current input. However, RNN benefits from the contextual information of the input

sequences and it achieves a wonderful results when it’s used in a sequence problems

such as handwriting recognition (Abandah, et al., 2014) and speech recognition (Graves,

et al., 2013).

Our novel approach is to use RNN to add the missing diacritics to Arabic text.

The beginning of this work was when Abandah et al. (2015) proposed statistical

approach that uses RNN to automatically add diacritics to Arabic text. To the best of

our knowledge, this approach was the most accurate statistical approach reported. Then,

they proposed a hybrid system (Arabiyat, 2015) that consists of a rule based approach,

which uses Buckwalter Arabic Morphological Analyzer (BAMA) (Buckwalter, 2004),

and the statistical approach that uses RNNLIB library (Graves, 2008). They achieved

about 24% Diacritic Error Rate (DER) improvement and 15% Word Error Rate (WER)

improvement over the best reported hybrid approach (DER and WER metrics are

explained in details in Section 5.1). They used BAMA morphological analyzer but it did

not implement the morphological segmentation in its best capability so we need more

better rule based diacritization and tokenization approach and also RNNLIB library is

slow so we can’t train large data.

6

 The main contribution of this thesis is to develop a hybrid system that improves

partial diacritization and tokenization of data by using full morphological and

syntactical analyzer like MADAMIRA morphological analyzer (Pasha, et al., 2014).

There was cooperation with Prof. Nizar Habash (Nizar Habash's Home Page) and he

gave us the required data after running MADAMIRA tool on it and also we used

Compute Unified Device Architecture (CUDA) RecurREnt Neural Network

(CURRENNT) library (Weninger, et al., 2015) instead of RNNLIB library since this

library is fast because it uses CUDA and Graphics Processing Units (GPU).

The objectives and contributions of this project are summarized as follows:

1. Investigating the use of CURRENNT library, which is a recurrent neural

network library for sequence labeling problems that supports GPUs

through NVIDIA’s CUDA, to automatically diacritize Arabic texts.

2. Building an accurate system to add all Arabic diacritics (fatha, kasra,

damma, the three tanweens, shadda, and the sukoon) and comparing it

with the best published results in this field.

3. Improving diacritization accuracy by combining rule based approach,

which applies the full morphological and syntactical analysis, with

CURRENNT statistical approach. And then using post-processing

techniques to correct some issues of CURRENNT output.

Finally, we think that this thesis is an important addition to the field of automatic

diacritization of Arabic text and provides a good approach for computer support of

Arabic language.

7

1.5 Thesis Outline

The rest of this thesis is structured as follows. Chapter 2 represents a literature

review of previous related approaches that were developed to solve diacritization

problem. Chapter 3 explains the technologies used in our work including RNN that we

used to solve diacritization problem. Also, MADAMIRA tool is described which is

widely used and mentioned in previous works. Chapter 4 describes the methodology of

our work which includes our workload, data processing, sequence transcription, and

RNN training parameters. Chapter 5 describes the experiments that we do in this work,

results of our proposed system, and a comparison with state-of-the-art systems is made.

Finally, chapter 6 shows conclusions and suggestions for future work.

8

CHAPTER II

Literature Review

Automatic diacritization of Arabic text is an active area in the current NLP

researches (Hifny, 2012). Most NLP applications, such as ASR, need fully diacritized

texts for training phase. Also, the lack of diacritics will produce many irrelevant words

and each word will have different meaning and different pronunciation. Even though,

there are many diacritization techniques used to handle this problem, there still a room

to enhance the accuracy of adding diacritics to Arabic words (Zayyan, et al., 2016). The

techniques used in solving diacritization problem can be classified into three

approaches: rule-based, statistical, and hybrid approaches (Azmi and Almajed, 2013).

The following sections review the best approaches that were used in this field.

2.1 Rule-based Approaches

A rule-based approach was the first approach that used to solve this problem. It

depends on morphological analyzers, dictionaries, and grammar rules. This approach

gives good results when a strong linguistic knowledge is available (Azmi and Almajed,

2013).

 El-Sadany and Hashish (1988) used a dictionary, analyzer, and a grammar

module that consists of morphophonemic and morphographemic rules. El-lmam (2004)

proposed a system that transcribes a letter to sound based on a set of Arabic dependent

rules with a help of dictionary that consists of exception words. Shaalan (2010)

proposed a tool that consists of Arabic morphological and syntax analyzer and this

morphological analyzer depends on the augmented transition network technique to

determine context relations between stems and affixes (prefix, suffix or both). However,

the rule based approaches suffered from difficulty in dealing with up-to-date rules, the

9

existence of Arabic dialects, and new words are always appeared in living language

(Azmi and Almajed, 2013).

2.2 Statistical Approaches

This approach doesn’t need any linguistic knowledge or use of tools like

morphological analyzer but needs a large and fully diacritized dataset (Azmi and

Almajed, 2013).

Gal in (Gal, 2002) proposed a statistical approach that used the HMM to restore

short vowel diacritics of Arabic texts. It depends on the contextual correlation between

words and consists of hidden states which represent the diacritized words of the training

corpus, and for each state there is observation which represents the undiacritized form

of the word that exists in this state. Then Viterbi algorithm is used to find the most

suitable diacritics for these observations. This model achieved a word accuracy of 86%.

The errors of this model caused by the small corpus size since it used Qur’an as corpora.

Kirchhoff et al. (2002) focused on developing an automatic diacritizer for

dialectal Arabic speech (Arabic oral conversations) since most of ASR focused on

MSA. They used the LDC CallHome of Egyptian Colloquial Arabic (ECA) dialectal

corpus. This corpus contains script-based transcription (without diacritic) and

Romanized-based transcription (with diacritics). The result showed that training on

Romanized transcription is significantly better than training on script transcription.

They notice that MSA and ECA are completely different and the using of out-of-corpus

text data on ECA was unsuccessful. They obtained a WER ranged from 9% to 28% on

MSA text depending on whether case ending is including or not and a WER of 48% on

ECA text.

10

Hifny (2012) proposed diacritization system that uses statistical n-gram language

model, Dynamic Programming (DP) algorithm, and smoothing techniques. N-gram

language model is used to add probability score for the diacritized Arabic word

sentences of the undiacritized input sentence to distinguish these diacritized sentences.

Dynamic programming algorithm is used to find the most possible diacritized sentence.

Different smoothing techniques are used to solve the problem of unseen n-grams in the

training data. Hifny used trigram language model and this didn’t handle long linguistic

dependency. This system was trained and tested on Tashkeela corpus which contains

Islamic religious heritage books (Zerrouki, 2011) and achieved a WER of 8.9% when

case endings were included and WER of 3.4% without case endings.

Abandah et al. (2015) proposed diacritization system that uses RNN statistical

approach and depends on the deep bidirectional long short term memory architecture in

order to deal with dependency between the words in long sentences and in both

directions. It uses RNN sequence transcription to automatically add diacritics to Arabic

text. To the best of our knowledge, this approach is the most accurate statistical

approach reported. Also, it outperforms the most important hybrid approaches.

However, the using of RNN in this field has never been proposed before. They achieved

on LDC’s Arabic Treebank Part 3 (LDC ATB3) corpus (Maamouri et al., 2004), a WER

of 9.07% and a DER of 2.72% respectively and achieved on Tashkeela corpus, a WER

of 5.82% and a DER of 2.09% respectively. This improvement in accuracy was

achieved because of the big size of this corpus.

2.3 Hybrid approaches

This approach combines rule based approach with statistical approach. Vergyri

and Kirchhoff (2004) examined the benefits of using several knowledge sources

(acoustic, morphological, and contextual) to automatically diacritize Arabic texts and

11

the effect of their combination. Using BAMA all possible diacritization and

morphological analyses of a given Arabic text were produced, then they trained

unsupervised tagger to assign probability to all diacritized forms produced by this

analyzer, and then the Expectation Maximization (EM) algorithm is used to learn the

tag sequences. They used two different corpora, the FBIS corpus of MSA speech and

the LDC CallHome ECA corpus because they examined the use of Arabic dialectal

speech and MSA. They did not model the shadda diacritic and achieved WER of 27.3%

and diacritization error rate of 11.5% when case endings were included

Nellken and Shieber (2005) proposed a new algorithm to restore diacritics using

a probabilistic model defined as weighted finite state transducers and simple

morphological model. Their basic model consists of cascade transducers. The Language

Model (LM) learns the weights from diacritized words of the training set and used it to

select the most probable undiacritized word sequence. The Spelling (SP) transducer

divides the word into its component letters for the following transducer that operate on

the letter based. The Diacritic Drop (DD) replaces diacritics with the empty string. The

final transducer unknowns (UNK) to deal with the words that appeared in test input and

were not existed in the training data. Then Viterbi decoding used to restore diacritics.

Independence of the transducers was the problem of this approach. This system was

trained and tested on LDC’s Arabic Treebank of diacritized news stories (Part 2) and

achieved a WER of 23.61% and a DER of 12.79% when case endings were included

and without case endings, the results were 7.33% and 6.35% respectively.

Zitouni et al. (2006) proposed diacritization system that uses statistical model

based on the maximum entropy framework which allows the system to used different

sources of information such as lexical, segment-based, and Part of Speech (POS)

features. Because they don’t have a morphological lexicon, the segment based features

12

were generated by statistical Arabic morphological analysis using WFST approach and

also the POS features were generated by a parsing model that depends on the maximum

entropy. All these features are then combined in the maximum entropy framework to

restore the missing diacritics. This system doesn’t exploit long-range context

dependencies since maximum entropy framework deals with each state independent of

other states. Also it was trained and tested on the LDC ATB3 and achieved a WER of

18% and a DER of 5.5% when case endings were included and without case endings,

the results were 7.9% and 2.5% respectively.

Habash and Rambow (2007) proposed diacritization system that consists of two

subsystems: Morphological Analysis and Disambiguation of Arabic (MADA), and the

standard n-gram language model. The MADA subsystem uses BAMA morphological

analyzer to get all possible analyses of a word, then fourteen SVM predictors are used

to narrow this list. The standard n-gram language model used to select one solution

from the narrowed list. The best results they reported were by using trigram lexeme

model. This approach is limited by depending on trigram language models that don’t

exploit long-range context dependencies. Also it achieved on LDC ATB3, a WER of

14.9% and a DER of 4.8% when case endings were included and without case endings,

the results were 5.5% and 2.2% respectively.

Rashwan et al. (2011) proposed diacritization system that consists of

unfactorized system (based on dictionary) and factorized system (based on

morphological analyzer). This approach consists of two phases: off-line and on-line

phases. In the off-line phase, a dictionary model and a statistical language model are

built. In the on-line phase, the input words are searched in the dictionary. If the word is

found, the dictionary will retrieve all its diacritized forms (lattice). This lattice is

disambiguated to predict the most likely diacritics via A* lattice search algorithm and n-

13

gram probability estimation. Then it concatenated with the words that were not founded

in the dictionary and passed to the factorizing module. This module factorized the

words that were undiacritized in the first layer into its possible morphological

components (prefix, root, pattern and suffix), and again uses n-gram probability

estimation and A* lattice search algorithm. This approach is limited by depending on

trigram language models to determine the most probable diacritics. Also this system

achieved on LDC ATB3 v1.0, a WER of 12.5% and a DER of 3.8% when case endings

were included and without case endings, the results were 3.1% and 1.2% respectively.

Said et al. (2013) proposed diacritization system that consists of three phases. In

first phase, they used automatic corrector and tokenizer. In second phase, they used

statistical and rule based analyzer to generate all possible morphological analysis for

each input word. In third phase, they used POS tagger, which use HMM algorithm, to

select the most suitable analysis based on context and to solve the ambiguity of last

letter diacritic. Also, they used out of vocabulary diacritizer to diacritize the words that

are not analyzed by the morphological analyzer like foreign names. This system

achieved on LDC ATB3, a WER of 11.4% and a DER of 3.6% when case endings were

included and without case endings, the results were 4.4% and 1.6% respectively.

Shahrour et al. (2015) proposed diacritization system that combines syntactic

analysis with morphological tagging. Syntactic analysis helps in dealing with syntactic

case diacritics on words final and morphological tagging worked on lexical diacritics

that exist on the word stems. This approach shows the importance of using automatic

syntactic analysis in improving morphological analysis and word diacritization, since it

provides better prediction of case and state features using statistical parsing and manual

syntactic rules. They used the Penn Arabic Treebank (PATB, parts 1, 2 and 3), and for

accuracy they used two metrics: Diac (percentage of correctly fully diacritized words)

14

and ALL (percentage of correctly prediction for full morphological analysis of words)

and reported the result on ALL Words and Nominals. This approach achieved Diac

accuracy improvement on ALL Words by 2.5% absolute and on Nominals by 5.2%

absolute.

Arabiyat (2015) proposed a hybrid approach that combines a rule based

approach with Abandah et al. (2015) statistical approach. They used BAMA

morphological analyzer to provide morphological analysis and partial diacritization of

the data. Then they used this data for RNNLIB, which is a recurrent neural network

library that used to solve sequence labeling problems (Graves, 2008) and is

implemented using deep bidirectional Long Short-term Memory (LSTM) cell. Also

preprocessing corrections techniques were used to solve some issues that appeared

when using BAMA and post processing corrections techniques were applied to the

RNN results in order to improve the accuracy result. This hybrid approach provides the

best results compared to all state-of-the-art hybrid diacritization models and achieved on

LDC ATB3, a WER of 9.66% and a DER of 2.74% when case endings were included

and without case endings, the results were 3.95%and 1.24% respectively. In this

approach, BAMA did not implement the morphological segmentation in its best

capability so they suggest the using of POS tagger to choose one specific analysis of

BAMA solutions based on context.

Zayyan et al. (2016) proposed diacritization system for MSA text that combines

multi-lexical level statistical approach with knowledge-based approach. There are three

lexical levels: word level, morphemes level, and letter level. In word level, they use four

statistical n-gram models: four-gram, tri-gram, bigram, and unigram models. The first

three models consist of two sub-models: right-context, used to improve diacritization

accuracy of the word by considering the previous history of the given word and left-

15

context, will consider the next words of the given word (the number of previous and

next words depend on n-degree). In morphemes level, they select prefix and suffix

depending on the largest matching number of letters and also they used the four

statistical n-gram models and the sub models on the morphological units. In letter level,

each letter in the word is considered as single units and they used the four statistical n-

gram models and the sub models on letters units. They used the Nemlar written corpus

and Le Monde Diplomatic corpus from European language resources association; these

two corpora are constructed from different articles of different fields like news, sports,

scientific etc. also, these two corpora are developed using automatic and manual

reviewing techniques which give 99% diacritization accuracy for these corpora. When

they combine the multi-lexical models, this system achieved a WER of 7.1% and a DER

of 3.9% when case endings were included and without case endings, the results were

5.1% and 2.7% respectively.

Metwally et al. (2016) proposed diacritization system that consists of three

layers. The first and second layers predict the morphological diacritics while the third

layer predicts the syntactical diacritics. The first layer uses first-order HMM to select

the best probable sequence that contains the morphologically diacritized words with

their POS tags but HMM can handle only the previously seen words so unseen words

will be undiacritized and they solved this problem using second layer. The second layer

uses Standard Arabic Morphological Analyzer (SAMA) to consult it regarding the

possible analysis of the undiacritized word of the first layer. SAMA generates a list of

the possible analysis and each analysis contains one possible diacritization with its POS

tag and they take the first analysis of SAMA. The third layer applies the Conditional

Random Fields (CRF) (Lafferty, et al., 2001) to add for every word one syntactic

16

diacritic. This system achieved on LDC ATB3, a morphological WER of 4.3% and a

syntactic WER of 9.4%.

In this thesis, we proposed a hybrid approach to automatically diacritize Arabic

text; we used a full morphological and syntactical analyzer with CURRENNT library.

We gain amazing results and they are reported in Chapter 5.

17

CHAPTER III

Technologies Used

3.1 Recurrent Neural Networks (RNN)

Human brain spread the stored information over many neurons and when one

attempts to memorize something, this information will be collected from all these

neurons. Scientists benefit from this and emulate human brain using artificial neural

networks. This solved many problems and mainly the problems that need learning and

decision making.

Using neural networks in NLP field is rare (Khedher, 1999). However, many

researchers get amazing results when using neural networks (Jamro, et al., 2016).

Khedher (1999) wrote these beautiful sentences: “The main reason why it seems that the

Arabic text processing seems to be suitable for neural network application is that people

from their early age are trained to talk properly. Why neural networks cannot be trained

similarly? Of course, proper and enough data is necessary”, “The Arabic language as

one of the most advanced living languages, can utilize neural networks techniques in

many aspects” and “It is strongly recommended to consider seriously the use of neural

networks in research of Arabic language processing”.

There are two types of learning algorithms for the neural network: supervised

and unsupervised learning (Svozil, et al., 1997). In this work, we use supervised

learning algorithm since it can conclude a general function based on the training data

and it will be able to test data in a reasonable way. Our training data is part of LDC

ATB3 benchmark and consists of a set of training examples. Each example consists of

18

two fields: input and target fields. Input field sentences are generated after removing

diacritics from the same sentences of the target field. The supervised learning algorithm

depends on training sentences to conclude a general function that can be used in the new

sentences. The importance of inferring a general function by the supervised learning

algorithm is when the test set is constructed from new data that is not founded in the

train set. Validation set is used to validate the performance of the learning algorithm

during training data and the training is stopped based on the validation error rate to

avoid overfitting. Model overfitting occurs when training error rate decreases and

testing error increases and this may happened due to noise or when the number of

representative samples in the training set is few (Tan, et al., 2005).

In this work, we use sequence transcription approach to automatically diacritize

Arabic text. RNN will transcribe the input sequence of MADAMIRA to produce a fully

diacritized output sequence. RNNs are used in solving diacritization problem since they

use the past history of input sequences, which mean that they will benefit from the

context of input sequences when mapping input sequence to output sequence (El Hihi

and Bengio, 1995).

3.1.1 Feedforward neural network vs. Recurrent neural networks

The feedforward neural network is artificial neural network where the data is

transferred from input layer to the output layer in only one direction and it will pass

through the hidden layers (if exist). Input layer contains one neuron per feature and the

output layer contains one neuron per class. This network doesn’t have any cycles or

loops as shown in Figure 2. Backpropagation algorithm is used in training this network

and to update the weight of this neural network by computing the difference between

19

the desired and actual outputs and then these differences will propagate back to the

input layer (Graves, 2008).

For the standard feedforward network, we can compute the output vector

sequence y = (y1, . . . , yT) when we have the input sequence x = (x1, . . . , xT) by using

the following equations:

ℎ𝑡 = 𝐻(𝑊𝑖ℎ𝑥𝑡 + 𝑏ℎ) (1)

𝑦𝑡 = (𝑊ℎ𝑜ℎ𝑡 + 𝑏𝑜) (2)

where the W terms denote weight matrices (e.g., Wih is the input-hidden weight matrix),

the b is bias vectors (e.g., bh is hidden bias vector), and H is the hidden layer activation

function and in most case its sigmoid function (Graves, et al., 2013).

Figure 2. A simple feed forward neural network

 The Recurrent neural network (RNN) is a type of artificial neural network and it

works on the current inputs and on the previous history of the hidden layer for each time

step. This network has cycle unlike feedforward neural network. Back Propagation

20

Through Time (BPTT) is a gradient technique used for training RNN and the gradient

of error function is computed using current and previous inputs (Graves, 2008).

Figure 3. A simple recurrent network

Figure 3 represents a simple recurrent network which is called Elman network

(Elman, 1990). It is designed to learn sequences by the addition of “context units”

which are external input that used to update the hidden layer. So the hidden layer will be

activated by the input and the “context units”. Then the hidden layer will feed forward

to activate the output layer. Also the hidden layer will feed back to activate the “context

units”.

We compute the output layer, y, by using the following equations (Abandah, et

al., 2015):

 ℎ𝑡 = ℋ (𝑊𝑖ℎ 𝑥𝑡 + 𝑊ℎℎ ℎ𝑡−1 + 𝑏ℎ) (3)

𝑦𝑡 = 𝑊ℎ𝑜ℎ𝑡 + 𝑏𝑜 (4)

21

RNNs architecture, which can make sequence learning task, get state-of-the-art

results in a handwriting recognition (Graves et al., 2008), text generation (Sutskever et

al., 2011) and language modelling (Mikolov et al., 2010).

3.1.2 Long-Short Term Memory (LSTM)

The long short-term memory is used to solve the vanishing gradient issue that

appeared when using recurrent networks. To solve this issue, they used memory cells to

store information instead of using neurons (Hochreiter and Schmidhuber, 1997). LSTM

architecture, that uses memory cells to store information, is better in accessing and

dealing with long-range context data. LSTM has made state-of-the-art results in solving

sequence processing problems such as speech recognition (Graves, et al., 2013).

Long short-term memory cell consists of self-connections memory cells and

three multiplicative units or gates (Input gate, forget gate and output gate) as shown in

Figure 4. Input gate is used to store or write information. Output gate is used to retrieve

or read information. Forget gate is used to forget or reset operations for the cell. So

these gates control the flow of information over the cell. The gradient will not vanish

because the self-connection has a value of one and the memory cell will keep

remembering the first input as long as the input gate is closed and the forget gate is

opened (Graves and Schmidhuber, 2005).

Figure 4. Long short-term memory cell

22

3.1.3 Bidirectional Recurrent Neural Networks (BRNN)

RNNs show their ability to deal with sequential data that has dependency

between data points and these data points are close to each other (Robinson, 1994). In

general, RNNs architecture receive one input vectors Xt at a time and can predict Ytc

based on the use of all the available input data until the current time tc (i.e. Xt, t=1,2,…,

tc) .

RNN deals with the future input information that coming after tc by delaying the

output to a certain amount of G time frames up to Wtc+G. Theoretically, G could be

very large since it must deal with all the available future information, but in practice, if

G is too big the prediction results will be dropped (Robinson, 1994).

Bidirectional Recurrent Neural Network (BRNN) solves this issue of RNN since

it can deal with the past and the future input information. The structure of BRNN is

achieved by splitting the state neurons of RNN into two parts; the first part is forward

states and it is used for the positive time direction i.e. from t=1 to T and the second part

is the backward states and it is used for the negative time direction i.e. from t=T to 1.

There are no connections between the outputs of the forward states and the inputs of

backward states. Also, the data of both states will deliver to the same output layer as

shown in Figure 5.

The forward pass of BRNN structure is the same as RNN but with some

differences that the input sequence is given in opposite directions to the two hidden

layers and the output layer will change only if the hidden layers of both directions have

processed all input sequence (Schuster and Paliwal, 1997).

23

Figure 5. Bidirectional Recurrent Neural Network

 We compute the output sequence y of BRNN by iterating the backward layer

from t=T to 1, the forward layer from t=1 to T, and then updating the output layer:

 ℎ𝑡
⃗⃗ ⃗ = ℋ(𝑊𝑥 ℎ⃗⃗ 𝑥𝑡 + 𝑊ℎ⃗⃗ ℎ⃗⃗ ℎ𝑡−1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + 𝑏ℎ⃗⃗) (5)

ℎ𝑡
⃖⃗ ⃗⃗ = ℋ(𝑊𝑥ℎ⃗⃗⃖ 𝑥𝑡 + 𝑊ℎ⃗⃗⃖ℎ⃗⃗⃖ℎ𝑡+1

⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ + 𝑏ℎ⃗⃗⃖) (6)

𝑦𝑡 = 𝑊ℎ⃗⃗ 𝑦ℎ𝑡
⃗⃗ ⃗ + 𝑊ℎ⃗⃗⃖𝑦 ℎ𝑡

⃖⃗ ⃗⃗ + 𝑏𝑜 (7)

where ℎ𝑡
⃗⃗ ⃗ denotes the forward hidden sequence, and ℎ𝑡

⃖⃗ ⃗⃗ denotes the backward hidden

sequence (Abandah, et al., 2015) (Graves, et al., 2013).

BRNN architecture will help in automatic diacritization task since the whole

sentence will transcribe and this architecture can deal with the input sequences in both

directions so the output sequence will depend on the whole input sequences (Abandah,

et al., 2015).

24

3.1.4 Deep recurrent neural network

Deep neural networks (DNN) mean that the networks consist of several hidden

layers. Each layer is concerned to solve part of the problem and the output of one layer

is the input to the next layer as shown in Figure 6. The features of higher layers will be

complicated because they are building from lower layers. Also the final layer will be

responsible for the final output (Hermans and Schrauwen, 2013). DNNs have proved

their capability to solve sequence problems, for examples: speech recognition (Graves,

et al., 2013) and handwritten digit recognition (Ciresan, et al., 2010) and also get state-

of-the-art results in solving many problem in natural language processing field, for

examples: information retrieval (Huang, et al., 2013) and machine translation (Cho, et

al., 2014).

Figure 6. Deep RNN

DNN can deal with complicated and non-linear relationships and its hierarchical

architecture can solve RNN problem where the information moves through only one

layer to get the final results. Deep Recurrent Neural Network (DRNN) means that the

25

networks consist of several hidden layers and each layer is a recurrent neural network.

The higher layer of DRNN can deal with complicated data with fewer units since the

features of higher layer will be constructed from input features of lower layers

(Hermans and Schrauwen, 2013).

The hidden vector sequences hn and the network outputs yt are calculated as

shown below, Assuming that all N layers in the stack have identical hidden layer

function.

ℎ𝑡
𝑛 = ℋ (𝑊ℎ𝑛−1ℎ𝑛 ℎ𝑡

𝑛−1 + 𝑊ℎ𝑛ℎ𝑛 ℎ𝑡−1
𝑛 + 𝑏ℎ

𝑛) (8)

 Where ho = x. The network outputs yt are

𝑦𝑡 = 𝑊ℎ𝑁 𝑦 ℎ𝑡
𝑁 + 𝑏𝑜 (9)

In this work, we use deep Bidirectional LSTM architecture i.e each hidden layer

is LSTM nodes and every hidden layer takes its input from both forward and backward

layers of lower level (Abandah, et al., 2015). This architecture is shown in Figure 7.

Figure 7. Deep bidirectional LSTM architecture

26

3.2 Some of the Most Important Arabic Morphological Analyzers

In this section, i will present the meaning of some linguistic features that we

may use in this thesis and then i will present some of the most important Arabic

morphological analyzer that was referenced in the literature such as Buckwalter Arabic

Morphological Analyzer (BAMA), Morphological Analysis and Disambiguation of

Arabic (MADA), and MADAMIRA (combines MADA and AMIRA toolkits) that we

used in this work.

3.2.1 Linguistic Features of The Morphological Analyzer

Morphological analyzers, such as BAMA and MADA, can provide all possible

morphological information for each input word. Each analysis consists of a set of

linguistic features. I want to explain the meaning of some linguistic features that we

may use in this thesis such as Part of Speech (POS), Gender, Number, Voice, Base

Phrase Chunker (BPC), Case, pattern, Stem, Clitics. POS means the syntactic location

of the Arabic word such as verb, noun, adjective, and so on. Gender means Arabic word

is used for male or female. Number means Arabic word is singular, dual or plural.

Voice means Arabic word is active or passive. BPC which determines the base phrase

of the word that exists in the sentence, for example: verbal and nominal phrase. Case is

a specific feature for the nouns and it means that the word can be genitive or normative

and so on. Pattern is a model that is used to build the stems from root by adding some of

pattern templates and will give different words with different meaning based on the

used templates. The three basic characters of pattern are)f ف) is used for first letter of

root, (E ع) is used for second letter of root, and (l ل) is used for third letter of root. For

example: (k t b) ك ت ب is a root and the stems will be generated after adding pattern

such as write (ك تب), writer (باتك), and books (ك تب) and so on (Azmi and Almajed, 2013).

27

Clitics are morphemes that indicate grammatical information such as “بمدارسهم” ‘with

their schools’, the stem is “مدارس” ‘schools’, the proclitic is ‘b’ب, and enclitic is ‘their’

 . (Boudchiche, et al., 2016) ”هم“

3.2.2 Buckwalter Arabic Morphological Analyzer (BAMA)

BAMA morphological analyzer generates all possible diacritized and

morphological analysis solutions for every word. It provides only the lexemic diacritics

since it can’t predict the inflectional diacritics. BAMA consists of three components: the

lexicon, the compatibility tables and the analysis algorithm. It has three separate

lexicons for prefixes, stems, and suffixes. Each word in these lexicons contains

undiacritized and diacritized forms, its morphological category, and its English

meaning. Also, it has three compatibility tables: Arabic stems, Arabic prefixes, and

Arabic suffixes, these three tables are associated with the three lexicons to make stems,

prefixes, and suffixes compatible (prefix-stem, stem-suffix and prefix-suffix) in order to

determine which morphological categories are permitted to occur. In the analysis

algorithm, Perl code uses the three lexicon files and the three compatibility tables in

order to generate all possible diacritized and morphological analysis solutions for every

word (Farghaly and Shaalan, 2009). BAMA may give wrong analysis due to Arabic

proper names or transliterated foreign names that are not listed in the lexicons. Figure 8

shows BAMA analysis for the word يكتبون with three different meanings and

pronunciations.

28

INPUT STRING: يكتبون

LOOK-UP WORD: yktbwn

 SOLUTION 1: (yakotubuwna) [katab-u_1]

ya/IV3MP+kotub/VERB_IMPERFECT+uwna/IVSUFF_SUBJ:MP_MOOD:I

 (GLOSS): they (people) + write + [masc.pl.]

 SOLUTION 2: (yukotabuwna) [katab-u_1]

yu/IV3MP+kotab/VERB_IMPERFECT+uwna/IVSUFF_SUBJ:MP_MOOD:I

 (GLOSS): they (people) + be written/be fated/be destined + [masc.pl.]

 SOLUTION 3: (yukotibuwna) [>akotab_1]

yu/IV3MP+kotib/VERB_IMPERFECT+uwna/IVSUFF_SUBJ:MP_MOOD:I

 (GLOSS): they (people) + dictate/make write + [masc.pl.]

Figure 8. BAMA solutions for the word يكتبون

3.2.3 Morphological Analysis and Disambiguation of Arabic (MADA)

MADA is a toolkit for Arabic tokenization, diacritization, morphological

disambiguation, POS tagging, and stemming. It was built for MSA and later MADA-

ARZ version was built for Egyptian Arabic. For each input word, a list of every possible

morphological interpretation is produced. Then it made a prediction for each word

based on the context using SVMs, used to classify the word and to predict a certain

morphological features for each word as POS, and using N-gram language models

(Pasha, et al., 2014). Each analysis of MADA consists of the diacritized form, its

morphological features, and its English glossary. Also, it is constructed based on

BAMA database and it makes all of the morphological ambiguity, tokenization,

diacritization and POS in one stroke (Habash and Rambow, 2005). Also MADA uses a

disambiguation module to specify the correct POS tag in a specific text (Farghaly and

Shaalan, 2009).

3.2.4 MADAMIRA (combines MADA and AMIRA toolkits)

MADAMIRA is a fast and comprehensive tool for morphological analysis and

disambiguation of Arabic that combines MADA and AMIRA. MADAMIRA is the new

version of MADA; this version is more robust, portable, easy to use and maintain, and

29

faster. It is implemented in Java, which provides much more speed than Perl and allows

new features to include with the existing code, also provides XML and HTTP support

that did not exist in MADA or AMIRA. The AMIRA toolkit includes a tokenizer, POS

tagging, and BPC. AMIRA and MADA are implemented in Perl. AMIRA uses a multi-

step approach while MADA treats most of morphological interpretation in one stroke.

Also MADA provides a deeper analysis and slower speed than AMIRA. AMIRA

provides additional utilities as BPC that is not supported by MADA. MADAMIRA

follows the same general design as MADA with some additional components from

AMIRA (Pasha, et al., 2014). The MADAMIRA online web (Pasha, et al., 2014)

includes four tab panels: diacritized forms, tokenized forms, parts-of-speech, and

lemmas. For each input word, a box displays all the morphological features for that

word including POS, case, gender, number, and gloss. For Arabic word سياسه (seyassah),

it displays POS: noun, case: genitive, gender: feminine, number: singular, and gloss:

politics as shown in Figure 9.

Figure 9. The MADAMIRA online web displays all the morphological features of

Arabic word سياسه (seyassah)

30

3.3 GPU, CUDA and CURRENNT

In this section, i will present introduction about GPU and CUDA and then i will

explain CURRENNT library that we use to transcribe sequences.

3.3.1 Graphics Processing Units (GPU) and Compute Unified Device

Architecture (CUDA)

NVIDIA is the name of the company which invents GPU and CUDA. It

considered as one of the first and most important gaming hardware manufacturers.

GPU is a specialist processer or accelerator card exists in most modern pc and designed

to speed up computations by doing parallel tasks at same time or accelerate the same

task if it can be done in parallel and also it runs the sequential part of task on CPU. The

GPU architecture is built in a suitable way for doing data parallelism.

CUDA is a programming language used to program GPU and it is C/C++

Application Programming Interface (API) that accelerates code on NVIDIA’s GPU.

This language works by writing functions for GPU which is called kernels that can be

executed in parallel and for several times on all parameters that need this kernel. CUDA

is designed to run on parallel architecture and to execute large numbers of threads and

this threading model makes it perfect for solving parallel problems because it splits

problem into grid of block and each block consists of multiple threads and can run in

any order (Cook, 2012).

3.3.2 CUDA RecurREnt Neural Network (CURRENNT)

 In this work, we do our experiments by using the open source software library

CURRENNT which is CUDA enabled recurrent neural network library used for

labeling sequential data and it supports the parallel implementation of deep LSTM RNN

31

architecture by using NVIDIA’s GPUs to accelerate the training phase of RNN. Since

CURRENNT supports deep bidirectional LSTM architecture it will be perfect choice

for our experiment. To our knowledge, CURRENNT is considered as the first publicly-

available tool that has parallel implementation of a deep LSTM RNN architecture. This

indicates that we can speedup the training of Bidirectional LSTM RNN architecture.

The problem of training RNN was occurred due to its inefficient implementation

because of the limited parallelism that resulting from the time dependencies.

CURRENNT benefits from mini-batch learning to make parallel weight update of all

sequences and also it supports classification and regression tasks (Weninger, et al.,

2015).

CURRENNT has two options “parallel sequences and stochastic”. The option

“parallel sequences” is used to speed up computations by splitting the whole data set

into fractions (mini-batches) and then processed the sequences within mini-batch in

parallel. The option "stochastic" controls whether weight updates will be after each

mini-batch, or after full batch mode, or for online learning. Also, CURRENNT

automatically stops the training when the validation set error does not improve for a

number of epochs in order to prevent overfitting.

 The parallel implementation of Deep LSTM-RNNs with N layers architecture

that supported by CURRENNT is explained below (Weninger, et al., 2015). Given an

input sequence xt, we compute the output sequence yt by iterating the following

equations in forward pass (from t = 1 to T):

32

where W is the weight matrices and b is the bias vectors (the superscripts used for layer

indices) and ht
(n) is the hidden feature representation of t time frame and in the level n

units (n start from 1 to N). The input layer is the 0-th layer and the output layer is the N

+ 1-th layer. S is the output layer function and Lt
(n) is the composite LSTM activation

function. Then each unit has a state variable ct and the hidden layer activations for the

state variables is scaled by ot
(n) which is the activations of the output gates:

where ⊗ is element-wise multiplication and the state is scaled by a forget gate (Gers et

al., 2000) with dynamic activation ft
(n). it

(n) is the activation of the input gate that adjust

the flow of the feedforward and recurrent connections. There are dependencies between

layers and time step as shown above so the parallel computation of feedforward

activations cannot be done across layers and the parallel computation of recurrent

activations can’t be performed across time steps. To be able to increase the degree of

parallelism, they introduce data fractions of certain size P from S sequence and these

data fractions will work in parallel and each one have T time steps. State matrix C(n) of

n-th layer is shown below:

where ct,p
(n) refers to the state of sequence p in layer n at time t. To do the feedforward

computation for all time steps and P sequences in parallel, we can do pre-multiplication

with W(n−1),(n) . To do the recurrent computation, we can use W(n),(n) to update C(n) from

33

left to right. This matrix structure gives memory locality for the data of one time step

and for bidirectional layers we will repeat this matrix structure for each layer.

 In training, the backward pass for the hidden layers is occurred by dividing the

matrix of weight changes into a part that will propagate to the previous layer and a

recurrent part that will propagate to the previous time step; this will make a parallel

implementation of the backpropagation through time (BPTT) algorithm (Weninger, et

al., 2015).

Our training data consists of a set of training examples and each example is a

pair of sequences (undiacritized sentence, diacritized sentence) and the network was

trained to be able to classify each input char with the corresponding diacritized version.

A softmax output layer is the best choice to do classification tasks because it ensures

that the sum of output values equal to one since it defines a probability distribution over

all possible output characters, and the network was trained to minimize the cross-

entropy of this distribution with the target labels.

Our neural network has the following structure:

 Input layer: the number of input neurons determine by the number of

input class.

 Hidden layers: we did many experiments with different number of layers

to determine the optimal number of hidden layers. The type of this layer

was bidirectional LSTM

 Feed forward output layer: which use softmax activation function. The

number of output neurons determine by the number of target class.

34

 Post output layer: which is the last layer in the network and used to

evaluate the cross entropy objective function during forward pass and

give the error to output layer during backward pass. The size of this layer

determines by the number of target class and the type of this layer is

multiclass classification.

The network was trained using mini-batch steepest descent learning i.e. weight

updates after every fractions (the number of parallel training sequences that we used in

this work is 30) and with momentum 0.9 and learning rate of 0.0001 and the weights

were initialized with normal distribution that have mean =0 and sigma=0.1. The GPU

we work on is NVIDIA GTX 580 with 1.5 GB of RAM and the GPU specification

(Nvidia Geforce Page) is shown in Table 3. The training was stopped at the lowest

validation error rate.

During training, each sequence is given to this network to give a prediction for

each character and the errors are back-propagated to update the weight of each layer.

During testing, the trained network (the learned weights) and the test sequences are used

in a forward pass mode in order to produce a prediction over the labels.

Table 3. GPU specification of NVIDIA GTX 580

GPU Engine Specs

CUDA Cores 512

Graphics Clock (MHz) 772 MHz

Processor Clock (MHz) 1544 MHz

Texture Fill Rate (billion/sec) 49.4

Memory Specs

Memory Clock 2004 MHz (4008 data rate)

Standard Memory Config 1536

Memory Interface GDDR5

Memory Interface Width 384-bit

Memory Bandwidth (GB/sec) 192.4

35

CHAPTER IV

Methodology

4.1 Introduction

For complete diacritization, the diacritization process of Arabic text can be

classified into two types: morphological and syntactic diacritization (Metwally, et al.,

2016). Our diacritization system consists of two stages: first, we used MADAMIRA

morphological analyzer to extract some of the morphological and syntactical diacritics.

Then, we will use this data for CURRENNT statistical approach to predict the rest of

diacritics so we will produce a fully diacritized text.

Our proposed diacritization system has two phases to produce diacritized text:

training and production phases as shown in Figure 10 and 11. In training phase, we

make data encoding in order to have a suitable data format i.e. we have two fields: input

sentences which are undiacritized and target sentences which are diacritized. Then, we

used MADAMIRA morphological analyzer that can produce the morphological analysis

and the segmentation for each word in the sentence. So, we will get partially diacritized

and partially tokenized data (the word consists of prefix, stem, and suffix). Then we

make text corrections, to fix some words of MADAMIRA output and to prepare the

data for RNN sequence transcription stage. After that, we do four RNN experiments to

transcribe the input sentences of MADAMIRA and then RNN is trained to predict the

rest of diacritics. In production phase, we apply the same steps but we use the testing

data and we use the trained RNN networks to predict diacritics. Then we do Post

processing corrections to enhance the accuracy of RNN results. We use these two

metrics to calculate diacritization accuracy: DER and WER, since state-of-the-art

approaches use these metrics and we can compare our result to them (explained in

Section 5.1).

36

Figure 10. The schematic diagram of the proposed diacritization system (Training

phase).

37

Figure 11. The schematic diagram of the proposed diacritization system (Production

phase)

38

4.2 Data

Our experimental data was from LDC’s Arabic Treebank of diacritized news

stories of Part 3 v3.2 and catalog number LDC2010T08 ((Maamouri, et al., 2004). The

LDC ATB3 corpus is a benchmark and consists of 599 news stories of An-Nahar

Lebanese newspaper that were released in 2002 and it includes the inflectional

diacritics.

The LDC ATB3 corpus is partially diacritized since 39.8% of the corpus is not

diacritized as shown in Table 4. Also 5.4% is the percentage of letters that have two

diacritics i.e Shaddah and another diacritic. The average number of words per sentence

is 11.31 i.e. more than eleven words are in one sentence so this indicates the long

relations between the words that exist in one sentence. In this work, we use deep

bidirectional LSTM and this architecture fits these situations.

Table 4. Statistics of LDC ATB3

Criterion Value

Size 305 K words

Letters per word 4.64

Words per sentence 11.31

No diacritics 39.8%

One diacritic 54.8%

Two diacritics 5.4%

This benchmark is widely used in the automatic Arabic text diacritization field

so we can compare our results to the best published result of this field. Also, we can

know the effect of using partially diacritized inputs on the diacritization accuracy.

39

4.3 Data Pre-processing

We make a few pre-processing steps to make the data suitable for RNN

sequence transcription.

4.3.1 Data Encoding

 We prepare our experimental data for RNN training and testing by having one

sentence per line and this is achieved by splitting the data into more than one sentences

based on some punctuation marks (Abandah, et al., 2015). Each sentence is available in

two fields: input and target fields. Comma is used to separate the two fields. Target field

is the diacritized sentences of the LDC ATB3 corpus and the input field is generated

after removing all diacritics from target field. This preparation is useful for the

supervised learning of RNN.

Unicode system gives each letters and diacritics separate encoding (see appendix

A for Unicode codes of Arabic character). This is called “one-to-many” letter encoding

and is used with one-to-many network (Abandah, et al., 2015). For example, the wordَّ

 :and is encoded as follows ”ط ل ب َّ“ ,”طلب“ .has two field record of input and target i.eَّ ط ل ب َّ

 ”ط ل ب َّ“ ,”طلب“

“0637 0644 0628”,“ 0637 064E 0644 064E 0628 064E”

Using separate encoding for diacritics will make diacritized sequence length

longer than undicritized sequence length and will add some difficulty. Abandah et al.

(2015) proposed the using of “one-to-one” letter encoding so the letter and its diacritics

will encode to one encoding. This will make target sequence length equal to the input

sequence length.

40

The Unicode codes of the 36 Arabic letters start from 0x0621 to 0x063A and

from 0x0641 to 0x064A and also diacritics have hexadecimal codes from 0x064B to

0x0652. To use “one-to-one” encoding, we begin with the Unicode code of the letter

then we clear the most significant 8 bits of the code and then we shift the lower 8 bits of

the code to the left four bits. Then in case the letter is not followed by any diacritics we

used this shifted code. But in case we have one or two diacritics we will OR the shifted

code of the letter with the bit codes of its diacritics that are shown in Table 5. If the

letter is followed by shaddah diacritic, then bit 3 will be set (bit code 1000) and if the

letter is followed by a diacritic other than shaddah, then bits 0 through 2 will be set

depending on the bit codes of the diacritic.

Table 5. The Binary bit codes and hexadecimal Unicode of Arabic diacritics

We use the following formula to find a unique code “L” of the letter. However, l

represents the Unicode value and the diacritics d1 and d2 represent bit codes.

𝐿 = {

(𝑙 ∧ 0𝑥00𝑓𝑓 ≪ 4) 𝑛𝑜 𝑑𝑖𝑎𝑐𝑟𝑖𝑡𝑖𝑐𝑠
(𝑙 ∧ 0𝑥00𝑓𝑓 ≪ 4) ∨ 𝑑1 𝑜𝑛𝑒 𝑑𝑖𝑎𝑐𝑟𝑖𝑡𝑖𝑐𝑠
(𝑙 ∧ 0𝑥00𝑓𝑓 ≪ 4) ∨ 𝑑1 ∨ 𝑑2 𝑡𝑤𝑜 𝑑𝑖𝑎𝑐𝑟𝑖𝑡𝑖𝑐𝑠

 (16)

Diacritic

name

Unicode Bit code

No diacritic - 0000

Fathatan 0x064b 0001

Dammatan 0x064c 0010

Kasratan 0x064d 0011

Fataha 0x064e 0100

Damma 0x064f 0101

Kasra 0x0650 0110

Sukun 0x0652 0111

Shadda 0x0651 1000

41

Then we will encode the previous example to decimal format: “0880 1088

0640”, “0884 1092 0644”. So, we will have “one-to-one” mapping between the input

codes and the output codes.

4.3.2 Using MADAMIRA

 We used MADAMIRA morphological analyzer to extract partially diacritized

and tokenized words and then we prepared this data in a format suitable for RNN

sequence transcription i.e each line of file contains one sentence with two fields input

and target. Output of MADAMIRA appears as shown in Figure 12.

The MADAMIRA file begins with the word SENTENCE which contains the

input file sentences that exist in one line and they will be in Buckwalter encoding. Then

MADAMIRA starts with the first word in the SENTENCE and then makes for this

word prediction of diacritization, lexeme, aspect, and case...etc. There is more than one

prediction for this word but we work on the top analysis of MADAMIRA output so we

have the final results of this word as appears in the line that starts with star. This line

was generated based on the best analysis of the word that depends on the context so it

will take in concern the different morphological features such as lexeme, gender, part of

speech and case and so on, to be able to produce diacritics for this word.

Star line starts with confidence degree that indicates how much this analyzer

sure about the prediction of diacritics, and we work based on this confidence degree

when we take the diacritization of the word. Then prediction for the second word will

be produced until the end of the sentence and so on.

We will have partially diacritzed data from MADAMIRA based on this

confidence degree since we ignore diacritization of any words with confidence degree

less than the confidence degree that we choose. For example: if we choose 95%

42

confidence degree, we will discard the diacritization of the words that have confidence

degrees less than the chosen confidence degree i.e. the word “AlnA}b” النائب has a

confidence degree of 89% so we will take it without diacritics but if we choose the

confidence degree of value 70% then we will take this word with its diacritics

“Aln~A}ibu” الن ائ ب.

Figure 12. An example of MADAMIRA output file

 Also, in order to have tokenized data (each word divided into prefix, suffix, or

both) we deal with the tokenization file produced by MADAMIRA that gives

undiacritized and tokenized data. There are several tokenization schemes available with

MADAMIRA, we used ATB_EVAL scheme which make clitics tokenization but

doesn’t separate the (al) determinant (Pasha, et al., 2014). The "+" sign indicates the

separation between the word components as shown in Figure 13.

 The tokenization is dependent on the analysis of MADAMIRA and sometimes

there is a difference between the words of previous MADAMIRA file that we took from

43

it the partial diacritization of data and their morphological segmentation in the

tokenization file. Since we don’t have confidence degree in this tokenization file, we

need to handle these issues by working on normal cases, exception cases, and failed to

transform cases.

Figure 13. An example of MADAMIRA tokenization output file

 We have normal cases i.e. the "+" sign is inserted in the correct location when

we have similar characters and similar number of characters between the corresponding

words of both files. For example: the diacritized word is waAafAdat (أ فاد ت and the (و

tokenized word from tokenization file is w+AfAdt (و+أفادت) so in this case, we have

similar characters and similar number of characters, we will get after combining them

wa+AafAdat (أ فاد ت+ We need the data to be partially diacritized and partially .(و

tokenized to be able to do our experiments (explained below) and to study the effect of

adding this linguistic information on the results of our RNN library.

 We have exception cases i.e. we can insert the "+" sign in the correct location

based on some rules, that will deal with different characters and different number of

44

characters between the corresponding words of both files. I will discuss some of these

rules. There is a rule to handle the extra A in the token word, for example: the

diacritized word is fa>axobaruwniy (ون ي ب ر and the tokenized word is f+>xbrwA+ny (ف أ خ

 so, we will have after combining them based on this rule (ف+أخبروا+ني)

fa+>axobaruw+niy (و+ن ي ب ر +أ خ There is a rule to handle the char that has shadda .(ف

diacritic, which means the doubling of the char, for example: the diacritized word is

min~A (ن ا so we will have after combining (من+نا) and the tokenized word is mn+nA (م

them min~+A (ا+ ن There are also a rules to handle A,y characters, and y,Y .(م

characters, since some tokens in the tokenization file are return to the base form.

Example of A,y characters case: the diacritized word is fa>tAh (ف أتاه) and the tokenized

word is f+>ty+h (ف+أتي+ه) so we will have after combining them fa+>tA+h (+أتا+هف).

Example of y,Y characters case: the diacritized word is warawaY (ى و ر and the (و

tokenized word is w+rwy (و+روي) so we will have after combining them wa+rawaY

ى) و +ر .(و

 We have failed to transform cases which contain all the words that are not

corresponding to the above two cases and have incorrect tokenization, so we will

discard the insertion of “+" sign for these words and this means that we will have

partially tokenized data. For example: the diacritized word is bisomi (م and the (ب س

tokenized word is b+bsm (ب+بسم) which is incorrect so we will not insert “+" to the

diacritized word.

In this work, we use the output of MADAMIRA to build four experiments

(Statistical, Partial Diacritization, Morphological, and Hybrid). In Statistical

experiment, the input sequences are not diacrtized and also are not tokenized, for

example:

45

"<*n fAlHkwmp t$Er btfwq AstvnA}y"

In Partial Diacritization experiments, the input sequences are not tokenized but

partially diacritized from MADAMIRA, for example:

"<i*ano faAlHukuwmapu ta$oEuru bitafaw~uqK AisotivonA}iy~K"

In Morphological experiments, the input sequences are not diacrtized but

partially tokenized, for example:

"<*n f+AlHkwmp t$Er b+tfwq AstvnA}y"

In Hybrid experiments, the input sequences are partially diacritized and partially

tokenized from MADAMIRA, for example:

"<i*ano fa+AlHukuwmapu ta$oEuru bi+tafaw~uqK AisotivonA}iy~K"

4.3.3 Text Correction

We make text corrections for some words of MADAMIRA output, when we

concatenate the input sequence of MADAMIRA analyzer with the target sequence, as

we discussed below.

4.3.3.1 Letter Correction

When we concatenate the input sequence with the target sequence we must make

sure that MADAMIRA output letters will be exactly same as target letters. We notice

that MADAMIRA changes some words letters, for example: MADAMIRA output word

is “الهدي” instead of “الهدى”. So, we fix this problem by making letter correction that

checks each letter of input word with each letter of the corresponding target word.

46

4.3.3.2 Target Normalization

For Morphological and Hybrid experiments, we need to ensure one to one

mapping between input and target sequences because they make morphological division

for the words. So, we normalize the target sequence to be tokenized in the same way

that the input sequence is tokenized. Using the same example of the morphological

experiments that we used in Section 4.3.2, the input and target sequences were:

"<*n f+AlHkwmp t$Er b+tfwq AstvnA}y","<i*ano faAlHukuwmapu ta$oEuru

bitafaw~uqK AisotivonA}iy~K"

And it will be after we do target normalization as following:

"<*n f+AlHkwmp t$Er b+tfwq AstvnA}y","<i*ano fa+AlHukuwmapu ta$oEuru

bi+tafaw~uqK AisotivonA}iy~K"

4.4 Sequence Transcription

In this work, we use CURRENNT library to transcribe sequences. The

architecture of this library is the deep bidirectional LSTM and this is useful for

sequence transcription problem. Speech recognition (Graves, et al., 2013) and

handwriting recognition (Abandah, et al., 2014) are two examples of using this

architecture to solve sequence transcription problems and also they achieved state-of-

the-art results.

We use CURRENNT library to train and test the sequences that were produced

by using the “one-to-one” letter encoding. So, the input and target sequences had the

same lengths.

47

4.5 RNN Training Parameters

We follow many researchers of automatic diacritization field in splitting the

LDC ATB3 corpus into two sets: training, and test. In this split, test set will be same as

validation set rather than using different set for it. So, we will be able to compare our

results with previous researchers results such as (Zitouni, et al., 2006) (Habash and

Rambow, 2007) (Rashwan et al., 2011) (Said, et al., 2013), etc.

LDC ATB3 corpus consists of 599 news stories from An Nahar Newspaper. The

training set consists of the first 509 news stories i.e. approximately the first ten months

of the news stories (~242 K words). The test set consists of the remaining 90 news

stories and this is approximately 15% of the corpus i.e. approximately the last two

months news stories of the same year (~42 K words). The validation set will be same as

test set. In this work, when we prepared LDC ATB3 data, there was a field which

contains the diacritized version of the words. So, we extracted these words to form LDC

ATB3 sentences, but sometimes this field will have the word ”none”, which means that

this word is available without having the diacritized versions, so we don’t take these

words.

4.6 Data Post-processing

We use post-processing techniques to overcome some issues in the output

sequences of the RNN sequence transcription and to achieve better accuracy.

4.6.1 Letter Correction

We correct any error in the letters of the RNN output sequences to be same as

the letters of input and target sequences. And this correction will not improve

diacritization accuracy since we correct letter not diacritics but this will give better

48

output sequences. For example, you could have the word “ وتق ” in the output sequence

instead of the word “ق وى”.

4.6.2 Sukun Correction

 We ignore sukun diacritic of the target and output sequences when we counting

diacritization errors because there are different ways for using this diacritic i.e some

writing styles don’t use sukun and consider any letter without diacritic as having sukon

and some other writing styles use sukon to show that the letter doesn’t have vowel. For

LDC ATB3, This correction makes a reduction on the DER by 3.7%.

4.6.3 Fatha Correction

 We correct any letters in the output sequences, which have diacritic other than

fatha to fatha diacritic. In case this diacritic precedes Alef, Alef Maksura, and Taa

Marbuta letters since according to Arabic orthographic system we have always fatha in

that case. For LDC ATB3, This correction makes a reduction on the DER by 1.4%.

4.6.4 Dictionary Correction

Dictionary is built from diacritized words that exist in the training set and is

indexed by the undiacritized word. We check if RNN output word exists in the

dictionary by using the undiacritized form. If the RNN output word is founded in the

dictionary and has the same diacritics we keep this word and we don’t change it. Also

we don’t change the output word if it is not founded in the dictionary but in case the

output word is founded in the dictionary and don’t match any diacritzed word we select

from dictionary the diactrized version that has smallest edit distance and we correct this

word. If the output word and dictionary word differ only in the last letter diacritics we

49

don’t change output word. For LDC ATB3, This correction makes a reduction on the

DER by 1.24%.

50

CHAPTER V

Experiments and Results

Our proposed diacritization system consists of using MADAMIRA

morphological analyzer to add linguistic information to the input sequence and then we

used CURRENNT to do sequence transcription task and to predict a fully diacritized

output sequences. Our workload is LDC ATB3 corpus because the state-of-art

approaches of automatic diacritization field use this workload. We split this corpus into

two sets: training and testing. The validation set is same as testing set. We do many

experiments using CURRENNT to come up with the best configurations that will give

the best results.

5.1 Accuracy evaluation

There are two metrics that are used in the literature to calculate diacritzation

accuracy: diacritization error rate (DER) and word error rate (WER). DER represents

the percentage of letters with wrong diacritics, and WER represents the percentage of

word that has at least one letter of wrong diacritics. We calculate these metrics for each

experiment from the output sequences of CURRENNT and for both cases with and

without last ending diacritics. We calculate the accuracy of LDC ATB3 under the same

condition that was used in previous works such as (Zitouni et al., 2006), (Habash and

Rambow, 2007), (Rashwan et al., 2011), and (Said et al., 2013). The following are the

conditions:

1. Words, numbers, and punctuators are all considered in calculating

accuracy.

2. Each character or digit in a word can have diacritics.

51

3. For DER calculation, in case the letter has more than one diacritic then

you have one of two choices: you need to consider all of them or you can

consider them as one error.

4. In case the target letter was undiacritized then the diacritics of the same

letter in the output sequence will be ignored.

5.2 RNN Tuning Experiments

We try to work on a network architecture that to some extent will be close to the

network architecture that was used in (Abandah, et al., 2015) because they get state-of-

the-art results and they used the same workload. In this work, we use different library

that is fast because it uses GPU and to our knowledge, it considered as the first publicly-

available tool that has parallel implementation of a deep LSTM RNN architecture.

We train and test our data using “one-to-one” transcription network which is the

best for automatic diacritization and in this network the input and target sequences have

one to one correspondence because character and diacritic have one code (Abandah, et

al., 2015). The following subsections present the experiments we do to tune RNN.

5.2.1 Selection of confidence degree

 We did several experiments to determine the confidence degree that will give

us the optimal accuracy. Confidence degrees indicate how much MADAMIRA analyzer

sure about the prediction of diacritics (it was explained in section 4.3.2). In all

experiments, we work on 250 neurons depending on the network architecture that was

used in (Abandah, et al., 2015) because they get state-of-the-art results in this field and

our work is considered as extension for their works.

We worked on the partial and hybrid experiments with two hidden layers of size

250 and for all confidence values (10, 20, 30, 40, 50, 60, 70, 80, 88, 90, and 100) and

52

we calculate DER and WER for all of them. Figures 14, 15, 16 and 17, show the DER

and WER values of the partial and hybrid experiments of two hidden layers of size 250.

We noticed that if we want to take the partial diacritization from MADAMIRA based on

high confidence degrees, such as 100% and 90%, then the diacritized words will be few

so we will get many undiacritized words. Also, this was noticed from the figures that

the error rates for high confidence values were high.

We noticed that if we want to take the partial diacritization from MADAMIRA

based on low confidence degree, such as 10%, then we will have many diacritized

words and the error rates will be reduced compared to the error rates of high confidence

values. However, if we want to take the partial diacritization from MADAMIRA based

on intermediate confidence degree, such as 60%, then we will have many diacritized

words and in the same time the MADAMIRA will be highly sure from the prediction of

this diacritization and we will ignore the diacritized words that MADAMIRA was not

sure about. We found that 60% confidence value of the hybrid experiment gave us the

lowest value of DER and WER so we used 60% for the following experiments.

Figure 14. DER values of the partial experiment that has two hidden layers of 250

neurons.

2.49 2.46 2.49 2.49 2.47 2.48 2.516
2.54

2.84

3.74 3.72

2.3
2.4
2.5
2.6
2.7
2.8
2.9

3
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

10 20 30 40 50 60 70 80 88 90 100

D
E

R
 (

%
)

Confidence

53

Figure 15. WER values of the partial experiment that has two hidden layers of 250

neurons.

Figure 16. DER values of the hybrid experiment that has two hidden layers of 250

neurons.

9.57
9.43

9.59 9.6 9.5 9.48 9.6 9.55
10.17

13.55 13.51

9

9.5

10

10.5

11

11.5

12

12.5

13

13.5

14

10 20 30 40 50 60 70 80 88 90 100

Confidence

W
E

R
 (

%
)

2.45 2.41 2.42 2.45 2.41 2.39
2.441

2.51

2.76

3.61 3.548

2.3
2.4
2.5
2.6
2.7
2.8
2.9

3
3.1
3.2
3.3
3.4
3.5
3.6
3.7

10 20 30 40 50 60 70 80 88 90 100

D
E

R
 (

%
)

Confidence

54

Figure 17. WER values of the hybrid experiment that has two hidden layers of 250

neurons.

5.2.2 Network size

 We have tested the effect of changing the number of hidden layers on error rates.

We know that the number of hidden layers depend on the hardness of the problem. Here

we need to solve diacritization problem. In this problem, we deal with character then

with words and finally with sentences so this indicates that we need to have deep neural

network.

We did several experiments to determine the optimal number of hidden layers

that we will use. We worked on the partial and hybrid experiments of 60% confidence.

We calculated the classification error rate (the rate of number of diacritzation error to

the total number of symbols). Figure 18 and 19 show the classification errors rate of the

two experiments after we changed the number of hidden layers from one layer to four

layers. We have noticed that increasing number of layers reduce the classification

errors. Also, the error rate of the hybrid and partial experiments are close to each other

and the hybrid experiment gives better result comparing with the partial experiment.

9.38
9.23 9.26

9.4
9.22 9.19 9.339 9.4

10

13.15 13.03

9

9.5

10

10.5

11

11.5

12

12.5

13

13.5

14

10 20 30 40 50 60 70 80 88 90 100

W
E

R
 (

%
)

Confidence

55

This is predictable since the input sequences for hybrid experiment are partially

diacritzed and tokenized and the input sequences for partial experiment are only

partially diacritzed. The benefit we have from tokenized words will solve few cases of

complex words and this will help RNN so we will get more improvement for hybrid

experiment over partial experiment.

For partial experiment, we achieve the same classification errors when we use

three and four hidden layers. For hybrid experiment, we achieve a little improvement

when using three and four hidden layers. We need to determine which one are the best

three or four layers. So, we need to know the training time for the hybrid experiment

because changing number of hidden layers from one layer to four layers gave us a little

improvement. So, we didn’t need to further increase the number of hidden layers and

we need to know the training time taken by three and four layers configuration.

Figure 18. Effect of changing number of hidden layers on the partial experiment of 60%

confidence degree and each hidden layer consist of 250 nodes.

2.5 2.48 2.46 2.46

0

0.5

1

1.5

2

2.5

3

C
la

ss
if

ic
at

io
n

 E
rr

o
r

%

One layer Two layers Three layers Four layers

56

Figure 19. Effect of changing number of hidden layers on the hybrid experiment of 60%

confidence degree and each hidden layer consist of 250 nodes.

5.2.3 Training and Testing Time

In this work, we are interested in the training time because in (Abandah, et al.,

2015) the training time of RNNLIB was very long and this time is important to be able

to work on large data sets and to enhance the accuracy. Also, the testing time is

important because we need to know how much time it will take for diacritizing

undiacritized texts.

We measured the training and testing times for the four experiments when we

have different number of layers (from one layer to four layers), as shown in Figure 20

and 21. The training and testing times of four layers configuration achieved the higher

value because more layers (more weights to train) will take more time to train and the

same with testing time, it will grow. Also, we noticed that testing times gave little

improvement when we change the number of layers.

From Figure 20 and 21, we conclude that the hybrid experiment of 3-layers

configuration is the best when we consider the accuracy (classification errors rates is

2.31) and the training time (2 hours and 42 minutes). We noticed from Figure 19 that

one layer configuration is not good as three or four layers since we need deep neural

2.37 2.36 2.31 2.3

0

0.5

1

1.5

2

2.5

3

C
la

ss
if

ic
at

io
n

 E
rr

o
r

%

One layer Two layers Three layers Four layers

57

network configuration and three layers provide good improvement over one and two

layers configuration. Also, the four layer configuration is slower than three layers

configuration so we consider 3-layers configuration.

Therefore, we adopt the one-to-one transcription method, the best confidence

value is 60% and the optimal number of layers for this problem is three hidden layers

each with 250 nodes.

Figure 20. Training time of the four experiments when we change the number of layers

from 1 layer to 4 layers.

Figure 21. Testing time of the four experiments when we change the number of layers

from 1 layer to 4 layers.

0:41:56

1:18:00

0:44:47

1:19:001:15:00

1:59:00

1:18:00

2:11:00
1:58:00

2:28:00

1:59:00

2:42:00

3:17:00

4:19:00

3:35:00

5:16:00

0:00:00

1:12:00

2:24:00

3:36:00

4:48:00

6:00:00

0:01:57 0:01:55 0:01:58 0:02:02
0:02:16 0:02:16 0:02:20 0:02:23

0:02:36 0:02:38
0:02:50 0:02:46

0:02:57 0:03:00
0:03:08 0:03:08

0:00:00

0:00:43

0:01:26

0:02:10

0:02:53

0:03:36

Statstical Partial Morphological Hybrid

T
ra

in
in

g
 T

im
e

(H
o

u
rs

)
T

es
ti

n
g
 T

im
e

(H
o
u
rs

)

Statstical Partial Morphological Hybrid

58

5.3 Experiments Results

In this section we present the results of the four experiments that we discussed in

Section 4.3.2, we need to study the effect of adding linguistic information to the input

sequences of RNN at three levels and also in case we don’t have any linguistic

information, the following are our four experiments:

1. Statistical Experiment

2. Partial Diacritization Experiment

3. Morphological Experiment

4. Hybrid Experiment

Table 6 shows the results of the four experiments using LDC ATB3 corpus.

DER_all and WER_all are the error rates when all diacritization errors are calculated.

DER_ilast and WER_ilast are the error rates when ignoring the diacritization errors in

the last letter of each word. The last raw shows the difference between DER_all and

DER_ilast. All these experiments are trained using the same splitting of training and

testing set that is described in Section 4.5 and all these results are calculated after

applying post-processing corrections which we described in Section 4.6.

Table 6. Diacritization results of the four experiments using LDC ATB3 corpus.

Accuracy Statistical Partial Morphological Hybrid

DER_all 3.62 2.46 3.40 2.39

WER_all 12.24 8.67 11.54 8.40

DER_ilast 1.70 0.80 1.63 0.78

WER_ilast 5.36 2.35 5.17 2.30

DER_last 1.92 1.65 1.77 1.61

We have noticed that the diacritization error of all experiments decrease when

we ignore the diacritization error of the last letters of each word. This is predictable

59

because predicting the syntactic diacritics of the last letter is much hard than predicting

the morphological diacritics. The syntactic diacritics depend on the word location in the

parsing tree. Also, as we noticed that the WER is affected by the diacritic of last letter

because if the word has a suffix then the syntactic diacritics will not appear on the last

letter of the word but it will appear on the stem such as ” ها م DER_last refers to the .”تحك

rate of last-letter diacritization errors to the diacritization errors of all letters. About

92%, 65%, 77%, and 61% of the errors are due to case ending diacritics and these

percentages are for statistical, partial, morphological, and hybrid experiments

respectively.

5.4 Post-processing Contribution

We use post-processing techniques to improve diacritization error rates. Table 7

shows the impact of the post-processing techniques on DER calculation. We notice that

sukun correction has the highest percentage among other techniques because LDC

ATB3 is partially diacritized. Fatha correction reduces DER values with 1.4%. It is not

a significant value but it will contribute in reducing the error rates.

Table 7. The effect of the post-processing techniques on DER reduction.

Technique Reduction %

Sukun correction 3.7

Fatha correction 1.4

Dictionary correction 1.24

Total 6.34

The low contribution of dictionary correction is due to its construction from the

diacritized words variants that exist in the training set so it will not have the new words

and vocabulary of the last two months stories that exist in the test set. If we use a bigger

60

dictionary that contains all the words with all diacritized words variants, we could have

a better contribution of dictionary correction.

5.5 Discussion

We found that the hybrid experiment achieves the best results among the other

three experiments because it benefits from partial diacritization and tokenization

information that were added to the input sequences and this will help RNN in predicting

the rest of the diacritics.

Then the partial experiment takes the second order because it adds partial

diacritization information to the input sequences and this will help RNN. This is

predictable because comparing to the hybrid approach it provides a little information.

Morphological experiment is better than statistical experiment because it adds

morphological information (tokenization) to the input sequences and this will help RNN

but statistical approach doesn’t have any linguistic information.

Figure 22 and 23, show DER and WER values of the four experiments. We

notice that the DER value of the statistical experiment is 3.62 and when we use the

hybrid approach, which uses CURRENNT library and MADAMIRA morphological

analyzer, the DER value was reduced to 2.39. This is indication that this hybrid system

is good because CURRENT will speedup the training time since its use CUDA and

MADAMIRA will add morphological info to CURRENT, all of these will help in

reducing the DER value and will help in training large dataset.

61

Figure 22. DER results of the four experiments.

Figure 23. WER results of the four experiments.

Figure 24 shows the classification error of the four experiments. The

classification error of experiment four is the best result because it has more linguistic

information comparing with other experiments.

3.62

2.46

3.40

2.39

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

12.24

8.67

11.54

8.40

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

W
E

R
 (

%
)

D
E

R
 (

%
)

Statistical Partial Morphological Hybrid

Statistical Partial Morphological Hybrid

62

Figure 24. RNN Classification error rates for all experiments.

5.5.1 Comparison with state-of-art systems

Table 8 shows the accuracy results of the best published system in the field of

automatic diacritization of Arabic text and our system. Zitouni et al. (2006), Habash and

Rambow (2007), Rashwan et al. (2011), Said et al. (2013), and Arabiyat (2015) are all

using hybrid approaches that combine rule based approach with statistical approach.

Abandah et al. (2015) use statistical approach depends on the deep bidirectional LSTM

architecture. All these systems use LDC ATB3 benchmark to provide a fair comparison.

Also, we compare our system to Metwally et al. (2016) which is a recent research in this

field and its hybrid approach that uses LDC ATB3 benchmark.

4.2

2.46

3.7

2.31

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

C
la

ss
if

ic
at

io
n

 E
rr

o
r

%

Statistical Partial Morphological Hybrid

63

Table 8. Comparison between our diacritization system results with related works.

Systems All Diacritics Ignore Last DER Last

DER WER

DER WER

Zitouni et al. (2006)

5.5 18

2.5 7.9

3

Habash and Rambow (2007)

4.8 14.9

2.2 5.5

2.6

Rashwan et al. (2011)

3.8 12.5

1.2 3.1

2.6

Said et al. (2013)

3.6 11.4

1.6 4.4

2

Abandah et al. (2015) (statistical approach)

2.72 9.07

1.38 4.34

1.34

Arabiyat (2015) (hybrid approach using RNNLIB):

 3 10.36

1.42 4.52

1.58 Statistical experiment

Partial experiment

2.74 9.66

1.24 3.95

1.5

Morphological experiment

2.89 10.17

1.36 4.43

1.53

Hybrid experiment

2.8 9.92

1.26 4.07

1.54

Metwally et al. (2016) - 13.7 - 4.3 -

This Work:

 Statistical experiment

3.62 12.24

1.70 5.36

1.92

Partial experiment

2.46 8.67

0.80 2.35

1.65

Morphological experiment

3.40 11.54

1.63 5.17

1.77

Hybrid experiment 2.39 8.40 0.78 2.30 1.61

As shown in Table 8, our experiments give the best results compared to all the

state-of-the-art hybrid approaches. Our hybrid experiment achieved the best results

among the other three linguistic-added information experiments and gives 12% DER

improvement and 7% WER improvement over the best reported result of the statistical

approach of Abandah et al. (2015) and 34% DER improvement and 26% WER

improvement over the best reported result of the hybrid approach of Said et al. (2013).

Also, the statistical approach of Abandah et al. (2015) achieved the best result of

DER_Last value.

When we compare our system with the hybrid system of Arabiyat (2015) that

use RNNLIB, our system gives 13% DER improvement and 13% WER improvement

over the best result of the partial experiment that uses RNNLIB. Also, our hybrid

experiment that uses CURRENNT library and MADAMIRA morphological analyzer

achieved DER improvement of 15% and WER improvement of 15% over the hybrid

64

experiment that uses RNNLIB library and BAMA morphological analyzer of Arabiyat

(2015).

Our statistical and morphological experiments give DER of 3.62 and 3.40,

respectively. The statistical and morphological experiments of Arabiyat (2015) give

DER of 3 and 2.89, respectively. It’s predictable to have different results since we are

using a different library that has a special feature of using CUDA. We achieved close

results that differ in a few percent but the most important thing that we achieved better

results in DER and WER values while using the hybrid experiment.

When we compare our system with the recent research Metwally et al. (2016)

we notice that the WER of this system gives higher value than our WER values and also

this WER value is higher than Said et al. (2013). However, when we compare the value

of the morphological WER of Metwally et al. (2016) with Said et al. (2013) and

Abandah et al. (2015) we notice that it’s close to them. When we compare this value

with our system it is better than statistical and morphological experiments.

5.5.2 Comparison between our Hybrid Approach and Arabiyat (2015) Hybrid

Approach

In this section, we compare this work with Arabiyat (2015) work as shown in

Table 9 below. The main goal of both works was to improve the accuracy of

diacritization by using hybrid approach. This work used MADAMIRA morphological

analyzer and Arabiyat’s work used BAMA morphological analyzer. These two tools

were totally different and produced different output. MADAMIRA output file and how

we extract partially diacritized and tokenized data from it was explained in details in

section 4.3.2. Regarding BAMA, it generated all possible diacritized and tokenized

solutions for every word (there is a figure of BAMA Solution in section 3.2.2). Then,

65

they made for each word an array of prefixes, stems, and suffixes for all solutions. They

take the matched diacritization in all solutions with the morphological segmentation and

they discarded the diacritics in case they had different diacritics for same letter in all

solutions.

BAMA didn’t produce the syntactic diacritics but MADAMIRA can produce it.

Also, BAMA provide tokenization for the words in the same file but MADAMIRA

provide tokenization in separate file.

Table 9. Comparison between our hybrid approach and Arabiyat (2015) hybrid

approach.

 This work Arabiyat (2015)

Morphological Tool MADAMIRA BAMA

RNN Library CURRENNT RNNLIB

Text Correction
- Letter correction

- Target normalization

- Space normalization

- Extra alef removal

- Letter correction

- Out of vocabulary conversion

- Target normalization

This work used text correction to solve some issues between the output of

MADAMIRA and target sentences such as letter correction and target normalization

(explained in section 4.3.3). Arabiyat’s work used text correction such as “space

normalization” to remove the extra space in BAMA’s result and ensure one to one

mapping between the output of BAMA and target sentences, “extra alef removal” to

delete the extra alef in BAMA’s result, “letter correction” to deal with BAMA’s issues

such as incorrect letters, increasing or decreasing the number of letters and replication

for some words, “out of vocabulary conversion” is used to replace the numbers that is

generated by BAMA when it can’t analyze proper and foreign names with the correct

names from target sequence, and “target normalization”.

66

Both works used the output of their morphological analyzer to build the four

experiments (statistical, partial, morphological and hybrid experiments).The input

sequences for the hybrid experiments in both works are partially diacritized and

tokenized from the morphological analyzer that both works used. The input sequences

for the morphological experiments in both works are partially tokenized. The input

sequences for the partial experiments in both works are partially diacritized. The input

sequences for the statistical experiments in both works are not diacritized and not

tokenized. Also, both works used the same “one-to-one” encoding and encoded the

Arabic text into decimal format (explained in section 4.3.1).

For sequence transcription, this work used CURRENNT library (C++/CUDA)

and Arabiyat’s work used RNNLIB library (C++). Since both works used different

library, we need different data conversion script to convert the decimal file to format

suitable for both library. Also, RNNLIB supported weight noise regularization option,

its specific feature of RNNLIB and used to solve overfitting problem of RNN training,

but CURRENNT library didn’t support that.

Regarding the post-processing techniques, which were used to correct some

errors in the output sequences of RNN libraries, both works used the same techniques

such as letter correction, sukon correction, fatha correction and dictionary correction.

These techniques were explained in details in section 4.6.

We conclude that for both works, the post-processing techniques were the same

but all pre-processing techniques were different because this work used different tools

to provide partially diacritized and tokenized data and used different library to train the

input sequences.

67

Figure 25 and 26 show the results of both works. The hybrid experiments of this

work provides 13% DER improvement and 13% WER improvement over the best result

of the partial experiment of Arabiyat’s work.

Figure 25. DER values of our hybrid approach and Arabiyat (2015) hybrid approach.

Figure 26. WER values of our hybrid approach and Arabiyat (2015) hybrid approach.

3

2.74
2.89 2.8

3.62

2.46

3.4

2.39

0

0.5

1

1.5

2

2.5

3

3.5

4

Statistical Partial Morphological Hybrid

Arabiyat (2015)

This Work

D
E

R
 (

%
)

10.36
9.66

10.17 9.92

12.24

8.67

11.54

8.4

0

2

4

6

8

10

12

14

Statistical Partial Morphological Hybrid

Arabiyat (2015)

This Work

W
E

R
 (

%
)

68

5.5.3 Acceleration using CURRENNT

In this section, we compare the training time taken by RNNLIB library, a single

CPU and pure C++ library by Graves (2008), with the training time taken by

CURRENNT library, a C++/CUDA based library implemented by Weninger et al.

(2015). However, this training time was calculated for the statistical experiment as

shown in Table 10. The two hidden layers of both libraries were Bidirectional LSTM

and each of size 250. Also, both libraries were used for sequence labeling problem and

were trained and tested on LDC ATB3.

Table 10. Comparison between the two libraries using the training time.

Libraries Names Training Time

RNNLIB 17 Days

CURRENNT 1 hour and 15 minutes

We found that CURRENNT has provided a 326x speedup in deep Bidirectional

LSTM training over RNNLIB because it supports GPU implementation of deep LSTM

RNN, benefits from mini-batch learning and can process many sequences in parallel.

This is indication that CURRENNT will help in processing a large database and

enhance accuracy since experimental evidence shows that the accuracy will improve

when we increase the size of training data (Abandah, et al., 2015).

5.5.4 Error Analysis

In this section, we show the distribution of word errors based on the number of

diacritization errors in each word and if there is a diacritic error in the last letter of word

or not. Table 11 shows the distribution of the errors for all experiments. One% means

the percentage of the words that have only one diacritization error. Two% means the

69

percentage of the words that have two diacritization errors. Three+% means the

percentage of the words that have three or more errors.

Table 11. The distribution of word errors for all experiments.

We have noticed that the results of the hybrid and partial experiments are closed

to each other and the results of the statistical and morphological experiments are closed

to each other. We get the best improvement of the results when we do the hybrid and

partial experiments comparing with the result of the statistical and morphological

experiments.

The table shows that the percentages of the words that are having one

diacritization error are about 80% for the statistical and morphological experiments and

about 85% for the hybrid and partial experiments. The percentages of the words that are

having two errors are about 15% for the statistical and morphological experiments and

about 11% for the hybrid and partial experiments. The percentages of the words that are

having three or more errors are about 4% for all experiments.

Also, the percentages of the words that are having errors in the last letter are

about 65% for the statistical and morphological experiments and about 80% for the

hybrid and partial experiments. This is an indication that the predicting of syntactic

diacritics is hard (Zitouni, et al., 2006) and will increase the DER and WER values.

Experiment Errors per word One% Two% Three+% Total %

Statistical
Last letter correct 24.07 8.27 1.82 34.17

Error in last letter 55.60 7.40 2.83 65.83

Partial
Last letter correct 12.23 5.66 1.39 19.28

Error in last letter 72.91 5.11 2.70 80.72

Morphological
Last letter correct 25.25 8.04 1.58 34.87

Error in last letter 55.17 6.99 2.96 65.13

Hybrid
last letter correct 12.04 5.61 1.33 18.98

Error in last letter 72.69 5.46 2.87 81.02

70

We have manually checked 200 error samples. Table 12 shows the target

sequences and the output sequences of six error samples and we underline the words

that have error. We observed that about 28% of the words that have diacritic error are a

valid Arabic verb or noun. For example, the target word verb of sample 1 is ن مِّ ت ؤ

(provide) and the output word verb is ن م The output word verb of sample 2 .(believe) ت ؤ

is ت مَّت (completed) and the target word verb is ت م ت (related or relevant). The output word

noun of sample 3 لائ م لائ م is not a valid Arabic word and the target word noun is م م

(suitable).

Table 12. Sample sequences that have errors

Sample Target Sequence Output Sequence

ن ك ما 1 مِّ يَّة ت ؤ حِّ عاي ة الصِّ ة ف ي الرِّ د ض الم ساع ن ك ما ب ع م يَّة ت ؤ حِّ عاي ة الصِّ ة ف ي الرِّ د ض الم ساع ب ع

2
ه ي لا ت و يِّ ت م لام س ين الإ كان الدِّ ل ة لِ ر ب ص

ن يف الح
ه ي لا يِّ ت مَّتو لام س ين الإ كان الدِّ ل ة لِ ر ب ص

ن يف الح
ط لاق الشَّباب لائ م م 3 لائ م لإ ط لاق الشَّباب م لإ
رِّ ف ي ل ب نان و 4 راق م ص الع ر ف ي ل ب نان و و ص راق م الع و
ر 5 د ص ر ناه و م ت زاز نا ف خ ا ع ر و د ص ناه و م ر نا ف خ ت زاز ا ع و
كَّر 6 ذ باد رات و ة الِ مان ة ب م دار س العامَّ ر ل لم ك ذ باد رات و ة الِ مان ة ب م دار س العامَّ ل لم

Sample 4 represents an example of diacrtization errors due to the target words of

test sample. The target word is ِّر ر and the output word is (insistent) م ص ص We .(Egypt) م

observed that about 2% of the words that have diacritic error are due to target words.

Sample 5 represents an example of diacrtization errors due to the complex words

that have prefix, suffix, or both. The target word in sample 5 is the noun ر نا (honor) ف خ

and it has pronoun suffix “naa” نا. Predicting diacritics of these complex words are hard

because we must be sure from diacritics of the last letter of stem and the last letter of

suffix and we have noticed that about 44% of words in this sample are complex words.

Sample 6 shows an example of predicting shadda diacritic. We have noticed that

about 6% of the words in this sample are having shadda diacritic relative to all diacritics

71

and about 22% of output words can’t predict the shadda diacritic of target words. But in

some cases output words may wrongly predict shadda even that the target word didn’t

have shadda.

We also do experiments to see the effect of having shadda in input sequences

because shadaa diacritic is harder to predict than other diacritics. We noticed that some

Arabic texts contain shadda diacritic even though other diacritics are missing. We ran

two experiments on LDC ATB3 using statistical experiment. In first run we have only

shadda in input sequences (true shadada) and in the second run we don’t have any

diacritics and we want to predict all diacritics including shadda (predicted shadda). The

results are shown in Figure 27. We found that having shadda in input sequences gives a

better classification error rate with an improvement of 5% but we must predict shadda

because it’s one of the eight diacritics that we want to predict.

Figure 27. The effect of shadda diacritic on classification error.

4.1
3.9

0.0

1.0

2.0

3.0

4.0

5.0

predicted_shaddah true_shaddah

cl
as

si
fi

ca
ti

o
n
 e

rr
o
r

%

72

CHAPTER VI

Conclusions and Future Work

The process of automatically adding diacritcs to Arabic text is called automatic

diacrtization. Its importance lies in reaching to the correct understanding and analysis of

the text because using different diacritical marks over the same word constants result in

a different meaning and pronunciation for this word. For example: ذهب (this word is

without diacritic) may means (ه ب ه ب) gold or (ذ went but adding diacritics will solve (ذ

this issue.

The techniques used in solving the diacritization problem can be classified into

three approaches: rule-based, statistical, and hybrid approaches. To the best of our

knowledge, Abandah et al., (2015) proposed for the first time the using of RNN

sequence transcription method to solve diacrtization problem with deep bidirectional

LSTM architecture. In order to improve diacritization accuracy, we can use

morphological analyzer that will add linguistic information to the input sequences and

help RNN transcription learning.

In this work, we use MADAMIRA morphological analyzer to have partially

diacritized and tokenized data and then we use this data for CURRENNT, the first

publicly-available tool that performs parallel implementation of deep LSTM RNN

architecture, to produce a fully diacritized data and to speedup training phase. The deep

bidirectional LSTM architecture is used to deal with dependency between words in long

sentences and in both directions. We found that the best configuration was the using of

one-to-one transcription method with three hidden layers (each 250 neuron) and the best

confidence value was 60%.

73

Our diacritization system achieved state-of-the-art results on LDC ATB3 and

gives 34% DER improvement and 26% WER improvement over the best reported

hybrid system of Said et al. (2013).

In this work, we used some post processing correction techniques to improve

diacritization accuracy. In future, we can add more post processing correction

techniques by using additional rules of Arabic text diacritization such as shaddah and

sukun diacritics don’t appear at initial letter of word, tanween diacritics appear only at

last letter of word, (ا, آ and ى) letters don’t have any diacritics, (ة, ء and إ) letters don’t

have shadda diacritic, (ا, و and ي) letters are preceding by letters that have diacritics

similar to the vowel i. e, fatha, damma and kasrah, respectively. Also we will consider

the using of CURRENNT library and MADAMIRA morphological analyzer when we

work on a large training corpus. We have noticed the impact of using this hybrid

approach on reducing the DER value of the statistical experiment from 3.62 to 2.39

when we use this hybrid approach. CURRENT will speedup the training time of

Bidirectional LSTM and it’s a great tool for sequence transcription. On LDC ATB3

data, we achieved a 326x speedup over the using of RNNLIB library. One of

CURRENT’s drawbacks, it is difficult to compile with modern version of compilers,

uses old CUDA runtime, and not actively developed.

 Our research of the computer processing of Arabic text is important and useful

because we have many commercial applications of Arabic automatic diacritization

system and we must be sure from these applications. Also, we noticed that many earlier

researches of diacritization problem were done by non-Arabic speakers and they solved

this problem using statistical approaches such as Gal in (Gal, 2002), (Vergyri and

Kirchhoff, 2004), (Nelken and Shieber, 2005) and others. We appreciate their works but

74

we are Arabic native speakers and we can understand this language so we must serve

our language (the language of Quran) and this language is used by approximately 1.6

billion Muslim in the world. We must be aware and honest in serving this language.

75

REFERENCES

Abandah, G. Graves, A. Al-Shagoor, B. Arabiyat, A. Jamour, F. Al-Taee, M (2015),

Automatic diacritization of Arabic text using recurrent neural networks, International

Journal on Document Analysis and Recognition, Available on doi:10.1007/s10032-

015-0242-2 © Springer-Verlag Berlin Heidelberg.

Abandah, G. A., Jamour, F. T., and Qaralleh, E. A. (2014), Recognizing handwritten

Arabic words using grapheme segmentation and recurrent neural networks.

International Journal on Document Analysis and Recognition (IJDAR), 17(3), pp.

275-291.

Arabiyat, A. (2015), Automatic Arabic Text Diacritization Using Recurrent Neural

Networks. Unpublished Master Thesis, University of Jordan, Amman, Jordan.

Azmi, A. and Almajed, R. (2013), A survey of automatic Arabic diacritization

techniques. Natural Language Engineering, Available on CJO

doi:10.1017/S1351324913000284.

Boudchiche, M., Mazroui, A., Bebah, M. O. A. O., Lakhouaja, A., and Boudlal, A.

(2016). AlKhalil Morpho Sys 2: A robust Arabic morpho-syntactic analyzer. Journal of

King Saud University-Computer and Information Sciences, Available on

doi:10.1016/j.jksuci.2016.05.002.

Buckwalter, T. (2004), Buckwalter Arabic Morphological Analyzer, v2.0 edn,

Linguistic Data Consortium, Philadelphia.

Burges, C. J. (1998), A Tutorial on Support Vector Machines for

Pattern Classification, Data mining and Knowledge Discovery, 2(2), pp.121-167.

Cho, K., van Merrienboer, B., Gulcehre, C., Bougares, F., Schwenk, H., and Bengio, Y.

(2014), Learning phrase representations using rnn encoder-decoder for statistical

machine translation, arXiv preprint arXiv:1406.1078.

76

Ciresan, D. C., Meier, U., Gambardella, L. M., and Schmidhuber, J. (2010), Deep, big,

simple neural nets for handwritten digit recognition, Neural computation, 22(12), pp.

3207-3220.

Cook, S. (2012). CUDA programming: a developer's guide to parallel computing

with GPUs. 1st edition. San Francisco, CA: Morgan Kaufmann Publishers.

El Hihi, S. and Bengio, Y. (1995), Hierarchical Recurrent Neural Networks for Long-

Term Dependencies, Proceedings of the NIPS, pp. 493-499.

El-Imam, Y. (2004), Phonetization of Arabic: rules and algorithms, Proceedings of the

Computer Speech & Language, 18(4), pp.339-373.

Elman, J. (1990), Finding structure in time, Cognitive science, 14(2), 179-211.

El-Sadany, T. and Hashish, M. (1988), Semi-Automatic Vowelization of Arabic Verbs,

Proceedings of the 10th National Computer Conference, Saudi Arabia, pp. 725-732.

Farghaly, A. and Shaalan, K. (2009), Arabic natural language processing: Challenges

and solutions. ACM Transactions on Asian Language Information Processing

(TALIP), 8(4), 14.

Gal, Y. (2002), An HMM Approach to Vowel Restoration in Arabic and Hebrew,

Proceedings of the Workshop on Computational Approaches to Semitic Languages.

Philadelphia, pp. 27–33.

Gers, F. A., Schraudolph, N. N., and Schmidhuber, J. (2003), Learning precise timing

with LSTM recurrent networks, The Journal of Machine Learning Research, 3,

pp.115-143.

Graves, A. (2008), Supervised Sequence Labelling with Recurrent Neural

Networks. PhD thesis, Technical University Munich, Munich, Germany.

77

Graves, A., Liwicki, M., Bunke, H., Schmidhuber, J., and Fernández, S. (2008),

Unconstrained on-line handwriting recognition with recurrent neural networks. In

Advances in Neural Information Processing Systems (NIPS), pp. 577-584.

Graves, A., Mohamed, A. R., and Hinton, G. (2013), Speech recognition with deep

recurrent neural networks, Proceedings of the Acoustics, Speech and Signal

Processing (ICASSP), IEEE International Conference, pp. 6645-6649.

Graves, A. and Schmidhuber, J. (2005), Framewise phoneme classification with

bidirectional LSTM and other neural network architectures, Neural Networks, 18(5-6),

pp. 602-610.

Habash, N. and Rambow, O. (2007), Arabic Diacritization Through Full Morphological

Tagging, Proceedings of the North American Chapter of the Association for

Computational Linguistics (NAACL), pp. 53-56.

Habash, N., Soudi, A., and Buckwalter, T. (2007), On Arabic transliteration, In Arabic

computational morphology, Springer Netherlands, pp. 15-22.

Hermans, M. and Schrauwen, B. (2013), Training and analysing deep recurrent neural

networks, Proceedings of the Neural Information Processing Systems, pp. 190-198.

Hifny, Y. (2012), Smoothing techniques for Arabic diacritics restoration, Proceedings

of the 12th Conference on Language Engineering (ESOLEC ’12), Cairo, Egypt.

Hochreiter, S. and Schmidhuber, J. (1997), Long short-term memory, Neural

computation, 9(8), pp.1735-1780.

Huang, P. S., He, X., Gao, J., Deng, L., Acero, A., and Heck, L. (2013), Learning deep

structured semantic models for web search using clickthrough data, Proceedings of the

22nd ACM international conference on Conference on information & knowledge

management, pp. 2333-2338.

78

Jamro, W. A., Shaikh, H., and Mahar, J. A. (2016). Comprehensive Analysis of Neural

Network Techniques in Computational Linguistic Applications. Asian Journal of

Engineering, Sciences and Technology, 15.

Kheder, M. (1999), Use of Neural Networks in Arabic Text Transliteration. Proceedings

of the 4th International Conference on Recent Trends in Computer Science

Applications & Information Systems, Philadelphia University Amman, Jordan, pp.

13-14.

Kirchhoff, K., Bilmes, J., Das, S., Duta, N., Egan, M., Ji, G., ... and Vergyri, D. (2002),

Novel approaches to Arabic speech recognition: report from the 2002 Johns-Hopkins

summer workshop, ICASSP'03, Hong Kong, vol.l, pp. 344-347.

Lafferty, J., McCallum, A., and Pereira, F. (2001). Conditional random fields:

Probabilistic models for segmenting and labeling sequence data. In Proceedings of the

eighteenth international conference on machine learning, ICML, Vol. 1, pp. 282-

289.

Lewis, M. P., Simons, G. F., and Fennig, C. D. (2016), Ethnologue: Languages of the

World, 19th edn. SIL International, Dallas, Tex. Online version: http://www.

ethnologue. com.

Maamouri, M., Bies, A., Buckwalter, T., and Mekki, W. (2004), The Penn Arabic

treebank: Building a large-scale annotated Arabic corpus, Proceedings of the NEMLAR

conference on Arabic language resources and tools, Cairo, Egypt, pp. 102-109.

Metwally, A. S., Rashwan, M. A., and Atiya, A. F. (2016). A multi-layered approach

for Arabic text diacritization. In Cloud Computing and Big Data Analysis

(ICCCBDA), 2016 IEEE International Conference, pp. 389-393.

Mikolov, T., Karafit, M., Burget, L., Cernocky, J., and Khudanpur, S. (2010), Recurrent

neural network based language model. In Eleventh Annual Conference of the

International Speech Communication Association, pp. 1045–1048.

79

Nelken, R. and Shieber, S. (2005), Arabic Diacritization Using Weighted Finite-State

Transducers, Proceedings of the Workshop on Computational Approaches to

Semitic Languages. University of Michigan, Ann Arbor, pp. 79–86.

Nizar Habash's Home Page. Last accessed November 1th 2016. Available from

http://www.nizarhabash.com/.

Nvidia Geforce Page. Last accessed December 28th 2016. Available from

http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-580/specifications

Pasha, A., Al-Badrashiny, M., Kholy, A. E., Eskander, R., Diab, M., Habash, N.,

Pooleery, M., Rambow, O., and Roth, R. (2014). MADAMIRA: A Fast, Comprehensive

Tool for Morphological Analysis and Disambiguation of Arabic. In Proceedings of the

Language Resources and Evaluation Conference (LREC), Reykjavik, Iceland., Vol.

14, pp. 1094-1101. Online version of MADAMIRA:

http://nlp.ldeo.columbia.edu/madamira/.

Pineda, F. (1987), Generalization of back-propagation to recurrent neural networks.

Physical review letters, 59(19), 2229.

Rashwan, M. A., Al-Badrashiny, M. A., Attia, M., Abdou, S. M., and Rafea, A. (2011),

A Stochastic Arabic Diacritizer Based on a Hybrid of Factorized and Unfactorized

Textual Features, IEEE Transactions on Audio, Speech, and Language Processing,

vol.19, no.1, pp.166-175.

Robinson, A (1994), An application of recurrent nets to phone probability estimation,

Neural Networks, IEEE Transactions, 5(2), pp.298-305.

Said, A., El-Sharqwi, M., Chalabi, A., and Kamal, E. (2013), A hybrid approach for

Arabic diacritization. A Hybrid Approach for Arabic Diacritization. Proceedings of the

Natural Language Processing and Information Systems, Springer Berlin Heidelberg,

pp. 53-64.

Schuster, M. and Paliwal, K. (1997), Bidirectional recurrent neural networks, Signal

Processing, IEEE Transactions on, 45(11), pp. 2673-2681

https://www.google.jo/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwi43KeSmYfQAhUFXhoKHdioDdYQFggaMAA&url=http%3A%2F%2Fwww.nizarhabash.com%2F&usg=AFQjCNH2DKE9NNqW83NDzzWdUZibLrBCBQ
http://www.nizarhabash.com/

80

Shaalan, K. (2010), Rule-based approach in Arabic natural language processing,

International Journal on Information and Communication Technologies (IJICT),

Serial Publications 3(3):11–9.

Shahrour, A., Khalifa, S., and Habash, N. (2015), Improving Arabic Diacritization

through Syntactic Analysis, Proceedings of the 2015 Conference on Empirical

Methods in Natural Language Processing. Lisbon, Portugal, pp. 1309–1315.

Sutskever, I., Martens, J., and Hinton, G. E. (2011). Generating text with recurrent

neural networks. In Proceedings of the 28th International Conference on Machine

Learning (ICML-11), pp. 1017-1024.

Svozil, D., Kvasnicka, V., and Pospichal, J. (1997). Introduction to multi-layer feed-

forward neural networks. Chemometrics and intelligent laboratory systems, 39(1),

pp. 43-62.

Tan, P. N., Steinbach, M., and Kumar, V. (2006). Classification: basic concepts,

decision trees, and model evaluation. Introduction to data mining, 1st edn., pp. 145-

205. Boston: Pearson Addison Wesley.

Vergyri, D. and Kirchhoff, K. (2004), Automatic Diacritization of Arabic for Acoustic

Modeling in Speech Recognition, Proceedings of the 20th International Conference

on Computational Linguistics. Geneva, pp. 66–73.

Weninger, F., Bergmann, J., and Schuller, B. (2015), Introducing CURRENNT: The

Munich Open-Source CUDA RecurREnt Neural Network Toolkit. Journal of Machine

Learning Research, vol.16, pp.547-551. Software available from:

https://sourceforge.net/projects/currennt/.

Zayyan, A. A., Elmahdy, M., binti Husni, H., and Al Ja'am, J. M. (2016). Automatic

diacritics restoration for modern standard arabic text. In Computer Applications &

Industrial Electronics (ISCAIE), 2016 IEEE Symposium on. IEEE, pp. 221-225.

Zerrouki, T. (2011), Tashkeela: Arabic vocalized text corpus, Retreived April 5, 2015,

from http://aracorpus.e3rab.com/.

https://sourceforge.net/projects/currennt/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7569774
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7569774
http://aracorpus.e3rab.com/

81

Zitouni, I., Sorensen, J. S., and Sarikaya, R. (2006), Maximum entropy based

restoration of Arabic diacritics, Proceedings of the 21st International Conference on

Computational Linguistics and 44th Annual Meeting of the Association for

Computational Linguistics (ACL), Sydney, Australia, pp.577-584.

82

Appendix A

Unicode and Buckwalter transliteration of Arabic characters.

Arabic Character Shape Unicode Buckwalter

Arabic Letter HAMZA ء U+0621 "

Arabic Letter ALEF with MADDA above آ U+0622 |

Arabic Letter ALEF with HAMZA above أ U+0623 >

Arabic Letter WAW with HAMZA above ؤ U+0624 &

Arabic Letter ALEF with HAMZA BELOW إ U+0625 <

Arabic Letter YEH with HAMZA above ئ U+0626 }

Arabic Letter ALEF ا U+0627 A

Arabic Letter BEH ب U+0628 B

Arabic Letter TEH MARBUTA ة U+0629 P

Arabic Letter THE ت U+062A t

Arabic Letter THEH ث U+062B v

Arabic Letter JEEM ج U+062C j

Arabic Letter HAH ح U+062D H

Arabic Letter KHAH خ U+062E x

Arabic Letter DAL د U+062F d

Arabic Letter THAL ذ U+0630 *

Arabic Letter REH ر U+0631 r

Arabic Letter ZAIN ز U+0632 z

Arabic Letter SEEN س U+0633 s

Arabic Letter SHEEN ش U+0634 $

Arabic Letter SAD ص U+0635 S

Arabic Letter DAD ض U+0636 D

Arabic Letter TAH ط U+0637 T

Arabic Letter ZAH ظ U+0638 Z

Arabic Letter AIN ع U+0639 E

Arabic Letter GHAIN غ U+063A g

Arabic Letter FEH ف U+0641 f

Arabic Letter QAF ق U+0642 q

Arabic Letter KAF ك U+0643 k

Arabic Letter LAM ل U+0644 l

Arabic Letter MEEM م U+0645 m

Arabic Letter NOON ن U+0646 n

Arabic Letter HEH ه U+0647 h

Arabic Letter WAW و U+0648 w

Arabic Letter ALEF MAKSURA ى U+0649 Y

Arabic Letter YEH ي U+064A y

83

Arabic Character Shape Unicode Buckwalter

Arabic FATHATAN َ U+064B F

Arabic DAMMATAN َ U+064C N

Arabic KASRATAN َ U+064D K

Arabic FATHA َ U+064E a

Arabic DAMMA َ U+064F u

Arabic KASRA َ U+0650 i

Arabic SHADDA َ U+0651 ~

Arabic SUKUN َ U+0652 o

84

 لآليَّللنصوصَّالعربيةَّباستخدامَّالشبكاتَّالعصبونيةطريقةَّهجينةَّللتشكيلَّا

 ذاتَّالتغذيةَّالراجعةَّ

 إعداد

 سبا امين عبدالرحمن القضاه

 المشرف
 غيث علي عبندة الدكتور

 صـــملخ

ن أ في هذه اللغة، يمكن واحدة من أقدم اللغات في العالم.واللغة العربية هي لغة سامية

 للحصول علىمختلفة، وهذا سيؤدي ال التشكيلالعديد من علامات ةالواحد لكلمةا حرفلأيكون
معنى. أيضا، فإن عدم وجود هذه الحركات تجعل هذه اللغة غامضة للقراءة ال في كلمات مختلفة

من قبل النظام الآلي مثل التعرف الآلي على الكلام ، وتحويل وللمعالجةمن قبل غير الناطقين بها
 إلى كلام.المكتوب النص

اللغات عالجة م مهمه في مجالالتشكيل إلى النص العربي هو خطوة إضافة علامات

حاث لتطوير نظام ل العديد من الأببعم العديد من الباحثينقام قد والعربية مثل اللغه بيعيةالط
 غير فعال ومضيعة للوقت.ر يعتب اليدوي التشكيل ة لأنالعربينصوص الآلي للتشكيل ال

 طرق تعتمد على: طرق يمكن تصنيفها إلى ثلاثة في مجال التشكيل الطرق المستخدمة

المعرفة الهجين يجمع بين وعالهجين. الن وعالنهناك و طرق إحصائية، ،النحو و الصرف قواعد
 .على نتائج أفضلالحصول و هاتين الطريقتينمن أجل استغلال مزايا ةالإحصائيوالطرق اللغوية

طريقة تحويل هي مسألة التشكيلالتي تستخدم لحل الإحصائيةالطرق أهم واحدة من

لشبكات والمبنيه بإستخدام ا ذات التغذية الراجعة ونيةالشبكات العصبالمتسلسلات التي تستخدم
هذا البحث، تم تقديم مقترح في العميقة ثنائية الإتجاه ذات وحدات تخزين طويلة وقصيرة الأمد.

 محلل صرفي قمنا باستخدام .للتشكيل الآلي للنصوص العربية بإستخدام الطريقة الهجينة جديد
قمنا أيضا و يدعى مدى ميرا و الذي يعتبر من اهم المحللات الصرفية المستخدمة في هذا المجال

 مشكلة التشكيل عالجت التيو ذات التغذية الراجعة ونيةالشبكات العصبتستخدم اةأد باستخدام
. على حد علمنا، العصبونيةالشبكات تسريع تدريب قامت بأيضا و بطريقة تحويل المتسلسلات

لشبكات العميقة ثنائية الإتجاه المقدرة على تسريع تدريب الديها تتوفر أداة كأول لاداةهذه اتعتبر
إضافة معلومات لغوية رأثدراسة قمنا ب. وأيضا ذات وحدات تخزين طويلة وقصيرة الأمد

 على ثلاثة مستويات مختلفة. للشبكات العصبونية

هي الأكثر دقة لغاية الآن في مجال أنظمة التشكيل الهجينة المقترح لدينا نتائجحقق النظام
نسبة خطأ في لقد حقق هذا النظام . وذلك باستخدام كتاب جمعية البيانات اللغوية الجزء الثالث

اذا لم نحتسب و%.8.4% ونسبة خطأ على مستوى الكلمة 2.39التشكيل على مستوى الحرف
% و 0.78حركة التشكيل على الحرف الأخير فإن نسبة الخطأ على مستوى الحرف تصبح

% 34واستطاع أن يقلل نسبة الخطأ على مستوى الحرف بمقدار % على مستوى الكلمة. 2.3
 % مقارنة مع أفضل النتائج المنشورة في هذا المجال.26وعلى مستوى الكلمة بمقدار

