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HARDWARE CONFIGURATION-INDEPENDENT 

CHARACTERIZATION OF MULTI-CORE APPLICATIONS 

By 

Mohammed S. Mohammed 

Supervisor 

Dr. Gheith A. Abandah 

ABSTRACT 

Multi-core processor architectures have been gaining increasing popularity in 

recent years. However, many available applications cannot take full advantage of 

increasing number of processing cores because these applications either are serial 

applications or have intensive communication patterns and high parallelization 

overhead. Therefore, it is important to characterize such applications on multi-core 

platforms to help the programmers in tuning them and developing future parallel 

applications, and to help the designers in developing multi-core architectures that 

efficiently run parallel applications. 

This thesis presents a unique approach for characterizing the parallel applications 

on multi-core platforms. This approach is a configuration independent characterization. 

The configuration independent characterization is characterizing the inherent 

application’s characteristics by tracking only the accesses on each memory location and 

it does not depend on any specific configuration. Therefore, this approach is faster than 

the traditional configuration dependent characterization. An analysis trace is piped on-

the-fly to the configuration independent analysis tool (CIAT). On-the-fly analysis 

enables analyzing large problems without needing huge storage medium.  

In this research, first we have chosen eight representative parallel applications from 

two benchmark suites: Princeton Application Repository for Shared-Memory 

Computers (PARSEC) and Stanford ParalleL Applications for SHared memory 

(SPLASH-2). Second, we developed an instrumentation tool, which is called Pin 

Shared-Memory Application Instrumentation Tool (PSMAIT), for instrumenting the 

selected applications. Third, we ported CIAT, which was developed for RISC 

multiprocessor platforms, to work on commodity multi-core platforms. Finally, we 

conducted many experiments with various numbers of threads for two problem sizes of 

each of the selected applications.  

CIAT characterizes four aspects of the studied applications’ characteristics: 

memory access instructions, communication patterns, communication slack, and 

communication locality. The obtained results show that two of the eight studied 

applications have high parallelization overhead, which are Cholesky and Fluidanimate. 

Cholesky has 80% of parallelization overhead when running 16 threads because it has a 

large communication to computation ratio. Fluidanimate has 60% of parallelization 
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overhead when running 16 threads because of the large communication at the cell 

borders. The high parallelization overhead may limit the speedup of these applications. 

The most common communication patterns in the studied applications are read after 

write and write after read. However, there are two application that have large portions of 

write after write (WAW), which are Radix and Swaptions. In Radix, about 36% of the 

total communication is WAW when running 16 threads due to the permutation 

operations. In Swaption, almost 100% of the total communication patterns are WAW 

when running 16 threads due to reuse of some variables. The large portion of WAW 

may lead to spending a lot of time in handling store misses. The communication slack 

results show that all the studied applications can make use of prefetching. The 

communication locality results show that the initial thread communicates with the other 

threads in all the studied applications. Therefore, it is advisable to assign the initial 

thread into central core to reduce the communication cost. 
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CHAPTER 1: INTRUDUCTION
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1.1 Background 

Most of processors nowadays are multi-core processors, i.e., there are multiple 

processors on a single chip. Manufacturers of processors tend to increase the number of 

processor cores to increase the performance (Devadas, 2013). However, unfortunately, 

most of the available applications cannot take full advantage of this increasing number 

of processing cores. Multi-core architectures are relatively very complex and require 

close cooperation between the hardware and software developers.  

Hardware designers must develop new techniques to overcome the limitations in 

the current multi-core designs such as the used cache coherence protocols. Particularly, 

the large number of available cores requires designing scalable cache coherence 

protocols (Shriraman et al., 2013). Also the networks interconnecting these cores, as the 

number of cores increases, are having increasing latencies leading to reduced overall 

performance (Krishna et al., 2013), and increased power consumption (Schuchhardt et 

al., 2013). 

Software developers are using available parallel development tools to develop 

parallel-multithreaded applications such as pthreads (Buttlar et al., 1996). Such tools 

depend on the programmer to identify parallelism and to create, manage, and 

synchronize threads to exploit the available data and task parallelism. Another more 

productive tool is the OpenMP (Dagum et al., 1998). OpenMP depends on the 

programmer to identify parallelism, but depends on the compiler to generate the code 

required to exploit this parallelism. The recent threading library Threading Building 

Blocks (TBB) (Reinders 2007) is a C++ template library developed by Intel for writing 

software programs that take advantage of multi-core processors. These entire tools 

target helping the programmers to develop efficient parallel applications. 
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1.2 Motivation and Problem Statement 

Multi-core architecture is the current and the foreseeable-future approach that 

manufacturers of processors use to build high performance and low power processors 

(Borkar, 2007). This trend motivates studies to find new techniques that help to improve 

the overall performance of multi-core systems. However, multi-core architectures are 

relatively very complex, so there are many aspects that need to be tackled to improve 

multi-core performance.  

Some studies try to improve the multi-core performance by proposing techniques 

that map applications to cores in order to reduce the interference between these 

applications in multi-core systems. Das, et al. (2013) proposed a technique that maps 

applications to cores to reduce inter-application interference in multi-core system. This 

technique clusters the cores into subnetworks then assigns the interference-sensitive 

applications to specific clusters, and finally maps the application’s threads to cores in 

the cluster. Pusukuri, et al. (2013) map threads to cores by using a supervised learning 

technique that monitors application resource usage characteristics to detect the effects of 

the interference between multi-threaded applications. Jaleel, et al. (2012) assign 

applications to cores by using knowledge of the last level cache (LLC) replacement 

behavior and the application cache utility information. 

Other studies try to improve the multi-core performance by proposing coherence 

techniques that minimize the impact of coherence protocols on the multi-core 

performance. Schuchhardt, et al. (2013) proposed a dynamic directories technique to put 

coherence directories close to cores of the consistent cache blocks to reduce the 

interconnection cost between the cores. Shriraman, et al. (2013) proposed an 

application-tailored technique, which is application independent technique; to reduce 
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communication overhead of the coherence protocols and make them scalable with large 

number of cores. 

As reviewed above, there are several techniques that have been proposed to 

improve the overall multi-core system performance. However, to exploit the potential of 

multi-core architecture, the applications must be parallelized and distributed on the 

multi-core processors efficiently. This task is very difficult without knowledge of the 

applications’ behavior and characteristics on multiple cores with shared memory.  

Therefore, it is important to understand how efficiently current applications utilize 

multi-core architecture by characterizing such applications on multi-core platforms. 

This will lead to developing future parallel applications that efficiently utilize multi-

core architecture and developing multi-core architectures that run the current and the 

future applications with higher performance.  

1.3 Thesis Contributions 

In this thesis, we have the following contributions: 

 Investigating the available benchmarks or applications that are representative of 

multi-core applications and selecting a representative set of 

benchmarks/applications for further study. We chose eight applications from 

two benchmark suites. 

 Investigating available application instrumentation techniques to select recent 

techniques suitable for instrumenting the selected multi-core applications. We 

developed an instrumentation tool based on binary dynamic instrumentation.   

 Porting configuration independent analysis tool to commodity multi-core 

architectures where it was developed for RISC multiprocessor systems. 

 Conducting many experiments of the selected representative applications with 

various numbers of threads on a multi-core system. The characterization results 
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are documented for the benefits of future application and architecture 

development studies. 

1.4 Thesis Organization 

This thesis contains five chapters that describe the development of the whole study. 

The rest of the thesis is organized as follows: 

Chapter two presents a survey of some related work. It includes both trace collection 

techniques and analysis and characterization techniques. 

Chapter three summarizes our methodology for monitoring and characterizing multi-

core applications and describes the tools developed to characterize these applications. 

Chapter four presents the results of the configuration independent characterization 

approach we used for characterizing the multi-core applications. 

Chapter five presents the main conclusions regarding the thesis’s methodology, the 

developed tools, and characterization results. Additionally, it presents some proposed 

future work. 
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CHAPTER 2: LITRATURE REVIEW
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2.1 Introduction  

This chapter presents a survey of some related work. It includes benchmarks, trace 

collection techniques, and analysis and characterization techniques.  

2.2 Benchmarks  

There are many general proposed benchmark suits such as; SPEC-CPU2006 suite 

(SPEC, 2014), which is a collection of compute-intensive applications, and is a 

representative of scientific and engineering applications. These applications are serial 

programs that are not suitable for studies of multicore platforms. SPLASH-2 suite 

(Woo, et al., 1996) is a collection of multithreaded applications, which is representative 

of scientific, engineering, and graphic applications. These applications are widely used 

in the high-performance computing (HPC) domain. PARSEC suite (Bienia, et al., 2008) 

is a collection of multithreaded commercial and new applications in recognition, 

mining, and synthesis (RMS) (Dubey, 2005), which is representative of animation, 

media processing, computer vision, enterprise servers, and computational finance 

applications. The PARSEC benchmark suite is often used in studies related to multicore 

processors. Phoenix suite (Ranger, et al., 2007) is a collection of data-insensitive 

applications that implement the MapReduce programming model (Dean and Ghemawat, 

2004). 

Despite that SPLASH-2 was released at the beginning of the 1990s for the HPC 

domain, it is widely used besides PARSEC in the recent multi-core research (Shi and 

Khan 2013), (Shriraman et al., 2013), and (Krishna et al., 2013). Bienia, et al. (2008b) 

show that SPLASH-2 and PARSEC complement each other in term of diversity of 

working set size, cache miss rate, and distribution of instructions. 
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2.3 Trace Collection  

Characterizing multi-core applications includes trace collection and trace analysis. 

Trace collection means collecting information traces of application behavior on multiple 

cores that have shared memory by using suitable instrumentation techniques. There are 

three main techniques of instrumentation: source code instrumentation, static binary 

instrumentation, and dynamic binary instrumentation.  

2.3.1 Source Code Instrumentation 

The source code instrumentation allows collecting various information traces by 

inserting instrumentation code to the source code files of an application. The source 

code instrumentation requires that the source code is available. Therefore, this technique 

cannot instrument an object code for third party applications and system libraries. The 

following paragraph presents some tools that use this technique of instrumentation. 

Abandah (1996) developed an instrumentation tool called Shared-Memory 

Application Instrumentation Tool (SMAIT) to collect traces from multi-threaded shared 

memory parallel applications. This tool can pipe the traces at the run-time execution and 

it has three levels of instruction instrumentation: procedure call instructions, load and 

store instructions, and branch instructions. Abandah (1997) used SMAIT to collect 

memory traces from NAS shared memory applications. Nguyen, et al. (1996) proposed 

Augmint that is an instrumentation toolkit that supports execute-driven simulation for 

Intel x86 architectures where the previous execute-driven simulation approaches usually 

support RISC architectures. 

2.3.2 Static Binary Instrumentation 

The static binary instrumentation allows collecting various information traces by 

inserting instrumentation code to the executable file of an application.  The static binary 
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instrumentation does not require that the source code is available. Therefore, it can 

instrument the user’s code of an application and all third party applications and system 

libraries that are linked with that application. However, this technique requires stopping 

an application execution to make any modification. The following paragraphs present 

some tools that use this technique of instrumentation. 

One of the earliest instrumentation tools that uses this technique is Analysis Tools 

with Object Module (ATOM) that was developed by Srivastava and Eustace (1994). 

ATOM is developed to work on the Alpha platform.  It uses OM (Srivastava and Wall, 

1992) link-time optimizer to make an application and user’s analysis routines in the 

same address space.  Larus and Schnarr (1995) developed an instrumentation tool called 

Executable Editing Library (EEL). EEL is developed to work on the SPARC platform. 

It is hardware- and software-independent editing tool for editing the executable files. 

Nanda, et al. (2006) developed an instrumentation tool called Binary Interpretation 

using Runtime Disassembly (BIRD). BIRD is developed to work on Windows/x86 

platform.  It uses redirecting approach, i.e., it inserts the instrumentation code to an 

unused memory region and uses a branch instruction at an instrumentation point that 

redirects the control to the instrumentation code.   

Laurenzano, et al. (2010) at performance modeling and characterization (PMaC) 

laboratory developed an instrumentation tool called PMaC’s Efficient Binary 

Instrumentation Toolkit for Linux (PEBIL). PEBIL is developed to work on the Linux 

platforms. It relocates each function to provide enough space for the branch instruction 

at any instrumentation point. Additionally, it uses instrumentation functions and hand-

coded assembly to accomplish instrumentation operations. 
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2.3.3 Dynamic Binary Instrumentation 

The dynamic binary instrumentation allows collecting various information traces by 

inserting instrumentation code into the executable file of an application during the 

execution. Similar to the static instrumentation, the source code is not required. The 

advantage of this technique is that it allows adding or removing instrumentation code 

while the application is running. There are two approaches for the dynamic 

instrumentation, which are probe-based and just-in-time JIT-based instrumentation 

(Luk, et al., 2005). Some of the instrumentation tools that use the dynamic 

instrumentation technique are presented in the following paragraphs. 

Buck and Hollingsworth (2000) proposed a dynamic instrumentation tool called 

Dyninst that provides C++ library for instrumenting applications. They also developed 

an application program interface (API) that allows inserting code and modifying the 

application while it is running. Cantrill, et al. (2004) proposed a dynamic 

instrumentation tool called DTrace, which instruments user level and kernel 

applications. Both Dyninst and DTrace are a probe-based dynamic instrumentation 

tools.  

Luk, et al. (2005) developed a dynamic binary instrumentation tool for Linux and 

Windows called Pin, which is JIT-based dynamic instrumentation tool. It instruments 

single and multiple threaded applications and it supports different types of processors 

including Intel’s IA-32 (x86 32-bit), IA-32E (x86 64-bit), and Itanium processors. Pin is 

wildly used for instrumenting application that are running on multi-core systems (Jaleel, 

et al., 2008), (Bertels, et al., 2011), and (Wang, et al., 2013).    

2.4 Application Analysis and Characterization 

Several characterization techniques are used to characterize and analyze 

applications. The following subsections present some of these techniques.   
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2.4.1 Hardware-Assisted Characterization 

Many characterization researches have used hardware performance counters, which 

are registers on the processor that keep track of hardware events to characterize various 

aspects of applications. Dongarra, et al. (2004) used hardware performance counters to 

characterize data cache and translation lookaside Buffer (TLB) behavior of their 

microbenchmarks.    

Bhadauria, et al. (2009) characterized PARSEC benchmark on multiple aspects: 

cache performance, sensitivity to DRAM speed and bandwidth, multi-thread scalability, 

and micro-architecture design choices on a variety of real multi-core systems. 

Ferdman, et al. (2012) used hardware performance counters to study micro-

architectural behavior of their CloudSuite benchmarks. They concluded that existing 

processor micro-architectures are inefficient for running their benchmarks.      

Jia, et al. (2013) used hardware performance counters to characterize eleven of data 

analysis workloads of a data center to determine their micro-architectural characteristics 

on systems equipped with modern superscalar out-of-order processors. They also 

developed a benchmark suite called DCBench for typical data center workloads.    

2.4.2 Message-Passing Characterization 

Message passing characterization technique is used for characterizing parallel 

scientific applications in distributed systems. The following paragraphs present some 

research that use this technique.  

Alam, et al. (2006) characterized scaling behavior of a set of micro-benchmarks, 

kernels, and scientific workloads on HPC systems. They used AMD Opteron multi-core 

processors. They concluded that the current cache coherence protocol of the Opteron 

processor is insufficient to exploit the full bandwidth capability of the memory 

interface.  
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Chai, et al. (2007) characterized micro-benchmarks and application level 

benchmarks on Intel dual-core cluster. They observed that resource contention leads to 

reduced overall performance. Consequently, the multi-core cluster architecture does not 

scale as a single core cluster architecture for shared memory applications. 

2.4.3 Configuration Dependent Analysis 

The configuration dependent characterization technique characterizes the 

application depending on a specific configuration of some system components. This 

technique is widely used in characterizing applications. The following paragraphs 

present some research that use this technique.    

Abandah, (1998) proposed Configuration Dependent Analysis Tool (CDAT) to 

characterize memory behaviors such as cache misses and false sharing that depend on 

configuration parameters such as cache block size. CDAT is a simulator that has 

memory, cache, bus, and interconnection models. By using a configuration file, users 

can specify a system configuration through specifying the coherence protocol, size and 

speed of system components, and processors and memory banks interconnections. 

Jaleel, et al. (2006) characterized last-level cache memory behavior of parallel 

bioinformatics data-mining workloads on multi-core processors. They concluded that 

shared last-level cache memory is better than private last-level cache memory for high-

performance systems. Jaleel, et al. (2008) also used a dynamic binary instrumentation 

tool as an alternative for trace-driven and execute-driven approach. They proposed a 

memory system simulator to characterize memory performance of x86 workloads on 

multi-core processors.  

Bienia, et al. (2008) characterized PARSEC benchmarks to show that their 

benchmark suit has various types of multi-threaded behaviors.  Bhattacharjee and 

Martonosi (2009) characterized TLB behavior of the PARSEC benchmark applications. 
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Contreras and Martonosi (2008) characterized a subset of PARSEC benchmark 

applications that were compiled with Intel TBB on AMD dual-core processors to 

determine the sources of overhead within the TBB.  

Dey, et al. (2011) characterized PARSEC benchmark applications to measure the 

effect of shared resource contention on performance. They classified resource 

contention into intra-application contention, which is the contention among threads 

from the same application, and inter-application contention, which is the contention 

among threads from different applications. 

Natarajan and Chaudhuri (2013) characterized a set of multi-threaded applications 

selected from the PARSEC, SPEC OMP, and SPLASH-2 to understand LLC behavior 

of multi-threaded applications. They proposed a generic design that introduces sharing-

awareness in LLC replacement policies. They showed that their design could 

significantly improve the performance of LLC replacement policies. 

2.4.4 Configuration Independent Analysis 

The configuration independent characterization technique is a unique technique for 

characterizing the inherent characteristics that do not change with changing system 

configuration. Abandah and Davidson (1998) proposed CIAT to characterize 

configuration independent characteristics such as memory access instructions, 

concurrency, communication patterns, and sharing behavior of shared-memory 

applications on a varying number of processors. Their characterization results are useful 

for developing and tuning shared memory applications for multiprocessor systems.  

Our work is porting CIAT to characterize the hardware-configuration independent 

characteristics of parallel applications on multi-core platforms. We characterize the 

communication among cores and shared memory behavior of parallel applications 

irrespective of the hardware-configuration or cache coherence protocol. This approach 
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of characterization is fast because it gets the parallel application characteristics directly 

from an execution trace and tracks only the changing of accesses on each memory 

location and does not use a specific cache coherence or any specific system 

configuration parameters (Abandah, 1998).   
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CHAPTER 3: METHODOLOGY AND TOOLS
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3.1 Introduction 

This chapter summarizes our methodology for monitoring and characterizing multi-

core applications and describes the tools developed to characterize these applications. 

3.2 Overview 

The methodology relies on choosing a set of benchmarks, which are representative 

of multi-core applications based on the current related studies, and collecting detailed 

traces and sending these traces to analysis tool as shown in Figure 3.1.  The PSMAIT is 

a tool based on Pin that developed to instrument the multi-core applications. The ported 

CIAT is used to analyze traces.   

  

 

 

 

 

 

As shown in Figure 3.1, PSMAIT supports on-the-fly analysis; the instrumented 

code pipes the traces directly to the analysis tool when executed on a multi-core system. 

The instrumented process accepts feedback from CIAT to control the execution timing 

of the process on the multi-core system according to CIAT’s analysis model. On-the-fly 

analysis enables analyzing large problems without needing huge storage medium and 

uses feedback from the analysis tool to avoid the non-deterministic conduct of the 

instrumented applications. 

Instrumented 
Code 

Multi-Core 

Applications Feedback 

Execution on 

Multi-Core 

System 

On-the-fly 
Traces 

CIAT PSMAIT 

Characterization 

Figure 3.1.  Our methodology of characterizing multi-core applications. 
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3.3 Instrumentation Tool (PSMAIT) 

PSMAIT is based on Pin (Luk, et al., 2005), a dynamic binary instrumentation tool 

for Linux and Windows. Pin is a JIT-based dynamic instrumentation tool. It uses 

dynamic compilation techniques to instrument applications while they are running. Pin 

instruments single and multi-threaded applications and it supports Intel® IA-32, Intel® 

IA-64 and Intel® many integrated core architectures (Intel, 2015). It has a rich set of 

API’s that can be used to instrument applications without the need to master the 

underlying instruction set. 

PSMAIT is a tool written in C++. It consists of a set of instrumentation and 

analysis routines as shown in Figure 3.2, where the instrumentation routine determines 

where instrumentation is inserted and the analysis routine determines what to do when 

instrumentation is activated. PSMAIT is designed to collect traces of multi-threaded 

parallel applications and send these traces directly, on-the-fly, to CIAT. PSMAIT is a 

run-time binary instrumentation, which means that it does not need the source code of 

the parallel application. It instruments both the parallel applications’ user code and all 

the libraries that are used during executing these applications.  

 

 

 

 

 

 

 

 

 

Pin 

Instrumentation 

Routine 

Memory Access Analysis Routines 
(MemRead, MemWrite) 

Synchronization Calls Analysis 

Routine (SynCall) 

PSMAIT 

Figure 3.2 PSMAIT implementation overview. 
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PSMAIT depends on Pin instrumentation routine to capture every memory access 

instruction, count number of operands in each instruction, and check type of memory 

access. We added code to the instrumentation routine to determine whether the captured 

instruction is integer or floating-point instruction. For each operand, if the memory 

access is load, the instrumentation routine calls MemRead analysis routine and if the 

memory access is store, the instrumentation routine calls MemWrite analysis routine. 

MemRead and MemWrite are analysis routines that we built to receive the instruction 

point type (fixed or floating), the size of the memory transfer, the type of the transfer 

(load or store), and the starting virtual address of the memory location referenced from 

the instrumentation routine. Subsequently, they generate simple two-field records. The 

simple record has two fields each field is four bytes long. The first field specifies the 

instruction point type (fixed or floating), the size of the memory transfer, and the type of 

the transfer (load or store), as shown in Figure 3.3. The second field contains the 

starting virtual address of the memory location referenced.  

Additionally, before every synchronization and thread management call such as 

lock, barrier, and condition call, the instrumentation routine calls Syncall analysis 

routine. Syncall is analysis routine that we built to receive the call type and thread 

number from the instrumentation routine. Subsequently, it sends special records for the 

synchronization and thread management calls to CIAT. These records help CIAT to 

control the parallel application execution.  PSMAIT creates two pipes, one pipe for 

sending traces and synchronization calls to CIAT, and another pipe for receiving 

feedback from CIAT. When PSMAIT sends a special record of some thread, it blocks 

that thread until it gets a feedback from CIAT to resume the execution of the stopped 

thread.  
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31                               0 
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Figure 3.3. First field format of memory-access record. 

 

3.4 Analysis Tool (CIAT)  

 Our analysis tool is based on CIAT for the multiprocessor environment developed 

by Abandah, (1998). CIAT aims to characterize inherent application characteristics such 

as memory access instructions, concurrency, communication patterns, and sharing 

behavior of parallel applications that are independent from one multiprocessor 

configuration to another. A multiprocessor configuration includes the hierarchy of 

processor, the interconnection topology, the coherence protocol, the cache 

configuration, and the sizes and speeds of the multiprocessor system components. 

CIAT uses many variables to count the various events by tracking the memory 

load/store operations. It accepts traces from PSMAIT, which generates n trace pipes for 

the n executing threads. CIAT supports various execution phases; it assumes that the 

traces come from a parallel application either in a serial or in a parallel phase. In a 

serial phase, there is only one thread active, while the other threads are idle. In a parallel 

phase, more than one thread can be active. CIAT uses the special records of the thread 

spawn and thread join calls to identify switches between serial and parallel phases. At 

the end of each phase, CIAT generates statistics and save them in a report file. At the 

end of the last phase, CIAT reports the aggregate statistics in the report file.  

0: Load 

1: Store 0: Fixed point     

1: Floating point 

0000001: One byte 

0000010: Half-word 

0000100: Word 

0001000: Double-word   

0001010: Extended double-

word 

0010000: Quad-word  

0100000: Double quad-word   
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CIAT assumes that n processors in multiprocessors can execute n instructions at the 

same time and each instruction takes a fixed time. Therefore, a pseudo clock in 

instruction units is used to keep track of the execution time. However, CIAT currently 

only sees the memory accesses and advances the clock by one for each thread whenever 

it receives a memory access record. And this is an approximation of the instruction 

stream. CIAT interleaves the analysis of multiple thread traces on the processors 

according to the thread spawn and join calls, and follows the constraints of the lock, 

conditional wait, and barrier synchronization calls. The following subsections 

summarize the configuration independent characteristics of the parallel applications that 

are measured and reported by CIAT.  

3.4.1 Memory Access Instructions 

CIAT counts the occurrences of the different types of memory access instructions 

and reports the following memory access statistics in number and percentage: 

 Load and store instructions.  

 Instructions in each size of accessed data, which include byte, half-word, word, 

double-word, quad-word, double quad-word, single-precision floating-point, 

double-precision floating-point, and extended-precision floating-point for both 

load and store instructions. 

 Recurrence of load and store sequences according to the length of each sequence. 

For example, a load sequence of length one means that there is a sequence of 

one load from one thread preceded and followed by stores. A store sequence of 

length two means that there is two a sequence of two stores from one thread not 

interrupted by any load. 
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3.4.2 Communication Patterns 

The communication among processors in multiprocessor occurs when those 

processors access same shared memory locations. For each memory location, CIAT 

keeps track of the type of accesses and the processors that perform these accesses. 

Consequently, CIAT reports the amount of the following four type of communication 

patterns and sharing and invalidation degrees: 

 Read after write accesses (RAW): A RAW communication pattern occurs when 

one processor writes to a memory location and other processors read from that 

location.  

  Sharing degree for RAW (S): This is a vector of sharing degrees, where S[p] is 

the number of times that p processors read from a memory location after being 

previously written. 

  Write after read accesses (WAR): A WAR communication pattern occurs when a 

processor writes to a memory location that was read by other processors.  

  Invalidation degree for WAR (I): This is a vector of invalidation degrees, where 

I[p] is the number of times that a memory location was written into after being 

previously read by p processors. 

  Write after write accesses (WAW): A WAW communication pattern occurs when 

a processor writes to a memory location that was written by another processor.  

 Read after read accesses (RAR): A RAR communication pattern occurs when a 

processor reads from a memory location that was read by another processor and 

the first visible access to this location is a read. 

3.4.3 Communication Slack 

The communication slack is the time between writing a new value to a memory 

location and referencing it by other processors using RAW or WAR access. CIAT 
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measures the communication slack as the time in instruction unit, i.e., it counts the 

number of instructions from writing the value to the memory location until referencing 

it.  

3.4.4 Communication Locality  

The communication locality is a measure how the processors communicate with 

each other. CIAT characterizes the communication locality of shared-memory parallel 

applications by counting the number of communication events for each processor pair. 

CIAT generates n×n matrix where n is the number of processors.   The rows in this 

matrix represent the producer processors and the columns represent the consumer 

processors.  For example, the value in the row i and column j is the number of 

communication events from processor i to processor  j. This value is incremented by 

one in the following cases:  

 Each time processor  j loads a memory location that was stored into by processor i 

(RAW). 

 Each time processor j stores into a memory location that was previously stored 

into by processor i (WAW). 

 Each time processor i updates a memory location that was previously stored into 

by processor i and loaded by processor  j (WAR). 

3.5 Modifications to Support Intel Multi-Core Processors  

This section presents the modifications on CIAT to characterize all the inherent 

application’s characteristics that are mentioned in section 3.4 on multi-core platform. To 

ensure CIAT supports multi-core applications characterization, it is modified to support 

a new processor architecture and new parallelism techniques.  
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3.5.1 Processor Architecture 

CAIT was designed to characterize shared-memory applications on HP precision 

architecture reduced instruction set computer (PA-RISC) multiprocessors (HP, 1994). It 

is modified to work on complex instruction set computer (CISC) multi-core processors 

(Hennessy and Patterson, 2012). 

As it is known, RISC microprocessors allow only load and store instructions to 

access memory with only one memory operand for each instruction. In contrast, in 

CISC microprocessors, many instructions can access the memory and possibly with 

more than one operand. However, PSMIAT is developed to capture every access to the 

memory, not just load/store instructions, and send a simple memory record to CIAT for 

each access. It may send multiple memory access records to CIAT for one instruction. 

Each simple record contains the type and size of memory access and the virtual address 

of the accessed location. Additionally, CIAT is modified to support large access sizes 

such as extended floating, double-word, quad-word, and even double quad-word. This 

modification is done on the source code of CIAT.   

3.5.2 Parallelism Technique 

CIAT was built to work on HP-UX systems that use the compiler parallel support 

library (CPSlib) for thread management and synchronization (HP, 1997). CIAT is 

modified to support systems that use the portable operating system interface (POSIX) 

threads also called Pthreads for thread management and synchronization.  

CIAT is modified to receive special call records from PSMAIT for tracing thread 

management and synchronization calls such as pthread_spawn, 

pthread_mutex_lock, pthread_mutex_unlock, pthread_barrier_wait, 

pthread_cond_wait, pthread_join, pthread_cond_broadcast, and 

pthread_mutex_trylock. By these records, CIAT controls the execution of the 
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application. For example, if PSMAIT sends a record for a pthread_mutex_lock call 

from a thread to CIAT, PSMAIT blocks that thread until it gets feedback. CIAT checks 

the simulated mutex lock and assigns it to the called thread if it is free and sends a 

feedback to PSMAIT to unblock the stopped thread. Otherwise, CIAT blocks receiving 

traces from the called thread and puts it in a waiting list until the simulated mutex lock 

is freed. Therefore, PSMAIT continues blocking the calling thread until it gets the 

feedback from CIAT. When the simulated mutex lock is freed, CIAT unblocks one 

thread from the waiting list. It uses FIFO and sends a feedback to PSMAIT.  

The old version of CIAT assumes that all threads’ spawns occur at same time in the 

parallel phase, thus it expects traces from all threads in a parallel region. However, this 

does not work for some new applications that do not spawn all threads at the beginning 

of the parallel phase. Therefore, CIAT is modified to activate receiving the traces from 

only the spawned threads. Any time a new thread is spawned, CIAT activates receiving 

traces from it. 

Additionally, CIAT is modified to deal with the pthread_cond_wait calls used 

in barriers. Because some modern applications use the pthread_cond_wait call as a 

barrier wait.  

3.6 Validation of the Characterization Tools 

We have verified of the correctness of our characterization tools by running these 

tools on simple synthetic applications that have known analysis results. In addition, we 

have compared our analysis results of the applications from SPLASH-2 suite (presented 

in Chapter 4) against the configuration independent analysis presented in (Abandah, 

1998). The results are agree in general, but there are some differences due to working 

on two different hardware architectures and instrumentation tools. We work on CISC 

architecture that has a few number of registers compared with RISC architecture that 
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has a large number of registers. Therefore, the number of memory accesses in our work 

is larger. Moreover, PSMAIT instruments the application’s user code and all the 

libraries that are used during executing the parallel applications. Whereas, SMIAT that 

is used in (Abandah, 1998) instruments only the application’s user code. 

We have verified that our characterization tools are hardware configuration-

independent by running them on two machines that have different types of multi-core 

processor. One of them has dual core processor and the other has quad core processor. 

The characterization results on the two machines are the same. Therefore, we can make 

sure that our characterization tools do not depend on the hardware configuration.
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CHAPTER 4: RESULTS DISCUSSION AND APPLICATIONS 

CHARACTERIZATION 
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4.1 Introduction 

This chapter presents the results of the configuration independent characterization 

approach we used for characterizing the multi-core applications. We use our tools to 

characterize eight parallel benchmark applications: four applications from Stanford 

SPLASH-2 (Woo, et al., 1996) and four applications from Princeton PARSEC 

application suite that run on multi-core systems (Bienia, et al., 2008). These 

applications were selected because they represent a wide range of applications and often 

used in multi-core research as mentioned in Chapter 2.    

The next section describes the eight benchmarks that are used in this study. Section 

4.3 presents the characterization results found. 

4.2 Applications  

We used eight benchmark applications in our study. Four of these applications are 

from SPLASH-2 suite, which are Radix, FFT, LU, and Cholesky. The other four are 

from PARSEC suite, which are Canneal, Blackscholes, Fluidanimate, and Swaptions. 

The following paragraphs present short descriptions of these applications. 

Radix is a sorting algorithm that carries out one iteration on radix r digits of the 

keys, which are a series of integers. In each iteration, a processor sorts its assigned keys 

and creates a local histogram. After that, the local histograms are accumulated into a 

global histogram.  Finally, each processor uses the global histogram to permute its keys 

into a new array for the next iteration.  

FFT is a one-dimensional kernel of the radix-6 steps fast Fourier transform 

algorithm that is optimized to minimize interprocessor communication. The data set is 

organized as a number of    matrices, which are distributed, in a neighboring 

set of rows, on the processors and assigned to each processor’s local memory. The all-
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to-all interprocessor communication occurs in three matrix transpose steps. Each 

processor transposes a neighboring submatrix of  from each other 

processor. To avoid high contention, each processor starts by transposing a submatrix 

from the next processor.  

LU is a kernel benchmark that decomposes a dense square matrix into the product 

of a lower triangular and an upper triangular matrix. The n×n matrix is divided into an 

N×N array of B×B blocks, where n=NB. The blocks are divided among the processors 

and each processor updates its blocks. To reduce communication, a 2-D scatter 

decomposition is used to assign blocks to processors. 

Cholesky is a kernel benchmark that decomposes a sparse matrix into the product 

of a lower triangular matrix and an upper triangular matrix by using blocked Cholesky 

decomposition. As LU, it divides a sparse matrix into blocks that are divided among the 

processors and each processor updates its blocks.  

Canneal is a kernel benchmark that uses a cache-aware simulated annealing (SA) 

algorithm to minimize routing cost of a chip design. The SA algorithm is a generic 

probabilistic metaheuristic for locating a good approximation to the global minimum of 

a given function in a large search space (Kirkpatrick et al., 1983 and Carny, 1987). 

Canneal simulates putting elements on a chip with minimum routing cost.  

Blackscholes is an Intel RMS application. It calculates the prices for a portfolio of 

European options analytically by using the Black-Scholes partial differential equation 

solution (Black and Scholes, 1973). It partitions the portfolio work among the threads 

and processes them simultaneously. 

Fluidanimate is an Intel RMS application that uses an extension of the smoothed 

particle hydrodynamics (SPH) approach to simulate an incompressible fluid for 

interactive animation purposes. Fluidanimate partitions the work among the threads and 
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each thread handles its portion and interacts with the other threads to handle shared 

work. 

Swaptions is an Intel RMS application that uses the Heath Jarrow Morton (HJM) 

framework to price a portfolio of swaptions. The HJM framework describes how 

interest rates evolve for risk management and asset liability management for a class of 

models. Its central insight is that there is an explicit relationship between the drift and 

volatility parameters of the forward-rate dynamics in a no-arbitrage market.  Swaptions 

uses Monte Carlo (MC) simulation to compute the prices. 

To study the impact of application problem size on the communication behavior, 

we work on two problem sizes of each application; Size I and Size II. Where Size I is 

smaller than Size II. Table 4.1 shows the problem sizes and the abbreviations that are 

used for naming these applications. 

 

Table 4.1. The applications problem sizes. 

 

4.3 Characterization Results 

This section presents the results of the characterization of the multi-core 

applications that are measured and reported by CIAT. The following four subsections 

present the inherent characteristics of the studied applications. These characteristics are 

Suite Application Abbreviation Size I Size II 

SPLASH-2 

 

Radix Radix 256K integers 2M integers 

FFT FFT 64K points 1M points 

LU LU 256×256 512×512 

Cholesky Chole tk15.O file tk29.O file 

PARSEC 

Canneal Cann 
100,000 elements,     

32  temperature steps 

200,000 elements,   

32  temperature steps 

Blackscholes Black 4K options 16K options 

Fluidanimate Fluid 
5 frames, 35K 

particles 

5 frames, 100K 

particles 

Swaptions Swap 
16 swaptions,     

10,000 simulations 

32 swaptions,   

 20,000 simulations 
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memory access instructions, communication patterns, communication slack, and 

communication locality. 

4.3.1 Memory Access Instructions  

This subsection presents and analyzes the first independent characteristic of multi-

core applications. As mentioned in Chapter 3, the developed tools can capture every 

operation on the memory and report the number of load and store operations as shown 

in Table 4.2.   

Table 4.2 shows the number of memory accesses in billions for the eight studied 

applications when using one thread for the two problem seizes. These numbers 

represent the number of operations on memory not the memory access instructions 

where some memory access instructions may do more than one operation on the 

memory.  

In all applications, loads are more frequent. The load operations ratio is about twice 

the store operations in the most of the studied applications. Some applications such as 

Cholesky, Fluidanimate, and Sawptions have even larger percentages of the load 

operations. Cholesky has about four times more of load operations than store operations 

because it operates on sparse matrices and needs to find the indices of the non-zero 

elements in these matrices. Fluidanimate has about five times more load operations than 

store operations.  Sawptions has about three times more load operations than store 

operations. The load and store operations in Canneal are relatively equifrequent. 

Table 4.2. The counts and percentages of load and store operations for one thread. 

Size I 

 Radix FFT LU Chole Cann Black Fluid Swap 

No. of Loads 

(in 109) 

0.034 

(66.3%) 

0.011 

(56.9%) 

0.015 

(67.8%) 

0.150 

(80%) 

1.586 

(57.1%) 

0.053 

(61.1%) 

0.500 

(84.2%) 

0.562 

(75.2%) 

No. of Stores 

(in 109) 

0.017 

(33.7%) 

0.008 

(43.1%) 

0.007 

(32.2%) 

0.038     

(20 %) 

1.189 

(42.9%) 

0.034 

(38.9%) 

0.094 

(15.8%) 

0.186 

(24.8%) 
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Size II 

No. of Loads 

(in 109) 

0.285 

(66.7%) 

0.190 

(57.1%) 

0.109 

(68.2%) 

0.381 

(77.6%) 

3.577 

(57.7%) 

0.213 

(61.1%) 

1.146 

(81.9%) 

2.246 

(75.2%) 

No. of Stores 

(in 109) 

0.143 

(33.3%) 

0.144 

(42.9%) 

0.051 

(31.8%) 

0.110 

(22.4%) 

2.625 

(42.3%) 

0.136 

(38.9%) 

0.253 

(18.1%) 

0.742 

(24.8%) 
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Figure 4.1 shows the percentage of memory accesses for running the eight 

applications with various numbers of threads for the two problem sizes. The percentages 

are normalized to the number of memory accesses when running the respective 

applications with single thread. Thus, we can notice the parallelization overhead. As 

obvious, the parallelization overhead is negligible in most of the studied applications. 

However, there are two of the eight studied applications have a high percentage of 

parallelization overhead, which are Cholesky from SPLASH-2 and Fluidanimate from 

PARSEC. Cholesky has about 80% and 50% of memory accesses as overhead when 

running 16 threads for sizes I and II, respectively. This overhead is due to Cholesky’s 

work on sparse matrices which have a larger communication to computation ratio. 

Fluidanimate has about 60% and 33% of memory accesses as overhead when running 

16 threads for problem sizes I and II, respectively. This overhead is due to 

Fluidanimate’s partitioning of the work among the threads and each thread handles its 

portion also interacts with other threads to handle the shared data.  

Figures 4.2 and 4.3 show the number of synchronization calls per 106 memory 

accesses for problem sizes I and II. The synchronization calls include locks, barriers, 

and conditions calls. Fluidanimate has the highest number of synchronization calls, 

which is 3303 synchronization calls per 106 memory accesses when running 16 threads. 

This high rate is due to the high number of locks that are used at borders to avoid race 

conditions. All studied applications from PARSEC either have few numbers of 

synchronization calls such as Canneal, which has about 2 synchronization calls per 107 

memory accesses when running 16 threads, or almost do not have synchronization calls 

such as Blackscholes and Swaptions because there is no sharing of data among threads.  

Choleskey and LU have large numbers of synchronization calls compared to the rest of 
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the studied SPLASH-2 applications, where Cholesky has 82 synchronization calls per 

106 memory accesses and 
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Figure 4.1. Percentage of memory accesses for 1-16 threads normalized to the memory accesses 

of one thread. 
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Figure 4.2. Number of synchronization calls per 106 memory accesses for Fluidanimate, 

Cholesky, LU, and FFT for Size I (left) and Size II (right). 
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Figure 4.3. Number of synchronization calls per 106 memory accesses for Radix, Canneal, 

Blackscholes, and Swaptions for Size I (left) and Size II (right). 
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LU has 49 synchronization calls per 106 memory accesses when running 16 threads. 

The number of synchronization calls generally increase as the number of threads 

increases due to contention on shared data. 

When the problem size is scaled up, the number of synchronization calls per 106 

memory accesses generally decreases by different percentages in all the studied 

applications. This decrease is because these synchronization calls either are at fixed 

points of the code and they do not increase as the problem size increases such as in FFT, 

or they do not increase as much as processing data increases such as in other 

applications. 

Figure 4.4 and 4.5 show the percentage of the byte, half-word (2 bytes), word (4 

bytes), double-word (8 bytes), float (single-precision floating-point), and double-float 

(double-precision floating-point) load and store operations when running 16 threads for 

the two problem sizes. All the studied applications do not have any quad-word (16 

bytes) or extended-float (extended-precision floating-point) memory accesses. All the 

studied applications are scientific benchmarks, which have a large percentage of 

floating-point operations except Radix and Canneal, which are integer kernel 

applications.  

The percentages of  byte and half-word accessed data is insignificant in almost all the 

studied applications except Radix and FFT that have 25% and 6% half-word load and 

store operations, respectively. These relatively large percentages are because they have 

large portion of integer computation. 

4.3.2 Communication Patterns 

As mentioned in Chapter 3, the communication occurs when multiple threads 

access a shared location. CIAT reports four types of the communication patterns, which 
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are RAR, RAW, WAR, and WAW. Figure 4.6 shows the percentages of these four 

types of the communication patterns to the total number of memory accesses. 
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Figure 4.4. Percentages of the load and store operations according to the type and size of 

accessed data for problem Size I.
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Figure 4.5. Percentages of the load and store operations according to the type and size of 

accessed data for problem Size II. 
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Except for Radix that has a large portion of WAW pattern, which is about 36% of 

total communication patterns when running 16 threads due to the permutation 

operations, and Swaptions that has only WAW pattern when running 16 threads due to 

reuse of some variables. The most communication in the remaining applications are 

RAW and WAR. In general, PARSEC applications have less communication 

percentages, which are less than 0.5%, because the total numbers of memory accesses in 

PARSEC applications are very large compared to the numbers of communication 

events. For Blacksholes the numbers of communication events are small compared to 

the numbers of memory accesses. Therefore, the communication percentages are very 

small. Almost all the communication events in Blacksholes are RAW patterns because 

the memory locations are not updated by any WAR patterns. Only Canneal has a small 

portion of RAR communication patterns due to reading data not initialized by the 

application user code.  

The communication percentage generally increases as the number of threads 

increases because of the increase in the data sharing. For Fluidanimate in problem size I, 

the communication percentage decreases when the number of threads increases from 8 

to 16 because the percentage of increase in the total accesses is larger than the 

percentage of increase in the communication events.  

When the problem is scaled up, the communication patterns increase in all 

applications, but the percentage of these communication patterns depends on the total 

number of accesses. Therefore, this percentage increases in some applications like 

Radix, Canneal, and Fluidanimate because the increase in communication patterns is 

more than the increase in total accesses. However, it decreases in some other 

applications like FFT, LU, Cholesky, and Swaptions because the increase in 

communication pattern is less than the increase in total accesses. In Blackscholes, it 
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does not change because the increase in communication patterns and the increase in 

total accesses are equal. 

 

 

 

Figure 4.6. Percentages of the four types of communication patterns as a function of the number 

of threads. 

 



46 
 

Figure 4.7 shows the distributions of sharing degrees for RAW accesses in problem 

size I.  It presents the percentages of sharing degrees when running 16 threads. These 

percentages are calculated by using the following formula:  

16,...,1;][100][
16

1
  

piSpS
i  

Where S[p] is the number of times that p threads read from a memory location after 

being previously written. Radix has a small sharing degree where 90% of shared data 

are shared with only one thread, 5% are shared with two threads, 3% are shared with 

four threads, and 2% are shared with three threads. FFT and Blackscholes also have a 

small sharing degree where almost all shared data are shared with one thread. 

Fluidanimate and Swaptions have two sharing degrees. In Fluidanimate, 75% of shared 

data are shared with one threads and 25% of shared data are shared with two threads. In 

Swaptions, 66% of shared data are shared with one threads and 34% are shared with 

two threads. LU, Cholesky, and Canneal have more than two sharing degrees. In LU, 

92% of shared data are shared with four threads and the remaining percentages of 

shared data are shared with one, two, and three threads. In Cholesky, about 50% of 

shared data are shared with two and more threads and 50% of shared data are shared 

with one thread. In Canneal, 32% of shared data are shared with two and more threads 

and 68% of shared data are shared with one thread.  

Figures 4.9 and 4.10 show the distributions of invalidation degrees of the WAR 

access for problem sizes I and II, respectively. They present the percentages of 

invalidation degrees when running 16 threads. These percentages are calculated by 

using the following formula: 

16,...,1;][100][
16

1
  

pjIpI
j  
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Figure 4.7. RAW sharing degree for 16 threads Size I. 
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Figure 4.8. RAW sharing degree for 16 threads Size II. 
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Figure 4.9. WAR invalidation degree for 16 threads Size I. 
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Figure 4.10. WAR invalidation degree for 16 threads Size II. 
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Where I[p] is the number of times that a memory location was updated after being 

previously read by p threads. The invalidation degree in Radix, FFT, LU, Fluid, and 

Swaptions is almost similar to their sharing degree because the memory location that is 

accessed by one or more RAW patterns is updated by a WAR pattern. Choleskey and 

Canneal’s invalidation degrees drop to one because some shared data is never updated 

by the WAR pattern. Blackscholes’s invalidation degree is two, but in fact, only a small 

number of memory locations are updated. Only less than 120 memory locations are 

updated and this number is almost equal in the two problem sizes. 

4.3.3 Communication Slack 

The communication slack is a measure to know how much time is present between 

writing a value to a memory location and referencing it by either read or write 

operation. CIAT measures this time by counting the number of instructions from writing 

the value until referencing it. The communication slack is distributed into eight ranges 

from less than ten instructions to more than ten million instructions. Figure 4.11 shows 

the percentages of the communication slack distributions using 16 threads for problem 

sizes I and II. These percentages are the number of instructions in each range over the 

total number of memory accesses. 

Radix’s communication has a large percentage of slack in the ranges of tens of 

thousands of instructions and more, where it has 86.2% of slack in these ranges for 

problem size I and 97% of slack in these ranges for problem size II. FFT’s 

communication has a large percentage of slack in the ranges of millions of instructions 

and more, where it has 78.4% of slack in these ranges for problem size I and 99.6% of 

slack in these ranges for problem II. LU’s communication has a large percentage of 

slack in the ranges of tens of thousands of instructions and more, where it has 91.4% of 
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slack in these ranges for problem size I and 96.4% of slack in these ranges for problem 

size II.  

  

  

 



53 
 

 

 
Figure 4.11. Communication slack distributions for 16 threads. 

 

Cholesky’s communication has a large percentage of slack in the ranges of 

hundreds of thousands of instructions and more, where it has 93.2% of slack in these 

ranges for problem size I and 94.8% of slack in these ranges for problem size II. 

Canneal’s communication has a large percentage of slack in the ranges of tens of 

millions of instructions and more, where it has 86.5% of slack in these ranges for 

problem size I and 90.4% of slack in these ranges for problem size II. Blackscholes’s 

communication has a large percentage of slack in the ranges of tens of thousands of 

instructions and more, where it has 99.5% of slack in these ranges for problem size I 

and 99.9% of slack in these ranges for problem size II. Fluidanimate’s communication 

has a large percentage of slack in the ranges of millions of instructions and more, where 

it has 89.2% of slack in these ranges for problem size I and 90% of slack in these ranges 

for problem size II. Swaptions’s communication has a large percentage of slack in the 
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ranges of tens of thousands of instructions and more, where it has 91.9% of slack in 

these ranges for problem size I and 91.1% of slack in these ranges for problem size II. 

In general, the percentage of slack tend to higher ranges as the problem size increases 

because the increase of processing data makes referencing the produced data takes 

longer time.  

In all the studied applications, the communication has most of the slack in range 

tens thousands of instructions and more. These ranges are enough to make use of 

prefetching. 

4.3.4 Communication Locality  

As mentioned in Chapter 3, the communication locality is a measure how the cores 

communicate with each other. CIAT generates 2D matrix of communication events 

where the rows represent the data producer threads and the columns represent the data 

consumer threads.    

Figures 4.12 and 4.13 present the communication matrices for the studied 

applications using 16 threads for problem sizes I and II, respectively. In Radix, each 

thread communicates with all other threads. Also, there are some additional 

communications with the neighbors where some odd threads communicates with only 

the next thread and some even threads may communicate with more than one threads. 

In FFT, the communication is uniform communication. Additionally, there are a 

large amount of the communications from initial thread to every other thread. In LU, the 

communication is clustered within groups of 4ng   threads where n is the number of 

threads that are used to run the application. For example, when running LU using 16 

threads, 4416 g  threads. Additionally, each thread communicates to and from the 

thread that is located after multiple of g threads from it. For example, if 4g , Thread 1 
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communicates with Threads 5, 9, and 13. Moreover, initial thread communicates to all 

other threads and from the last g threads.  

In Cholesky, the communication is non-uniform communication. Each thread 

communicates with itself, i.e. each thread reads from or writes to memory locations that 

it previously wrote to them and shared them with other threads. Initial thread 

communicates with all other threads. In Canneal, the communication is uniform 

communication. Additionally, each thread communicates with itself and initial thread 

communicates with all other threads. In Blackscholes, the communication is only with 

initial thread because there is no data sharing among threads. In Fluidanimate, the 

communication is non-uniform communication. Each thread communicates with itself 

and initial thread communicates with all other threads. In Swaptions, there are low 

communications. Each thread communicates with itself and there is some additional 

communication due to WAW accesses. 
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Figure 4.12. Number of communication events per thread pair for 16 threads Size I. 
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Figure 4.13. Number of communication events per thread pair for 16 threads Size II. 
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CHAPTER 5: CONCLUSIONS AND FUTURE WORK
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This chapter presents the conclusions regarding the thesis’s methodology, the 

developed tools, and characterization results. Also, it presents some proposed future 

work. 

5.1 Conclusions 

 The purpose of this study was to characterize the hardware-configuration 

independent characteristics of representative parallel applications on multi-core 

platforms. To achieve this goal, first, we chose a set of parallel applications that are 

representative of multi-core applications and are widely used in recent multi-core 

research. This set consists of eight applications from two benchmark suits. Four of these 

applications are from SPLASH-2 suite, which are Radix, FFT, LU, and Cholesky. The 

other four are from PARSEC suite, which are Canneal, Blackscholes, Fluidanimate, and 

Swaptions. These particular applications were selected because they represent a wide 

range of applications and are often used in multi-core research. To study the impact of 

application problem size on the communication behavior, we worked on two problem 

sizes of each application: Size I and Size II, where Size I < Size II. 

Second, Intel’s Pin instrumentation tool is used to instrument the studied 

applications. We chose Pin because it has a rich set of API’s that can be used to 

instrument applications without the need to master the underlying instruction set and it 

is widely used in multi-core research. We developed a tool based on Pin, which is called 

PSMAIT, that captures every memory access then it sends a simple trace record to 

CIAT. This record contains the type of the access, its size, and the starting virtual 

address of the memory location referenced. PSMAIT sends memory access records to 

CIAT on-the-fly by using pipes and it receives confirmation feedback from CIAT. 

Additionally, PSMAIT captures the synchronization calls such as mutex lock, barrier, 

and conditional wait then it sends special trace records to CIAT. By these records and 
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the response feedback from CIAT, PSMAIT and CIAT interact with each other to 

control the parallel application execution.    

Finally, we ported CIAT, which was developed for RISC multiprocessor systems, 

to work on CISC multi-core systems. We modified CIAT to handle the memory 

accesses that have larger operand size such as extended floating-point, quad-word, and 

even double quad-word. In addition, we modified CIAT to support Pthreads for thread 

management and synchronization and support the applications that use conditional wait 

calls as barrier. Moreover, we modified CIAT to activate receiving the traces from only 

the spawned threads at the beginning of the parallel phase. Any time a new thread is 

spawned, CIAT activates receiving traces from it. 

After the PSMAIT and CIAT are ready, we conducted many experiments of the 

studied applications with various numbers of threads for the two problem sizes on a 

multi-core system. We characterized several aspects of the studied applications’ 

characteristics including: 

 Memory access instructions include the number of memory accesses, the number 

of synchronization calls, and percentage of memory accesses by type of access 

and access data size. This characterization is useful to know the amount of 

parallelization overhead. 

 Communication patterns include the amount of communication for each type of 

the four-commination patterns, which are RAW, WAR, WAW, and RAR. 

Moreover, we characterized the sharing degree of RAW access and the 

invalidation degree of WAR access. Characterizing the communication patterns 

is important to know which of the communication patterns are common. Thus, 

facilitating the design of system that support these patterns efficiently in the 
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current applications and facilitating tuning applications to have less expensive 

patterns. 

 Communication slack is the amount of time between writing a value to a memory 

location and referencing it by other cores. The communication slack 

characterization is useful to know whether the target applications can make use 

of prefetching or not. 

 Communication locality is a measure how the cores communicate with each other. 

Characterizing the communication locality helps both software developers in 

assigning threads to the cores and hardware designers in selecting suitable 

system topology. 

In general, the number of memory accesses, in the studied applications, does not 

change significantly as the number of threads increases. However, there are some 

applications such as Cholesky and Fluidanimate that show high parallelization overhead 

and intensive synchronization calls. This overhead may limit the speedup of these 

applications. The largest percentages of memory accesses in the scientific applications 

are of floating point accesses. 

The most common communication patterns are RAW and WAR. Swaptions shows 

a large percentage of WAW when running more than eight threads due to reuse of some 

variables. In general, the communication percentages in PARSEC applications are 

smaller than the communication percentages in SPLASH-2 applications. Radix, FFT, 

and Blackscholes have a small sharing degree. Fluidanimate and Swaptions have a 

medium sharing degree compared with the other applications. LU, Cholesky, and 

Canneal have a large sharing degree compared with the other applications.   

In all the studied applications, the communication has most of the slack in the range 

of tens of thousands of instructions and more. These ranges are enough to make use of 
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prefetching. There is considerable diversity in communication locality of the studied 

applications. Some applications show uniform communication such as FFT, Canneal, 

and Blackscholes. Others show non-uniform communication and almost in all 

applications, initial thread communicates with other threads. The important 

characteristics of each applications are summarized in the following paragraphs. 

Radix is an integer kernel application, so it has a small percentage (24%) of 

floating-point accesses. It has a large portion (36%) of the WAW communication 

pattern due to the permutation operations. Radix has small sharing and invalidation 

degrees, where it has more than 90% of data sharing and invalidation with only one 

thread. Each thread communicates with all other threads. 

FFT has a large percentage of communication percentage (3.81%) due to matrix 

transposition operations. Like Radix, FFT has a small sharing and invalidation degrees, 

where it has 100% of the data sharing and invalidation with only one thread. FFT has 

uniform communication and there are large amounts (85-90%) of communications from 

initial thread.  

LU has large percentage of load and store floating-point accesses (85%) because it 

works on double floating-point dense matrices. It has large sharing and invalidation 

degrees, where it has more than 92% of the data sharing and invalidation with four 

threads or more because the communication is clustered within groups of threads. 

Cholesky has large parallelization overhead (80%) and high percentage of 

synchronization calls (82 calls per 106 memory accesses) because it has a large 

communication to computation ratio. It divides nonzero elements into blocks among 

threads and it requires synchronization to update the values in each block. Cholesky has 

large sharing degree, where it has 42% of the data sharing with two threads or more, but 
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the invalidation degree is one because some shared data is never updated by the WAR 

pattern. The communication in Cholesky is non-uniform communication. 

Canneal is another integer kernel application, so it has a small number of floating-

point load and store accesses (2.4%). It has a small portion (14%) of RAR 

communication pattern due to reading data not initialized by the application’s user code. 

Canneal has large sharing degree, where it has 32% of the data sharing with two threads 

or more, but the invalidation degree is one because some shared data is never updated 

by the WAR pattern. It has uniform communication. 

Blackscholes does not have synchronization calls because threads process the work 

independently from each other and there is no communication among threads. Almost 

all the communication patterns in Blacksholes are RAW accesses. Both the sharing and 

invalidation degrees are one, where it has 100% of sharing data and invalidation with 

only one thread. The communication is only with the initial thread.  

Fluidanimate has high percentage (60%) of parallelization overhead and large 

number of synchronization calls (3300 calls per 106 memory accesses) because 

Fluidanimate divides the work into cells among threads where the cells that are located 

on the borders must be locked before being modified. The number of these cells 

increases as the number of threads increases. The sharing and invalidation degrees are 

equal in Fluidanimate. It has non-uniform communication. 

Swaptions does not have synchronization calls because threads process the work 

independently from each other and there is no communication among threads. Almost 

100% of the total communication patterns in Swaptions are WAW patterns when 

running 16 threads due to reuse of some variables. 
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5.2 Future Work 

In our work, CIAT reports only the memory access instructions on multi-core 

systems and this is an approximation of the instruction stream. Therefore, the future 

work is to develop CIAT to capture the entire instruction stream on a multi-core system.  

In addition, we need to develop CIAT to handle new parallelization techniques where 

there are some modern applications that use different parallelization techniques such as 

the pipeline parallelization model that is used in three applications of PARSEC suite, 

which are Dedup, Ferret, and X264. 

Abandah, (1998) developed three tools for characterizing applications on 

distributed shared memory systems, which are CIAT, CDAT, and Communication 

Contention Analysis Tool (CCAT). In addition, he developed a tool to characterize 

event time distributions, which is called Time Distribution Analysis Tool (TDAT). In 

this thesis, we ported one of these tools, which is CIAT to work on multi-core systems. 

We plan to port the remaining tools to work on the modern multi-core systems. As 

mentioned in this thesis, CIAT characterizes the inherent characteristics of applications 

that do not depend on system configuration. Other characteristics depend on 

configuration parameters such as cache misses and false sharing need to be 

characterized. Therefore, it is important to port CDAT and CCAT for characterizing 

these characteristics. Also, TDAT is important to characterize the communication 

events over time.   



66 
 

 

APPENDIX A: USAGE INSTRUCTIONS  

All developed tools and the studied applications are put in one compressed file, which is 

called new-ciat.tar.gz. Extract the compressed file in the home directory. The 

new-ciat directory contains three directories, which are ciat, pin, and parsec-

splash, which contains both PARSEC and SPLASH-2 suites. 

A.1 Applications Installation 

 First, go to parsec-splash directory and add the needed environment variables by 

running the following commands:  

cd ~/new-ciat/parsec-splash 

source env.sh 

Make sure the required libraries shown in Table A.1 are installed. This table specifies 

the required libraries and how to install them.  

Table A.1. The required libraries. 

Library Method of installation 

g++ sudo apt-get install g++ 

x11  sudo apt-get install libx11-dev 

expat sudo apt-get install libexpat1-dev 

xt sudo apt-get install libxt-dev 

xext sudo apt-get install libxext-dev 

xmu sudo apt-get install libxmu-dev 

xi sudo apt-get install libxi-dev 

m4 sudo apt-get install m4 

perl5 
1- Download perl, perl-base, and perl-module of version 5.20.1-1 from 

https://launchpad.net/ubuntu/+source/perl  

2- Force install by "sudo dpkg --force-all -i perl*", where you must 

run it from the same downloaded files directory. 

In addition, there are other libraries that are included in parsec-splash directory. 

Install them by running the following command: 
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parsecmgmt -a  build –p libs 

Second, to build one of the applications, run the following command: 

 parsecmgmt -a build -p [suite].[app]  

Where suite is the benchmark suite, either parsec or splash2 and app is the 

name of application that you want to build. The names for suite.app are in Table 

A.2. For example to build Radix, run the following command:  

parsecmgmt -a build –p splash2.radix  

Table A.2. The names of suite.app for the studied applications. 

Application Suite.app 

Radix splash2.radix 

FFT splash2.fft 

LU splash2.lu_cb 

Chole splash2.cholesky 

Cann parsec.canneal 

Black parsec.blackscholes 

Fluid parsec.fluidanimate 

Swap parsec.swaptions 

Note: The source files of some PARSEC’s and SPLASH-2’s applications have been 

modified according to the instructions in the site: 

https://lists.cs.princeton.edu/pipermail/parsec-users/2012-September/001421.html  

A.2 CIAT Installation 

After building the applications, go to ciat directory and build it by running the 

following commands: 

cd ../ciat 

make -f ciat.mak 
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Copy the executable file of CIAT to psmait directory by running the following 

command:   cp ./ciat  ../pin/source/tools/psmait 

A.3 Pin Installation 

After installing the applications and CIAT, it is time to install Pin, but before that, you 

need to add the following environment variables to /etc/environment: 

PATH=”/home/[user-name]/new-ciat/pin” 

LD_LIBRARY_PATH="/usr/local/lib" 

Where user-name is your user name. You can edit /etc/environment by running 

the following commands:  

sudo gedit /etc/environment 

After adding the environment variables, go to psmait directory within the pin 

directory and build PSMAIT by running the following commands: 

cd ~/new-ciat/pin/source/tools/psmait 

make obj-ia32/psmait.so 

Where obj-32 is a directory that will be created in psmait directory when building 

PSMAIT.  

A.4 Running  

To run the tools, run the following commands as root: 

sudo su 

cd ~/new-ciat/pin/source/tools/psmait 

pin -t obj-ia32/psmait.so -n [number of threads] -f [CIAT report 

file name] –- [application’s path/app] [application’s 

parameters]  

Table A.3 shows the full path and the parameters for each application. For example to 

characterize FFT on four threads and using problem Size I, run the following command: 
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pin –t obj-ia32/psmait.so –n 4 –f fft -- ~/new-ciat/parsec-

splash/ext/splash2/kernels/fft/inst/i686-linux.gcc/bin/ 

fft -p4 -m16 
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Table A.3. The full path and the parameters for the eight applications. 

 

Application Application’s path /app 
Parameters 

Size I Size II 
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Notes:  n = number of threads. 

    All input files must be in the same directory of the application.

Radix 
~/new-ciat/parsec-splash/ext/splash2/kernels/ 

radix/inst/i686-linux.gcc/bin/radix 

-pn -r1024 -

n262144 -m524288 

-pn -r1024 -n2097152 

-m4194304 

FFT 
~/new-ciat/parsec-splash/ext/splash2/kernels/ 

fft/inst/i686-linux.gcc/bin/fft 

-pn -m16 -pn -m20 

LU 
~/new-ciat/parsec-splash/ext/splash2/kernels/ 

lu_cb/inst/i686-linux.gcc/bin/lu_cb 

-pn -n256 -b16 -pn -n512 -b16 

Chole 
~/new-ciat/parsec-splash/ext/splash2/kernels/ 

cholesky/inst/ i686-linux.gcc/bin/cholesky 

-pn < tk15.O -pn < tk29.O 

Cann 
~/new-ciat/parsec-splash/pkgs/kernels/ 

canneal/inst/i686-linux.gcc/bin/canneal 

n 10000 2000 

100000.nets 32 

n 15000 2000 

200000.nets 64 

Black 
~/new-ciat/parsec-splash/pkgs/apps/blackscholes/ 

inst/i686-inux.gcc/bin/blackscholes 

n in_4K.txt 

prices.txt 

n in_16K.txt 

prices.txt 

Fluid 
~/new-ciat/parsec-splash/pkgs/apps/fluidanimate/ 

inst/i686-linux.gcc/bin/fluidanimate 

n 5 in_35K.fluid 

out.fluid 

n 5 in_100K.fluid 

out.fluid 

Swap 
~/new-ciat/parsec-splash/pkgs/apps/swaptions/ 

inst/i686-linux.gcc/bin/swaptions 

-ns 16 -sm 10000  

-nt n 

-ns 32 -sm 20000  

-nt n 
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 على مواصفات تركيب الحاسوبتوصيف برمجيات الحواسيب متعددة النوى بدون الاعتماد 

 إعداد

 محمد سلطان أحمد محمد

 المشرف

 الدكتور غيث علي عبندة

 الملخص

فرة قات المتولتطبيالمعالجات المتعددة النوى شعبية متزايدة في السنوات الأخيرة. لكن عدد من ا اتمعماري اكتسبت

قات ي إما تطبيأنّ هذه التطبيقات هوذلك بسبب  المعالجة لا تستفيد بشكل كامل من الزيادة في عدد نوى حاليا  

 parallelizationمتسلسلة أو أنها تملك كمية كبيرة من أنواع الاتصال وأعباء إضافية نتيجة الموازاة )

overhead) ه هذي ضبط لمساعدة المبرمجين ف التطبيقات على منصات متعددة النوىهذه . لذلك من المهم توصيف

لنوى اتعددة متصميم معماريات في المستقبل، وكذلك لمساعدة المصممين في  متوازية يقاتتطوير تطبالتطبيقات و

 المتوازية بكفاءة.تقوم بتشغيل التطبيقات 

ريقة ه الطهذه الاطروحة تعرض طريقة فريدة في توصيف التطبيقات المتوازية على المنصات متعددة النوى. هذ

ص هو توصيف الخصائ غير المعتمد على المواصفاتتوصيف الغير المعتمد على المواصفات. توصيف الهي 

 ي مواصفاتأعلى  المتأصلة للتطبيقات وذلك بتتبع عمليات القراءة والكتابة لكل موقع في الذاكرة، وهي لا تعتمد

يانات برسال يتم امحددة. وهذه الطريقة في التوصيف أسرع من الطريقة التقليدية التي تعتمد على المواصفات. 

 لية إرسالزين. عممباشرة دون التخزين على وحدات التخبدون الاعتماد على المواصفات مراقبة الى أداة التحليل ال

  ئلة.ين هاتسمح بتوصيف تطبيقات ذات مدخلات كبيرة بدون الاحتياج الى مساحات تخز ةبيانات التحليل مباشر

-SPLASHو PARSECية )مجموعتين من التطبيقات القياسثمانية تطبيقات من في هذا البحث، قمنا أولا  باختيار 

التي كانت  CIAT( لمراقبة التطبيقات المختارة. وقمنا بتعديل أداة PSMAIT(. ثم قمنا بتطوير أداة مراقبة )2

تعمل على منصات متعددة المعالجات لكي تعمل على منصات متعددة النوى. كما قمنا بتنفيذ عدد من التجارب بأعداد 

 ( لحجمين من المدخلات لكل التطبيقات المختارة.threadsة من المسارات )مختلف

 ةالذاكر منالقراءة والكتابة تعليمات تصف أربعة جوانب من خصائص التطبيقات المدروسة وهي  CIATأداة 

 أنماطو (communication slack) الاتصال فواصلو (communication patterns)الاتصال  أنواعو

 نسبةلديها  المدروسة التطبيقات من اثنانأظهرت أنّ  التجارب هذه. نتائج (communication locality) الاتصال

 عباءالأ من% 80لدية  Fluidanimate .Cholskyو Cholesky وهما الموازاة نتيجة الإضافية عباءمن الأ عالية

 العمليات نسبة مع نةمسار بسبب انه يملك نسبه عالية من الاتصال مقار-16الإضافية نتيجة الموازاة عند تشغيل 

 الاتصال بسببمسار -16 تشغيل عند الموازاة نتيجة الإضافية عباءالأ من% 60لدية  Fluidanimate. الحسابية

. التطبيقات هذه سرعة زيادة من الحد الى تؤدي قد الموازاة نتيجة الإضافية عباءالأ .الخلايا بين الحدود على الكبير

ولكن هناك  .القراءة بعد والكتابة الكتابة بعد القراءة هيفي التطبيقات المدروسة  الشائعة الاتصال أنوع معظم

حوالي  Radix. في Swaptionsو Radixوهما  (WAWالكتابة ) بعد الكتابة تطبيقان يمتلكان جزء كبير من

 Swaptions. في التبديل عمليات بسببمسار -16عند تشغيل  WAW% من أجمالي أنواع الاتصال هي 36

مسار بسبب إعادة استخدام بعض -16عند تشغيل  WAWن أجمالي أنواع الاتصال هي م% 100تقريبا  

 store) قد يؤدي الى قضاء وقت كبير في معالجة مفقودات التخزين WAWالجزء الكبير من . المتغيرات

misses) .نتائج فاصل الاتصال أنّ جميع التطبيقات المدروسة يمكنها أن تستفيد من الجلب المسبق  تظهر

الأول يتصل مع بقية المسارات الأخرى في كل التطبيقات  المسارالاتصال تظهر أنّ  أنماط نتائجلمعلومات. 

  .الاتصال كلفة لتقليل المنتصفينصح بجعل هذا المسار على النوى الذي في  لذلكوسة. المدر


