

HARDWARE CONFIGURATION-INDEPENDENT

CHARACTERIZATION OF MULTI-CORE APPLICATIONS

By

Mohammed Sultan Ahmed Mohammed

Supervisor

Dr. Gheith Ali Abandah

This Thesis was Submitted in Partial Fulfillment of the Requirements for the

Master’s Degree of Computer Engineering and Networks

Faculty of Graduate Studies

The University of Jordan

April, 2015

ii

COMMITTEE DECISION

This Thesis/Dissertation (Hardware Configuration-Independent Characterization

of Multi-Core Applications) was Successfully Defended and Approved on ------------

Examination Committee Signature

Dr. Gheith A. Abandah. (Supervisor)

Assoc. Prof. of Computer Engineering

Dr. Andraws A. Swidan (Member)

Prof. of Computer Engineering

Dr. Basel A. Mahafzah (Member)

Assoc. Prof. of Computer Science

Dr. Jehad A. Al-Sadi (Member)

Assoc. Prof. of Computer Science

(Arab Open University)

iii

ACKNOWLEDGEMENTS

First and foremost, I would like to begin by thanking Almighty Allah, for providing

me with the health, strength, patience, and for guiding me through all the difficulties to

carry out this work.

I would like to acknowledge the great support of my supervisor Dr. Gheith

Abandah. I specially thank him for his advice, guidance, patience, and encouragement

throughout my thesis. He spent a lot of time in editing this thesis, helping in setting the

research direction, and offering great ideas when I was confused. Without his help, this

thesis would not be possible.

I would like to thank the University of Hodeidah and German Academic Exchange

Service (DAAD) for their generous financial support. I also would like to thank the

Computer Engineering Department of the University of Jordan for providing a multi-

core computer.

I would specially like to thank my parents. They were always supporting and

encouraging with their best wishes. Finally, to my lovely wife, Ahlam. She was always

there cheering me up and stood by me through the good and bad times.

iv

TABLE OF CONTENTS

Subject Page

COMMITTEE DECISION ..ii

ACKNOWLEDGEMENTS .. iii

TABLE OF CONTENTS .. iv

LIST OF TABLES ... vi

LIST OF FIGURES .. vii

LIST OF ABBREVIATIONS ... viii

ABSTRACT ... x

CHAPTER 1: INTRUDUCTION ... 1

1.1 Background ... 2

1.2 Motivation and Problem Statement ... 3

1.3 Thesis Contributions ... 4

1.4 Thesis Organization .. 5

CHAPTER 2: LITRATURE REVIEW ... 7

2.1 Introduction ... 8

2.2 Benchmarks ... 8

2.3 Trace Collection .. 8

2.3.1 Source Code Instrumentation .. 9

2.3.2 Static Binary Instrumentation ... 9

2.3.3 Dynamic Binary Instrumentation .. 11

2.4 Application Analysis and Characterization ... 11

2.4.1 Hardware-Assisted Characterization ... 12

2.4.2 Message-Passing Characterization .. 12

2.4.3 Configuration Dependent Analysis ... 13

2.4.4 Configuration Independent Analysis ... 14

CHAPTER 3: METHODOLOGY AND TOOLS ... 17

3.1 Introduction ... 18

3.2 Overview ... 18

3.3 Instrumentation Tool (PSMAIT) ... 19

3.4 Analysis Tool (CIAT) ... 21

3.4.1 Memory Access Instructions ... 22

3.4.2 Communication Patterns ... 23

3.4.3 Communication Slack ... 23

3.4.4 Communication Locality ... 24

v

3.5 Modifications to Support Intel Multi-Core Processors ... 24

3.5.1 Processor Architecture .. 25

3.5.2 Parallelism Technique ... 25

3.6 Validation of the Characterization Tools .. 26

CHAPTER 4: RESULTS DISCUSSION AND APPLICATIONS

CHARACTERIZATION .. 29

4.1 Introduction ... 30

4.2 Applications .. 30

4.3 Characterization Results .. 32

4.3.1 Memory Access Instructions ... 33

4.3.2 Communication Patterns ... 40

4.3.3 Communication Slack ... 51

4.3.4 Communication Locality ... 54

CHAPTER 5: CONCLUSIONS AND FUTURE WORK .. 59

5.1 Conclusions ... 60

5.2 Future Work .. 65

APPENDIX A: USAGE INSTRUCTIONS .. 66

REFERENCES ... 72

ABSTRACT(Arabic)..……………………………………………………………………………………………….…….67

vi

LIST OF TABLES

No. Table Caption Page

4.1 The applications problem sizes. 29

4.2 The counts and percentages of load and store operations for one thread. 30

A.1 The required libraries.

58

A.2 The names of suite.app for the studied applications. 59

A.3 The full path and the parameters for the eight applications. 61

vii

LIST OF FIGURES

No. Figure Caption Page

3.1 Our methodology of characterizing multi-core applications.

16

3.2 PSMAIT implementation overview.

17

3.2 First field format of memory-access record.

19

4.1 Percentage of memory accesses for 1-16 threads normalized to the

memory accesses of one thread.

32

4.2 Number of synchronization calls per 106 memory accesses for

Fluidanimate, Cholesky, LU, and FFT for Size I (left) and Size II

(right).

33

4.3 Number of synchronization calls per 106 memory accesses for Radix,

Canneal, Blackscholes, and Swaptions for Size I (left) and Size II

(right).

34

4.4 Percentages of the load and store operations according to the type and

size of accessed data for problem Size I.

36

4.5 Percentages of the load and store operations according to the type and

size of accessed data for problem Size II.

37

4.6 Percentages of the four types of communication patterns as a function

of the number of threads.

39

4.7 RAW sharing degree for 16 threads Size I.

41

4.8 RAW sharing degree for 16 threads Size II.

42

4.9 WAR invalidation degree for 16 threads Size I.

43

4.10 WAR invalidation degree for 16 threads Size II.

44

4.11 Communication slack distributions for 16 threads. 46

viii

4.12 Number of communication events per thread pair for 16 threads Size I.

49

4.13 Number of communication events per thread pair for 16 threads Size II.

50

LIST OF ABBREVIATIONS

API Application Program Interface

ATOM Analysis Tools with OM

BIRD Binary Interpretation using Runtime Disassembly

CCAT Communication Contention Analysis Tool

CDAT Configuration Dependent Analysis Tool

CIAT Configuration Independent Analysis Tool

CISC Complex Instruction Set Computer

CPSlib Compiler Parallel Support Library

EEL Executable Editing Library

HJM Heath Jarrow Morton

HPC High-Performance Computing

JIT Just in Time

LLC Last Level Cache

MC Monte Carlo

OM Object Module

PA-RISC Precision Architecture Reduced Instruction Set Computer

PARSEC Princeton Application Repository for Shared-Memory Computers

PEBIL PMaC’s Efficient Binary Instrumentation Toolkit for Linux

PMaC Performance Modeling and Characterization

PSMAIT Pin Shared-Memory Application Instrumentation Tool

ix

POSIX Portable Operating System Interface

RAR Read after Read

RAW Read after Write

RISC Reduced Instruction Set Computer

RMS Recognition, Mining, and Synthesis

SA Simulated Annealing

SMAIT Shared-Memory Application Instrumentation Tool

SPH Smoothed Particle Hydrodynamics

SPLASH Stanford ParalleL Applications for SHared memory

TBB Threading Building Blocks

TDAT Time Distribution Analysis Tool

TLB Translation Lookaside Buffer

WAR Write after Read

WAW Write after Write

x

HARDWARE CONFIGURATION-INDEPENDENT

CHARACTERIZATION OF MULTI-CORE APPLICATIONS

By

Mohammed S. Mohammed

Supervisor

Dr. Gheith A. Abandah

ABSTRACT

Multi-core processor architectures have been gaining increasing popularity in

recent years. However, many available applications cannot take full advantage of

increasing number of processing cores because these applications either are serial

applications or have intensive communication patterns and high parallelization

overhead. Therefore, it is important to characterize such applications on multi-core

platforms to help the programmers in tuning them and developing future parallel

applications, and to help the designers in developing multi-core architectures that

efficiently run parallel applications.

This thesis presents a unique approach for characterizing the parallel applications

on multi-core platforms. This approach is a configuration independent characterization.

The configuration independent characterization is characterizing the inherent

application’s characteristics by tracking only the accesses on each memory location and

it does not depend on any specific configuration. Therefore, this approach is faster than

the traditional configuration dependent characterization. An analysis trace is piped on-

the-fly to the configuration independent analysis tool (CIAT). On-the-fly analysis

enables analyzing large problems without needing huge storage medium.

In this research, first we have chosen eight representative parallel applications from

two benchmark suites: Princeton Application Repository for Shared-Memory

Computers (PARSEC) and Stanford ParalleL Applications for SHared memory

(SPLASH-2). Second, we developed an instrumentation tool, which is called Pin

Shared-Memory Application Instrumentation Tool (PSMAIT), for instrumenting the

selected applications. Third, we ported CIAT, which was developed for RISC

multiprocessor platforms, to work on commodity multi-core platforms. Finally, we

conducted many experiments with various numbers of threads for two problem sizes of

each of the selected applications.

CIAT characterizes four aspects of the studied applications’ characteristics:

memory access instructions, communication patterns, communication slack, and

communication locality. The obtained results show that two of the eight studied

applications have high parallelization overhead, which are Cholesky and Fluidanimate.

Cholesky has 80% of parallelization overhead when running 16 threads because it has a

large communication to computation ratio. Fluidanimate has 60% of parallelization

xi

overhead when running 16 threads because of the large communication at the cell

borders. The high parallelization overhead may limit the speedup of these applications.

The most common communication patterns in the studied applications are read after

write and write after read. However, there are two application that have large portions of

write after write (WAW), which are Radix and Swaptions. In Radix, about 36% of the

total communication is WAW when running 16 threads due to the permutation

operations. In Swaption, almost 100% of the total communication patterns are WAW

when running 16 threads due to reuse of some variables. The large portion of WAW

may lead to spending a lot of time in handling store misses. The communication slack

results show that all the studied applications can make use of prefetching. The

communication locality results show that the initial thread communicates with the other

threads in all the studied applications. Therefore, it is advisable to assign the initial

thread into central core to reduce the communication cost.

1

CHAPTER 1: INTRUDUCTION

2

1.1 Background

Most of processors nowadays are multi-core processors, i.e., there are multiple

processors on a single chip. Manufacturers of processors tend to increase the number of

processor cores to increase the performance (Devadas, 2013). However, unfortunately,

most of the available applications cannot take full advantage of this increasing number

of processing cores. Multi-core architectures are relatively very complex and require

close cooperation between the hardware and software developers.

Hardware designers must develop new techniques to overcome the limitations in

the current multi-core designs such as the used cache coherence protocols. Particularly,

the large number of available cores requires designing scalable cache coherence

protocols (Shriraman et al., 2013). Also the networks interconnecting these cores, as the

number of cores increases, are having increasing latencies leading to reduced overall

performance (Krishna et al., 2013), and increased power consumption (Schuchhardt et

al., 2013).

Software developers are using available parallel development tools to develop

parallel-multithreaded applications such as pthreads (Buttlar et al., 1996). Such tools

depend on the programmer to identify parallelism and to create, manage, and

synchronize threads to exploit the available data and task parallelism. Another more

productive tool is the OpenMP (Dagum et al., 1998). OpenMP depends on the

programmer to identify parallelism, but depends on the compiler to generate the code

required to exploit this parallelism. The recent threading library Threading Building

Blocks (TBB) (Reinders 2007) is a C++ template library developed by Intel for writing

software programs that take advantage of multi-core processors. These entire tools

target helping the programmers to develop efficient parallel applications.

3

1.2 Motivation and Problem Statement

Multi-core architecture is the current and the foreseeable-future approach that

manufacturers of processors use to build high performance and low power processors

(Borkar, 2007). This trend motivates studies to find new techniques that help to improve

the overall performance of multi-core systems. However, multi-core architectures are

relatively very complex, so there are many aspects that need to be tackled to improve

multi-core performance.

Some studies try to improve the multi-core performance by proposing techniques

that map applications to cores in order to reduce the interference between these

applications in multi-core systems. Das, et al. (2013) proposed a technique that maps

applications to cores to reduce inter-application interference in multi-core system. This

technique clusters the cores into subnetworks then assigns the interference-sensitive

applications to specific clusters, and finally maps the application’s threads to cores in

the cluster. Pusukuri, et al. (2013) map threads to cores by using a supervised learning

technique that monitors application resource usage characteristics to detect the effects of

the interference between multi-threaded applications. Jaleel, et al. (2012) assign

applications to cores by using knowledge of the last level cache (LLC) replacement

behavior and the application cache utility information.

Other studies try to improve the multi-core performance by proposing coherence

techniques that minimize the impact of coherence protocols on the multi-core

performance. Schuchhardt, et al. (2013) proposed a dynamic directories technique to put

coherence directories close to cores of the consistent cache blocks to reduce the

interconnection cost between the cores. Shriraman, et al. (2013) proposed an

application-tailored technique, which is application independent technique; to reduce

4

communication overhead of the coherence protocols and make them scalable with large

number of cores.

As reviewed above, there are several techniques that have been proposed to

improve the overall multi-core system performance. However, to exploit the potential of

multi-core architecture, the applications must be parallelized and distributed on the

multi-core processors efficiently. This task is very difficult without knowledge of the

applications’ behavior and characteristics on multiple cores with shared memory.

Therefore, it is important to understand how efficiently current applications utilize

multi-core architecture by characterizing such applications on multi-core platforms.

This will lead to developing future parallel applications that efficiently utilize multi-

core architecture and developing multi-core architectures that run the current and the

future applications with higher performance.

1.3 Thesis Contributions

In this thesis, we have the following contributions:

 Investigating the available benchmarks or applications that are representative of

multi-core applications and selecting a representative set of

benchmarks/applications for further study. We chose eight applications from

two benchmark suites.

 Investigating available application instrumentation techniques to select recent

techniques suitable for instrumenting the selected multi-core applications. We

developed an instrumentation tool based on binary dynamic instrumentation.

 Porting configuration independent analysis tool to commodity multi-core

architectures where it was developed for RISC multiprocessor systems.

 Conducting many experiments of the selected representative applications with

various numbers of threads on a multi-core system. The characterization results

5

are documented for the benefits of future application and architecture

development studies.

1.4 Thesis Organization

This thesis contains five chapters that describe the development of the whole study.

The rest of the thesis is organized as follows:

Chapter two presents a survey of some related work. It includes both trace collection

techniques and analysis and characterization techniques.

Chapter three summarizes our methodology for monitoring and characterizing multi-

core applications and describes the tools developed to characterize these applications.

Chapter four presents the results of the configuration independent characterization

approach we used for characterizing the multi-core applications.

Chapter five presents the main conclusions regarding the thesis’s methodology, the

developed tools, and characterization results. Additionally, it presents some proposed

future work.

6

7

CHAPTER 2: LITRATURE REVIEW

8

2.1 Introduction

This chapter presents a survey of some related work. It includes benchmarks, trace

collection techniques, and analysis and characterization techniques.

2.2 Benchmarks

There are many general proposed benchmark suits such as; SPEC-CPU2006 suite

(SPEC, 2014), which is a collection of compute-intensive applications, and is a

representative of scientific and engineering applications. These applications are serial

programs that are not suitable for studies of multicore platforms. SPLASH-2 suite

(Woo, et al., 1996) is a collection of multithreaded applications, which is representative

of scientific, engineering, and graphic applications. These applications are widely used

in the high-performance computing (HPC) domain. PARSEC suite (Bienia, et al., 2008)

is a collection of multithreaded commercial and new applications in recognition,

mining, and synthesis (RMS) (Dubey, 2005), which is representative of animation,

media processing, computer vision, enterprise servers, and computational finance

applications. The PARSEC benchmark suite is often used in studies related to multicore

processors. Phoenix suite (Ranger, et al., 2007) is a collection of data-insensitive

applications that implement the MapReduce programming model (Dean and Ghemawat,

2004).

Despite that SPLASH-2 was released at the beginning of the 1990s for the HPC

domain, it is widely used besides PARSEC in the recent multi-core research (Shi and

Khan 2013), (Shriraman et al., 2013), and (Krishna et al., 2013). Bienia, et al. (2008b)

show that SPLASH-2 and PARSEC complement each other in term of diversity of

working set size, cache miss rate, and distribution of instructions.

9

2.3 Trace Collection

Characterizing multi-core applications includes trace collection and trace analysis.

Trace collection means collecting information traces of application behavior on multiple

cores that have shared memory by using suitable instrumentation techniques. There are

three main techniques of instrumentation: source code instrumentation, static binary

instrumentation, and dynamic binary instrumentation.

2.3.1 Source Code Instrumentation

The source code instrumentation allows collecting various information traces by

inserting instrumentation code to the source code files of an application. The source

code instrumentation requires that the source code is available. Therefore, this technique

cannot instrument an object code for third party applications and system libraries. The

following paragraph presents some tools that use this technique of instrumentation.

Abandah (1996) developed an instrumentation tool called Shared-Memory

Application Instrumentation Tool (SMAIT) to collect traces from multi-threaded shared

memory parallel applications. This tool can pipe the traces at the run-time execution and

it has three levels of instruction instrumentation: procedure call instructions, load and

store instructions, and branch instructions. Abandah (1997) used SMAIT to collect

memory traces from NAS shared memory applications. Nguyen, et al. (1996) proposed

Augmint that is an instrumentation toolkit that supports execute-driven simulation for

Intel x86 architectures where the previous execute-driven simulation approaches usually

support RISC architectures.

2.3.2 Static Binary Instrumentation

The static binary instrumentation allows collecting various information traces by

inserting instrumentation code to the executable file of an application. The static binary

10

instrumentation does not require that the source code is available. Therefore, it can

instrument the user’s code of an application and all third party applications and system

libraries that are linked with that application. However, this technique requires stopping

an application execution to make any modification. The following paragraphs present

some tools that use this technique of instrumentation.

One of the earliest instrumentation tools that uses this technique is Analysis Tools

with Object Module (ATOM) that was developed by Srivastava and Eustace (1994).

ATOM is developed to work on the Alpha platform. It uses OM (Srivastava and Wall,

1992) link-time optimizer to make an application and user’s analysis routines in the

same address space. Larus and Schnarr (1995) developed an instrumentation tool called

Executable Editing Library (EEL). EEL is developed to work on the SPARC platform.

It is hardware- and software-independent editing tool for editing the executable files.

Nanda, et al. (2006) developed an instrumentation tool called Binary Interpretation

using Runtime Disassembly (BIRD). BIRD is developed to work on Windows/x86

platform. It uses redirecting approach, i.e., it inserts the instrumentation code to an

unused memory region and uses a branch instruction at an instrumentation point that

redirects the control to the instrumentation code.

Laurenzano, et al. (2010) at performance modeling and characterization (PMaC)

laboratory developed an instrumentation tool called PMaC’s Efficient Binary

Instrumentation Toolkit for Linux (PEBIL). PEBIL is developed to work on the Linux

platforms. It relocates each function to provide enough space for the branch instruction

at any instrumentation point. Additionally, it uses instrumentation functions and hand-

coded assembly to accomplish instrumentation operations.

11

2.3.3 Dynamic Binary Instrumentation

The dynamic binary instrumentation allows collecting various information traces by

inserting instrumentation code into the executable file of an application during the

execution. Similar to the static instrumentation, the source code is not required. The

advantage of this technique is that it allows adding or removing instrumentation code

while the application is running. There are two approaches for the dynamic

instrumentation, which are probe-based and just-in-time JIT-based instrumentation

(Luk, et al., 2005). Some of the instrumentation tools that use the dynamic

instrumentation technique are presented in the following paragraphs.

Buck and Hollingsworth (2000) proposed a dynamic instrumentation tool called

Dyninst that provides C++ library for instrumenting applications. They also developed

an application program interface (API) that allows inserting code and modifying the

application while it is running. Cantrill, et al. (2004) proposed a dynamic

instrumentation tool called DTrace, which instruments user level and kernel

applications. Both Dyninst and DTrace are a probe-based dynamic instrumentation

tools.

Luk, et al. (2005) developed a dynamic binary instrumentation tool for Linux and

Windows called Pin, which is JIT-based dynamic instrumentation tool. It instruments

single and multiple threaded applications and it supports different types of processors

including Intel’s IA-32 (x86 32-bit), IA-32E (x86 64-bit), and Itanium processors. Pin is

wildly used for instrumenting application that are running on multi-core systems (Jaleel,

et al., 2008), (Bertels, et al., 2011), and (Wang, et al., 2013).

2.4 Application Analysis and Characterization

Several characterization techniques are used to characterize and analyze

applications. The following subsections present some of these techniques.

12

2.4.1 Hardware-Assisted Characterization

Many characterization researches have used hardware performance counters, which

are registers on the processor that keep track of hardware events to characterize various

aspects of applications. Dongarra, et al. (2004) used hardware performance counters to

characterize data cache and translation lookaside Buffer (TLB) behavior of their

microbenchmarks.

Bhadauria, et al. (2009) characterized PARSEC benchmark on multiple aspects:

cache performance, sensitivity to DRAM speed and bandwidth, multi-thread scalability,

and micro-architecture design choices on a variety of real multi-core systems.

Ferdman, et al. (2012) used hardware performance counters to study micro-

architectural behavior of their CloudSuite benchmarks. They concluded that existing

processor micro-architectures are inefficient for running their benchmarks.

Jia, et al. (2013) used hardware performance counters to characterize eleven of data

analysis workloads of a data center to determine their micro-architectural characteristics

on systems equipped with modern superscalar out-of-order processors. They also

developed a benchmark suite called DCBench for typical data center workloads.

2.4.2 Message-Passing Characterization

Message passing characterization technique is used for characterizing parallel

scientific applications in distributed systems. The following paragraphs present some

research that use this technique.

Alam, et al. (2006) characterized scaling behavior of a set of micro-benchmarks,

kernels, and scientific workloads on HPC systems. They used AMD Opteron multi-core

processors. They concluded that the current cache coherence protocol of the Opteron

processor is insufficient to exploit the full bandwidth capability of the memory

interface.

13

Chai, et al. (2007) characterized micro-benchmarks and application level

benchmarks on Intel dual-core cluster. They observed that resource contention leads to

reduced overall performance. Consequently, the multi-core cluster architecture does not

scale as a single core cluster architecture for shared memory applications.

2.4.3 Configuration Dependent Analysis

The configuration dependent characterization technique characterizes the

application depending on a specific configuration of some system components. This

technique is widely used in characterizing applications. The following paragraphs

present some research that use this technique.

Abandah, (1998) proposed Configuration Dependent Analysis Tool (CDAT) to

characterize memory behaviors such as cache misses and false sharing that depend on

configuration parameters such as cache block size. CDAT is a simulator that has

memory, cache, bus, and interconnection models. By using a configuration file, users

can specify a system configuration through specifying the coherence protocol, size and

speed of system components, and processors and memory banks interconnections.

Jaleel, et al. (2006) characterized last-level cache memory behavior of parallel

bioinformatics data-mining workloads on multi-core processors. They concluded that

shared last-level cache memory is better than private last-level cache memory for high-

performance systems. Jaleel, et al. (2008) also used a dynamic binary instrumentation

tool as an alternative for trace-driven and execute-driven approach. They proposed a

memory system simulator to characterize memory performance of x86 workloads on

multi-core processors.

Bienia, et al. (2008) characterized PARSEC benchmarks to show that their

benchmark suit has various types of multi-threaded behaviors. Bhattacharjee and

Martonosi (2009) characterized TLB behavior of the PARSEC benchmark applications.

14

Contreras and Martonosi (2008) characterized a subset of PARSEC benchmark

applications that were compiled with Intel TBB on AMD dual-core processors to

determine the sources of overhead within the TBB.

Dey, et al. (2011) characterized PARSEC benchmark applications to measure the

effect of shared resource contention on performance. They classified resource

contention into intra-application contention, which is the contention among threads

from the same application, and inter-application contention, which is the contention

among threads from different applications.

Natarajan and Chaudhuri (2013) characterized a set of multi-threaded applications

selected from the PARSEC, SPEC OMP, and SPLASH-2 to understand LLC behavior

of multi-threaded applications. They proposed a generic design that introduces sharing-

awareness in LLC replacement policies. They showed that their design could

significantly improve the performance of LLC replacement policies.

2.4.4 Configuration Independent Analysis

The configuration independent characterization technique is a unique technique for

characterizing the inherent characteristics that do not change with changing system

configuration. Abandah and Davidson (1998) proposed CIAT to characterize

configuration independent characteristics such as memory access instructions,

concurrency, communication patterns, and sharing behavior of shared-memory

applications on a varying number of processors. Their characterization results are useful

for developing and tuning shared memory applications for multiprocessor systems.

Our work is porting CIAT to characterize the hardware-configuration independent

characteristics of parallel applications on multi-core platforms. We characterize the

communication among cores and shared memory behavior of parallel applications

irrespective of the hardware-configuration or cache coherence protocol. This approach

15

of characterization is fast because it gets the parallel application characteristics directly

from an execution trace and tracks only the changing of accesses on each memory

location and does not use a specific cache coherence or any specific system

configuration parameters (Abandah, 1998).

16

17

CHAPTER 3: METHODOLOGY AND TOOLS

18

3.1 Introduction

This chapter summarizes our methodology for monitoring and characterizing multi-

core applications and describes the tools developed to characterize these applications.

3.2 Overview

The methodology relies on choosing a set of benchmarks, which are representative

of multi-core applications based on the current related studies, and collecting detailed

traces and sending these traces to analysis tool as shown in Figure 3.1. The PSMAIT is

a tool based on Pin that developed to instrument the multi-core applications. The ported

CIAT is used to analyze traces.

As shown in Figure 3.1, PSMAIT supports on-the-fly analysis; the instrumented

code pipes the traces directly to the analysis tool when executed on a multi-core system.

The instrumented process accepts feedback from CIAT to control the execution timing

of the process on the multi-core system according to CIAT’s analysis model. On-the-fly

analysis enables analyzing large problems without needing huge storage medium and

uses feedback from the analysis tool to avoid the non-deterministic conduct of the

instrumented applications.

Instrumented
Code

Multi-Core

Applications Feedback

Execution on

Multi-Core

System

On-the-fly
Traces

CIAT PSMAIT

Characterization

Figure 3.1. Our methodology of characterizing multi-core applications.

19

3.3 Instrumentation Tool (PSMAIT)

PSMAIT is based on Pin (Luk, et al., 2005), a dynamic binary instrumentation tool

for Linux and Windows. Pin is a JIT-based dynamic instrumentation tool. It uses

dynamic compilation techniques to instrument applications while they are running. Pin

instruments single and multi-threaded applications and it supports Intel® IA-32, Intel®

IA-64 and Intel® many integrated core architectures (Intel, 2015). It has a rich set of

API’s that can be used to instrument applications without the need to master the

underlying instruction set.

PSMAIT is a tool written in C++. It consists of a set of instrumentation and

analysis routines as shown in Figure 3.2, where the instrumentation routine determines

where instrumentation is inserted and the analysis routine determines what to do when

instrumentation is activated. PSMAIT is designed to collect traces of multi-threaded

parallel applications and send these traces directly, on-the-fly, to CIAT. PSMAIT is a

run-time binary instrumentation, which means that it does not need the source code of

the parallel application. It instruments both the parallel applications’ user code and all

the libraries that are used during executing these applications.

Pin

Instrumentation

Routine

Memory Access Analysis Routines
(MemRead, MemWrite)

Synchronization Calls Analysis

Routine (SynCall)

PSMAIT

Figure 3.2 PSMAIT implementation overview.

20

PSMAIT depends on Pin instrumentation routine to capture every memory access

instruction, count number of operands in each instruction, and check type of memory

access. We added code to the instrumentation routine to determine whether the captured

instruction is integer or floating-point instruction. For each operand, if the memory

access is load, the instrumentation routine calls MemRead analysis routine and if the

memory access is store, the instrumentation routine calls MemWrite analysis routine.

MemRead and MemWrite are analysis routines that we built to receive the instruction

point type (fixed or floating), the size of the memory transfer, the type of the transfer

(load or store), and the starting virtual address of the memory location referenced from

the instrumentation routine. Subsequently, they generate simple two-field records. The

simple record has two fields each field is four bytes long. The first field specifies the

instruction point type (fixed or floating), the size of the memory transfer, and the type of

the transfer (load or store), as shown in Figure 3.3. The second field contains the

starting virtual address of the memory location referenced.

Additionally, before every synchronization and thread management call such as

lock, barrier, and condition call, the instrumentation routine calls Syncall analysis

routine. Syncall is analysis routine that we built to receive the call type and thread

number from the instrumentation routine. Subsequently, it sends special records for the

synchronization and thread management calls to CIAT. These records help CIAT to

control the parallel application execution. PSMAIT creates two pipes, one pipe for

sending traces and synchronization calls to CIAT, and another pipe for receiving

feedback from CIAT. When PSMAIT sends a special record of some thread, it blocks

that thread until it gets a feedback from CIAT to resume the execution of the stopped

thread.

21

31 0

0 F S S S S S S S 0 0 0 T

Figure 3.3. First field format of memory-access record.

3.4 Analysis Tool (CIAT)

 Our analysis tool is based on CIAT for the multiprocessor environment developed

by Abandah, (1998). CIAT aims to characterize inherent application characteristics such

as memory access instructions, concurrency, communication patterns, and sharing

behavior of parallel applications that are independent from one multiprocessor

configuration to another. A multiprocessor configuration includes the hierarchy of

processor, the interconnection topology, the coherence protocol, the cache

configuration, and the sizes and speeds of the multiprocessor system components.

CIAT uses many variables to count the various events by tracking the memory

load/store operations. It accepts traces from PSMAIT, which generates n trace pipes for

the n executing threads. CIAT supports various execution phases; it assumes that the

traces come from a parallel application either in a serial or in a parallel phase. In a

serial phase, there is only one thread active, while the other threads are idle. In a parallel

phase, more than one thread can be active. CIAT uses the special records of the thread

spawn and thread join calls to identify switches between serial and parallel phases. At

the end of each phase, CIAT generates statistics and save them in a report file. At the

end of the last phase, CIAT reports the aggregate statistics in the report file.

0: Load

1: Store 0: Fixed point

1: Floating point

0000001: One byte

0000010: Half-word

0000100: Word

0001000: Double-word

0001010: Extended double-

word

0010000: Quad-word

0100000: Double quad-word

22

CIAT assumes that n processors in multiprocessors can execute n instructions at the

same time and each instruction takes a fixed time. Therefore, a pseudo clock in

instruction units is used to keep track of the execution time. However, CIAT currently

only sees the memory accesses and advances the clock by one for each thread whenever

it receives a memory access record. And this is an approximation of the instruction

stream. CIAT interleaves the analysis of multiple thread traces on the processors

according to the thread spawn and join calls, and follows the constraints of the lock,

conditional wait, and barrier synchronization calls. The following subsections

summarize the configuration independent characteristics of the parallel applications that

are measured and reported by CIAT.

3.4.1 Memory Access Instructions

CIAT counts the occurrences of the different types of memory access instructions

and reports the following memory access statistics in number and percentage:

 Load and store instructions.

 Instructions in each size of accessed data, which include byte, half-word, word,

double-word, quad-word, double quad-word, single-precision floating-point,

double-precision floating-point, and extended-precision floating-point for both

load and store instructions.

 Recurrence of load and store sequences according to the length of each sequence.

For example, a load sequence of length one means that there is a sequence of

one load from one thread preceded and followed by stores. A store sequence of

length two means that there is two a sequence of two stores from one thread not

interrupted by any load.

23

3.4.2 Communication Patterns

The communication among processors in multiprocessor occurs when those

processors access same shared memory locations. For each memory location, CIAT

keeps track of the type of accesses and the processors that perform these accesses.

Consequently, CIAT reports the amount of the following four type of communication

patterns and sharing and invalidation degrees:

 Read after write accesses (RAW): A RAW communication pattern occurs when

one processor writes to a memory location and other processors read from that

location.

 Sharing degree for RAW (S): This is a vector of sharing degrees, where S[p] is

the number of times that p processors read from a memory location after being

previously written.

 Write after read accesses (WAR): A WAR communication pattern occurs when a

processor writes to a memory location that was read by other processors.

 Invalidation degree for WAR (I): This is a vector of invalidation degrees, where

I[p] is the number of times that a memory location was written into after being

previously read by p processors.

 Write after write accesses (WAW): A WAW communication pattern occurs when

a processor writes to a memory location that was written by another processor.

 Read after read accesses (RAR): A RAR communication pattern occurs when a

processor reads from a memory location that was read by another processor and

the first visible access to this location is a read.

3.4.3 Communication Slack

The communication slack is the time between writing a new value to a memory

location and referencing it by other processors using RAW or WAR access. CIAT

24

measures the communication slack as the time in instruction unit, i.e., it counts the

number of instructions from writing the value to the memory location until referencing

it.

3.4.4 Communication Locality

The communication locality is a measure how the processors communicate with

each other. CIAT characterizes the communication locality of shared-memory parallel

applications by counting the number of communication events for each processor pair.

CIAT generates n×n matrix where n is the number of processors. The rows in this

matrix represent the producer processors and the columns represent the consumer

processors. For example, the value in the row i and column j is the number of

communication events from processor i to processor j. This value is incremented by

one in the following cases:

 Each time processor j loads a memory location that was stored into by processor i

(RAW).

 Each time processor j stores into a memory location that was previously stored

into by processor i (WAW).

 Each time processor i updates a memory location that was previously stored into

by processor i and loaded by processor j (WAR).

3.5 Modifications to Support Intel Multi-Core Processors

This section presents the modifications on CIAT to characterize all the inherent

application’s characteristics that are mentioned in section 3.4 on multi-core platform. To

ensure CIAT supports multi-core applications characterization, it is modified to support

a new processor architecture and new parallelism techniques.

25

3.5.1 Processor Architecture

CAIT was designed to characterize shared-memory applications on HP precision

architecture reduced instruction set computer (PA-RISC) multiprocessors (HP, 1994). It

is modified to work on complex instruction set computer (CISC) multi-core processors

(Hennessy and Patterson, 2012).

As it is known, RISC microprocessors allow only load and store instructions to

access memory with only one memory operand for each instruction. In contrast, in

CISC microprocessors, many instructions can access the memory and possibly with

more than one operand. However, PSMIAT is developed to capture every access to the

memory, not just load/store instructions, and send a simple memory record to CIAT for

each access. It may send multiple memory access records to CIAT for one instruction.

Each simple record contains the type and size of memory access and the virtual address

of the accessed location. Additionally, CIAT is modified to support large access sizes

such as extended floating, double-word, quad-word, and even double quad-word. This

modification is done on the source code of CIAT.

3.5.2 Parallelism Technique

CIAT was built to work on HP-UX systems that use the compiler parallel support

library (CPSlib) for thread management and synchronization (HP, 1997). CIAT is

modified to support systems that use the portable operating system interface (POSIX)

threads also called Pthreads for thread management and synchronization.

CIAT is modified to receive special call records from PSMAIT for tracing thread

management and synchronization calls such as pthread_spawn,

pthread_mutex_lock, pthread_mutex_unlock, pthread_barrier_wait,

pthread_cond_wait, pthread_join, pthread_cond_broadcast, and

pthread_mutex_trylock. By these records, CIAT controls the execution of the

26

application. For example, if PSMAIT sends a record for a pthread_mutex_lock call

from a thread to CIAT, PSMAIT blocks that thread until it gets feedback. CIAT checks

the simulated mutex lock and assigns it to the called thread if it is free and sends a

feedback to PSMAIT to unblock the stopped thread. Otherwise, CIAT blocks receiving

traces from the called thread and puts it in a waiting list until the simulated mutex lock

is freed. Therefore, PSMAIT continues blocking the calling thread until it gets the

feedback from CIAT. When the simulated mutex lock is freed, CIAT unblocks one

thread from the waiting list. It uses FIFO and sends a feedback to PSMAIT.

The old version of CIAT assumes that all threads’ spawns occur at same time in the

parallel phase, thus it expects traces from all threads in a parallel region. However, this

does not work for some new applications that do not spawn all threads at the beginning

of the parallel phase. Therefore, CIAT is modified to activate receiving the traces from

only the spawned threads. Any time a new thread is spawned, CIAT activates receiving

traces from it.

Additionally, CIAT is modified to deal with the pthread_cond_wait calls used

in barriers. Because some modern applications use the pthread_cond_wait call as a

barrier wait.

3.6 Validation of the Characterization Tools

We have verified of the correctness of our characterization tools by running these

tools on simple synthetic applications that have known analysis results. In addition, we

have compared our analysis results of the applications from SPLASH-2 suite (presented

in Chapter 4) against the configuration independent analysis presented in (Abandah,

1998). The results are agree in general, but there are some differences due to working

on two different hardware architectures and instrumentation tools. We work on CISC

architecture that has a few number of registers compared with RISC architecture that

27

has a large number of registers. Therefore, the number of memory accesses in our work

is larger. Moreover, PSMAIT instruments the application’s user code and all the

libraries that are used during executing the parallel applications. Whereas, SMIAT that

is used in (Abandah, 1998) instruments only the application’s user code.

We have verified that our characterization tools are hardware configuration-

independent by running them on two machines that have different types of multi-core

processor. One of them has dual core processor and the other has quad core processor.

The characterization results on the two machines are the same. Therefore, we can make

sure that our characterization tools do not depend on the hardware configuration.

28

29

CHAPTER 4: RESULTS DISCUSSION AND APPLICATIONS

CHARACTERIZATION

30

4.1 Introduction

This chapter presents the results of the configuration independent characterization

approach we used for characterizing the multi-core applications. We use our tools to

characterize eight parallel benchmark applications: four applications from Stanford

SPLASH-2 (Woo, et al., 1996) and four applications from Princeton PARSEC

application suite that run on multi-core systems (Bienia, et al., 2008). These

applications were selected because they represent a wide range of applications and often

used in multi-core research as mentioned in Chapter 2.

The next section describes the eight benchmarks that are used in this study. Section

4.3 presents the characterization results found.

4.2 Applications

We used eight benchmark applications in our study. Four of these applications are

from SPLASH-2 suite, which are Radix, FFT, LU, and Cholesky. The other four are

from PARSEC suite, which are Canneal, Blackscholes, Fluidanimate, and Swaptions.

The following paragraphs present short descriptions of these applications.

Radix is a sorting algorithm that carries out one iteration on radix r digits of the

keys, which are a series of integers. In each iteration, a processor sorts its assigned keys

and creates a local histogram. After that, the local histograms are accumulated into a

global histogram. Finally, each processor uses the global histogram to permute its keys

into a new array for the next iteration.

FFT is a one-dimensional kernel of the radix-6 steps fast Fourier transform

algorithm that is optimized to minimize interprocessor communication. The data set is

organized as a number of matrices, which are distributed, in a neighboring

set of rows, on the processors and assigned to each processor’s local memory. The all-

31

to-all interprocessor communication occurs in three matrix transpose steps. Each

processor transposes a neighboring submatrix of from each other

processor. To avoid high contention, each processor starts by transposing a submatrix

from the next processor.

LU is a kernel benchmark that decomposes a dense square matrix into the product

of a lower triangular and an upper triangular matrix. The n×n matrix is divided into an

N×N array of B×B blocks, where n=NB. The blocks are divided among the processors

and each processor updates its blocks. To reduce communication, a 2-D scatter

decomposition is used to assign blocks to processors.

Cholesky is a kernel benchmark that decomposes a sparse matrix into the product

of a lower triangular matrix and an upper triangular matrix by using blocked Cholesky

decomposition. As LU, it divides a sparse matrix into blocks that are divided among the

processors and each processor updates its blocks.

Canneal is a kernel benchmark that uses a cache-aware simulated annealing (SA)

algorithm to minimize routing cost of a chip design. The SA algorithm is a generic

probabilistic metaheuristic for locating a good approximation to the global minimum of

a given function in a large search space (Kirkpatrick et al., 1983 and Carny, 1987).

Canneal simulates putting elements on a chip with minimum routing cost.

Blackscholes is an Intel RMS application. It calculates the prices for a portfolio of

European options analytically by using the Black-Scholes partial differential equation

solution (Black and Scholes, 1973). It partitions the portfolio work among the threads

and processes them simultaneously.

Fluidanimate is an Intel RMS application that uses an extension of the smoothed

particle hydrodynamics (SPH) approach to simulate an incompressible fluid for

interactive animation purposes. Fluidanimate partitions the work among the threads and

32

each thread handles its portion and interacts with the other threads to handle shared

work.

Swaptions is an Intel RMS application that uses the Heath Jarrow Morton (HJM)

framework to price a portfolio of swaptions. The HJM framework describes how

interest rates evolve for risk management and asset liability management for a class of

models. Its central insight is that there is an explicit relationship between the drift and

volatility parameters of the forward-rate dynamics in a no-arbitrage market. Swaptions

uses Monte Carlo (MC) simulation to compute the prices.

To study the impact of application problem size on the communication behavior,

we work on two problem sizes of each application; Size I and Size II. Where Size I is

smaller than Size II. Table 4.1 shows the problem sizes and the abbreviations that are

used for naming these applications.

Table 4.1. The applications problem sizes.

4.3 Characterization Results

This section presents the results of the characterization of the multi-core

applications that are measured and reported by CIAT. The following four subsections

present the inherent characteristics of the studied applications. These characteristics are

Suite Application Abbreviation Size I Size II

SPLASH-2

Radix Radix 256K integers 2M integers

FFT FFT 64K points 1M points

LU LU 256×256 512×512

Cholesky Chole tk15.O file tk29.O file

PARSEC

Canneal Cann
100,000 elements,

32 temperature steps

200,000 elements,

32 temperature steps

Blackscholes Black 4K options 16K options

Fluidanimate Fluid
5 frames, 35K

particles

5 frames, 100K

particles

Swaptions Swap
16 swaptions,

10,000 simulations

32 swaptions,

 20,000 simulations

33

memory access instructions, communication patterns, communication slack, and

communication locality.

4.3.1 Memory Access Instructions

This subsection presents and analyzes the first independent characteristic of multi-

core applications. As mentioned in Chapter 3, the developed tools can capture every

operation on the memory and report the number of load and store operations as shown

in Table 4.2.

Table 4.2 shows the number of memory accesses in billions for the eight studied

applications when using one thread for the two problem seizes. These numbers

represent the number of operations on memory not the memory access instructions

where some memory access instructions may do more than one operation on the

memory.

In all applications, loads are more frequent. The load operations ratio is about twice

the store operations in the most of the studied applications. Some applications such as

Cholesky, Fluidanimate, and Sawptions have even larger percentages of the load

operations. Cholesky has about four times more of load operations than store operations

because it operates on sparse matrices and needs to find the indices of the non-zero

elements in these matrices. Fluidanimate has about five times more load operations than

store operations. Sawptions has about three times more load operations than store

operations. The load and store operations in Canneal are relatively equifrequent.

Table 4.2. The counts and percentages of load and store operations for one thread.

Size I

 Radix FFT LU Chole Cann Black Fluid Swap

No. of Loads

(in 109)

0.034

(66.3%)

0.011

(56.9%)

0.015

(67.8%)

0.150

(80%)

1.586

(57.1%)

0.053

(61.1%)

0.500

(84.2%)

0.562

(75.2%)

No. of Stores

(in 109)

0.017

(33.7%)

0.008

(43.1%)

0.007

(32.2%)

0.038

(20 %)

1.189

(42.9%)

0.034

(38.9%)

0.094

(15.8%)

0.186

(24.8%)

34

Size II

No. of Loads

(in 109)

0.285

(66.7%)

0.190

(57.1%)

0.109

(68.2%)

0.381

(77.6%)

3.577

(57.7%)

0.213

(61.1%)

1.146

(81.9%)

2.246

(75.2%)

No. of Stores

(in 109)

0.143

(33.3%)

0.144

(42.9%)

0.051

(31.8%)

0.110

(22.4%)

2.625

(42.3%)

0.136

(38.9%)

0.253

(18.1%)

0.742

(24.8%)

35

Figure 4.1 shows the percentage of memory accesses for running the eight

applications with various numbers of threads for the two problem sizes. The percentages

are normalized to the number of memory accesses when running the respective

applications with single thread. Thus, we can notice the parallelization overhead. As

obvious, the parallelization overhead is negligible in most of the studied applications.

However, there are two of the eight studied applications have a high percentage of

parallelization overhead, which are Cholesky from SPLASH-2 and Fluidanimate from

PARSEC. Cholesky has about 80% and 50% of memory accesses as overhead when

running 16 threads for sizes I and II, respectively. This overhead is due to Cholesky’s

work on sparse matrices which have a larger communication to computation ratio.

Fluidanimate has about 60% and 33% of memory accesses as overhead when running

16 threads for problem sizes I and II, respectively. This overhead is due to

Fluidanimate’s partitioning of the work among the threads and each thread handles its

portion also interacts with other threads to handle the shared data.

Figures 4.2 and 4.3 show the number of synchronization calls per 106 memory

accesses for problem sizes I and II. The synchronization calls include locks, barriers,

and conditions calls. Fluidanimate has the highest number of synchronization calls,

which is 3303 synchronization calls per 106 memory accesses when running 16 threads.

This high rate is due to the high number of locks that are used at borders to avoid race

conditions. All studied applications from PARSEC either have few numbers of

synchronization calls such as Canneal, which has about 2 synchronization calls per 107

memory accesses when running 16 threads, or almost do not have synchronization calls

such as Blackscholes and Swaptions because there is no sharing of data among threads.

Choleskey and LU have large numbers of synchronization calls compared to the rest of

36

the studied SPLASH-2 applications, where Cholesky has 82 synchronization calls per

106 memory accesses and

37

Figure 4.1. Percentage of memory accesses for 1-16 threads normalized to the memory accesses

of one thread.

38

Figure 4.2. Number of synchronization calls per 106 memory accesses for Fluidanimate,

Cholesky, LU, and FFT for Size I (left) and Size II (right).

39

Figure 4.3. Number of synchronization calls per 106 memory accesses for Radix, Canneal,

Blackscholes, and Swaptions for Size I (left) and Size II (right).

40

LU has 49 synchronization calls per 106 memory accesses when running 16 threads.

The number of synchronization calls generally increase as the number of threads

increases due to contention on shared data.

When the problem size is scaled up, the number of synchronization calls per 106

memory accesses generally decreases by different percentages in all the studied

applications. This decrease is because these synchronization calls either are at fixed

points of the code and they do not increase as the problem size increases such as in FFT,

or they do not increase as much as processing data increases such as in other

applications.

Figure 4.4 and 4.5 show the percentage of the byte, half-word (2 bytes), word (4

bytes), double-word (8 bytes), float (single-precision floating-point), and double-float

(double-precision floating-point) load and store operations when running 16 threads for

the two problem sizes. All the studied applications do not have any quad-word (16

bytes) or extended-float (extended-precision floating-point) memory accesses. All the

studied applications are scientific benchmarks, which have a large percentage of

floating-point operations except Radix and Canneal, which are integer kernel

applications.

The percentages of byte and half-word accessed data is insignificant in almost all the

studied applications except Radix and FFT that have 25% and 6% half-word load and

store operations, respectively. These relatively large percentages are because they have

large portion of integer computation.

4.3.2 Communication Patterns

As mentioned in Chapter 3, the communication occurs when multiple threads

access a shared location. CIAT reports four types of the communication patterns, which

41

are RAR, RAW, WAR, and WAW. Figure 4.6 shows the percentages of these four

types of the communication patterns to the total number of memory accesses.

42

Figure 4.4. Percentages of the load and store operations according to the type and size of

accessed data for problem Size I.

43

Figure 4.5. Percentages of the load and store operations according to the type and size of

accessed data for problem Size II.

44

Except for Radix that has a large portion of WAW pattern, which is about 36% of

total communication patterns when running 16 threads due to the permutation

operations, and Swaptions that has only WAW pattern when running 16 threads due to

reuse of some variables. The most communication in the remaining applications are

RAW and WAR. In general, PARSEC applications have less communication

percentages, which are less than 0.5%, because the total numbers of memory accesses in

PARSEC applications are very large compared to the numbers of communication

events. For Blacksholes the numbers of communication events are small compared to

the numbers of memory accesses. Therefore, the communication percentages are very

small. Almost all the communication events in Blacksholes are RAW patterns because

the memory locations are not updated by any WAR patterns. Only Canneal has a small

portion of RAR communication patterns due to reading data not initialized by the

application user code.

The communication percentage generally increases as the number of threads

increases because of the increase in the data sharing. For Fluidanimate in problem size I,

the communication percentage decreases when the number of threads increases from 8

to 16 because the percentage of increase in the total accesses is larger than the

percentage of increase in the communication events.

When the problem is scaled up, the communication patterns increase in all

applications, but the percentage of these communication patterns depends on the total

number of accesses. Therefore, this percentage increases in some applications like

Radix, Canneal, and Fluidanimate because the increase in communication patterns is

more than the increase in total accesses. However, it decreases in some other

applications like FFT, LU, Cholesky, and Swaptions because the increase in

communication pattern is less than the increase in total accesses. In Blackscholes, it

45

does not change because the increase in communication patterns and the increase in

total accesses are equal.

Figure 4.6. Percentages of the four types of communication patterns as a function of the number

of threads.

46

Figure 4.7 shows the distributions of sharing degrees for RAW accesses in problem

size I. It presents the percentages of sharing degrees when running 16 threads. These

percentages are calculated by using the following formula:

16,...,1;][100][
16

1

piSpS
i

Where S[p] is the number of times that p threads read from a memory location after

being previously written. Radix has a small sharing degree where 90% of shared data

are shared with only one thread, 5% are shared with two threads, 3% are shared with

four threads, and 2% are shared with three threads. FFT and Blackscholes also have a

small sharing degree where almost all shared data are shared with one thread.

Fluidanimate and Swaptions have two sharing degrees. In Fluidanimate, 75% of shared

data are shared with one threads and 25% of shared data are shared with two threads. In

Swaptions, 66% of shared data are shared with one threads and 34% are shared with

two threads. LU, Cholesky, and Canneal have more than two sharing degrees. In LU,

92% of shared data are shared with four threads and the remaining percentages of

shared data are shared with one, two, and three threads. In Cholesky, about 50% of

shared data are shared with two and more threads and 50% of shared data are shared

with one thread. In Canneal, 32% of shared data are shared with two and more threads

and 68% of shared data are shared with one thread.

Figures 4.9 and 4.10 show the distributions of invalidation degrees of the WAR

access for problem sizes I and II, respectively. They present the percentages of

invalidation degrees when running 16 threads. These percentages are calculated by

using the following formula:

16,...,1;][100][
16

1

pjIpI
j

47

Figure 4.7. RAW sharing degree for 16 threads Size I.

48

Figure 4.8. RAW sharing degree for 16 threads Size II.

49

Figure 4.9. WAR invalidation degree for 16 threads Size I.

50

Figure 4.10. WAR invalidation degree for 16 threads Size II.

51

Where I[p] is the number of times that a memory location was updated after being

previously read by p threads. The invalidation degree in Radix, FFT, LU, Fluid, and

Swaptions is almost similar to their sharing degree because the memory location that is

accessed by one or more RAW patterns is updated by a WAR pattern. Choleskey and

Canneal’s invalidation degrees drop to one because some shared data is never updated

by the WAR pattern. Blackscholes’s invalidation degree is two, but in fact, only a small

number of memory locations are updated. Only less than 120 memory locations are

updated and this number is almost equal in the two problem sizes.

4.3.3 Communication Slack

The communication slack is a measure to know how much time is present between

writing a value to a memory location and referencing it by either read or write

operation. CIAT measures this time by counting the number of instructions from writing

the value until referencing it. The communication slack is distributed into eight ranges

from less than ten instructions to more than ten million instructions. Figure 4.11 shows

the percentages of the communication slack distributions using 16 threads for problem

sizes I and II. These percentages are the number of instructions in each range over the

total number of memory accesses.

Radix’s communication has a large percentage of slack in the ranges of tens of

thousands of instructions and more, where it has 86.2% of slack in these ranges for

problem size I and 97% of slack in these ranges for problem size II. FFT’s

communication has a large percentage of slack in the ranges of millions of instructions

and more, where it has 78.4% of slack in these ranges for problem size I and 99.6% of

slack in these ranges for problem II. LU’s communication has a large percentage of

slack in the ranges of tens of thousands of instructions and more, where it has 91.4% of

52

slack in these ranges for problem size I and 96.4% of slack in these ranges for problem

size II.

53

Figure 4.11. Communication slack distributions for 16 threads.

Cholesky’s communication has a large percentage of slack in the ranges of

hundreds of thousands of instructions and more, where it has 93.2% of slack in these

ranges for problem size I and 94.8% of slack in these ranges for problem size II.

Canneal’s communication has a large percentage of slack in the ranges of tens of

millions of instructions and more, where it has 86.5% of slack in these ranges for

problem size I and 90.4% of slack in these ranges for problem size II. Blackscholes’s

communication has a large percentage of slack in the ranges of tens of thousands of

instructions and more, where it has 99.5% of slack in these ranges for problem size I

and 99.9% of slack in these ranges for problem size II. Fluidanimate’s communication

has a large percentage of slack in the ranges of millions of instructions and more, where

it has 89.2% of slack in these ranges for problem size I and 90% of slack in these ranges

for problem size II. Swaptions’s communication has a large percentage of slack in the

54

ranges of tens of thousands of instructions and more, where it has 91.9% of slack in

these ranges for problem size I and 91.1% of slack in these ranges for problem size II.

In general, the percentage of slack tend to higher ranges as the problem size increases

because the increase of processing data makes referencing the produced data takes

longer time.

In all the studied applications, the communication has most of the slack in range

tens thousands of instructions and more. These ranges are enough to make use of

prefetching.

4.3.4 Communication Locality

As mentioned in Chapter 3, the communication locality is a measure how the cores

communicate with each other. CIAT generates 2D matrix of communication events

where the rows represent the data producer threads and the columns represent the data

consumer threads.

Figures 4.12 and 4.13 present the communication matrices for the studied

applications using 16 threads for problem sizes I and II, respectively. In Radix, each

thread communicates with all other threads. Also, there are some additional

communications with the neighbors where some odd threads communicates with only

the next thread and some even threads may communicate with more than one threads.

In FFT, the communication is uniform communication. Additionally, there are a

large amount of the communications from initial thread to every other thread. In LU, the

communication is clustered within groups of 4ng threads where n is the number of

threads that are used to run the application. For example, when running LU using 16

threads, 4416 g threads. Additionally, each thread communicates to and from the

thread that is located after multiple of g threads from it. For example, if 4g , Thread 1

55

communicates with Threads 5, 9, and 13. Moreover, initial thread communicates to all

other threads and from the last g threads.

In Cholesky, the communication is non-uniform communication. Each thread

communicates with itself, i.e. each thread reads from or writes to memory locations that

it previously wrote to them and shared them with other threads. Initial thread

communicates with all other threads. In Canneal, the communication is uniform

communication. Additionally, each thread communicates with itself and initial thread

communicates with all other threads. In Blackscholes, the communication is only with

initial thread because there is no data sharing among threads. In Fluidanimate, the

communication is non-uniform communication. Each thread communicates with itself

and initial thread communicates with all other threads. In Swaptions, there are low

communications. Each thread communicates with itself and there is some additional

communication due to WAW accesses.

56

Figure 4.12. Number of communication events per thread pair for 16 threads Size I.

57

Figure 4.13. Number of communication events per thread pair for 16 threads Size II.

58

59

CHAPTER 5: CONCLUSIONS AND FUTURE WORK

60

This chapter presents the conclusions regarding the thesis’s methodology, the

developed tools, and characterization results. Also, it presents some proposed future

work.

5.1 Conclusions

 The purpose of this study was to characterize the hardware-configuration

independent characteristics of representative parallel applications on multi-core

platforms. To achieve this goal, first, we chose a set of parallel applications that are

representative of multi-core applications and are widely used in recent multi-core

research. This set consists of eight applications from two benchmark suits. Four of these

applications are from SPLASH-2 suite, which are Radix, FFT, LU, and Cholesky. The

other four are from PARSEC suite, which are Canneal, Blackscholes, Fluidanimate, and

Swaptions. These particular applications were selected because they represent a wide

range of applications and are often used in multi-core research. To study the impact of

application problem size on the communication behavior, we worked on two problem

sizes of each application: Size I and Size II, where Size I < Size II.

Second, Intel’s Pin instrumentation tool is used to instrument the studied

applications. We chose Pin because it has a rich set of API’s that can be used to

instrument applications without the need to master the underlying instruction set and it

is widely used in multi-core research. We developed a tool based on Pin, which is called

PSMAIT, that captures every memory access then it sends a simple trace record to

CIAT. This record contains the type of the access, its size, and the starting virtual

address of the memory location referenced. PSMAIT sends memory access records to

CIAT on-the-fly by using pipes and it receives confirmation feedback from CIAT.

Additionally, PSMAIT captures the synchronization calls such as mutex lock, barrier,

and conditional wait then it sends special trace records to CIAT. By these records and

61

the response feedback from CIAT, PSMAIT and CIAT interact with each other to

control the parallel application execution.

Finally, we ported CIAT, which was developed for RISC multiprocessor systems,

to work on CISC multi-core systems. We modified CIAT to handle the memory

accesses that have larger operand size such as extended floating-point, quad-word, and

even double quad-word. In addition, we modified CIAT to support Pthreads for thread

management and synchronization and support the applications that use conditional wait

calls as barrier. Moreover, we modified CIAT to activate receiving the traces from only

the spawned threads at the beginning of the parallel phase. Any time a new thread is

spawned, CIAT activates receiving traces from it.

After the PSMAIT and CIAT are ready, we conducted many experiments of the

studied applications with various numbers of threads for the two problem sizes on a

multi-core system. We characterized several aspects of the studied applications’

characteristics including:

 Memory access instructions include the number of memory accesses, the number

of synchronization calls, and percentage of memory accesses by type of access

and access data size. This characterization is useful to know the amount of

parallelization overhead.

 Communication patterns include the amount of communication for each type of

the four-commination patterns, which are RAW, WAR, WAW, and RAR.

Moreover, we characterized the sharing degree of RAW access and the

invalidation degree of WAR access. Characterizing the communication patterns

is important to know which of the communication patterns are common. Thus,

facilitating the design of system that support these patterns efficiently in the

62

current applications and facilitating tuning applications to have less expensive

patterns.

 Communication slack is the amount of time between writing a value to a memory

location and referencing it by other cores. The communication slack

characterization is useful to know whether the target applications can make use

of prefetching or not.

 Communication locality is a measure how the cores communicate with each other.

Characterizing the communication locality helps both software developers in

assigning threads to the cores and hardware designers in selecting suitable

system topology.

In general, the number of memory accesses, in the studied applications, does not

change significantly as the number of threads increases. However, there are some

applications such as Cholesky and Fluidanimate that show high parallelization overhead

and intensive synchronization calls. This overhead may limit the speedup of these

applications. The largest percentages of memory accesses in the scientific applications

are of floating point accesses.

The most common communication patterns are RAW and WAR. Swaptions shows

a large percentage of WAW when running more than eight threads due to reuse of some

variables. In general, the communication percentages in PARSEC applications are

smaller than the communication percentages in SPLASH-2 applications. Radix, FFT,

and Blackscholes have a small sharing degree. Fluidanimate and Swaptions have a

medium sharing degree compared with the other applications. LU, Cholesky, and

Canneal have a large sharing degree compared with the other applications.

In all the studied applications, the communication has most of the slack in the range

of tens of thousands of instructions and more. These ranges are enough to make use of

63

prefetching. There is considerable diversity in communication locality of the studied

applications. Some applications show uniform communication such as FFT, Canneal,

and Blackscholes. Others show non-uniform communication and almost in all

applications, initial thread communicates with other threads. The important

characteristics of each applications are summarized in the following paragraphs.

Radix is an integer kernel application, so it has a small percentage (24%) of

floating-point accesses. It has a large portion (36%) of the WAW communication

pattern due to the permutation operations. Radix has small sharing and invalidation

degrees, where it has more than 90% of data sharing and invalidation with only one

thread. Each thread communicates with all other threads.

FFT has a large percentage of communication percentage (3.81%) due to matrix

transposition operations. Like Radix, FFT has a small sharing and invalidation degrees,

where it has 100% of the data sharing and invalidation with only one thread. FFT has

uniform communication and there are large amounts (85-90%) of communications from

initial thread.

LU has large percentage of load and store floating-point accesses (85%) because it

works on double floating-point dense matrices. It has large sharing and invalidation

degrees, where it has more than 92% of the data sharing and invalidation with four

threads or more because the communication is clustered within groups of threads.

Cholesky has large parallelization overhead (80%) and high percentage of

synchronization calls (82 calls per 106 memory accesses) because it has a large

communication to computation ratio. It divides nonzero elements into blocks among

threads and it requires synchronization to update the values in each block. Cholesky has

large sharing degree, where it has 42% of the data sharing with two threads or more, but

64

the invalidation degree is one because some shared data is never updated by the WAR

pattern. The communication in Cholesky is non-uniform communication.

Canneal is another integer kernel application, so it has a small number of floating-

point load and store accesses (2.4%). It has a small portion (14%) of RAR

communication pattern due to reading data not initialized by the application’s user code.

Canneal has large sharing degree, where it has 32% of the data sharing with two threads

or more, but the invalidation degree is one because some shared data is never updated

by the WAR pattern. It has uniform communication.

Blackscholes does not have synchronization calls because threads process the work

independently from each other and there is no communication among threads. Almost

all the communication patterns in Blacksholes are RAW accesses. Both the sharing and

invalidation degrees are one, where it has 100% of sharing data and invalidation with

only one thread. The communication is only with the initial thread.

Fluidanimate has high percentage (60%) of parallelization overhead and large

number of synchronization calls (3300 calls per 106 memory accesses) because

Fluidanimate divides the work into cells among threads where the cells that are located

on the borders must be locked before being modified. The number of these cells

increases as the number of threads increases. The sharing and invalidation degrees are

equal in Fluidanimate. It has non-uniform communication.

Swaptions does not have synchronization calls because threads process the work

independently from each other and there is no communication among threads. Almost

100% of the total communication patterns in Swaptions are WAW patterns when

running 16 threads due to reuse of some variables.

65

5.2 Future Work

In our work, CIAT reports only the memory access instructions on multi-core

systems and this is an approximation of the instruction stream. Therefore, the future

work is to develop CIAT to capture the entire instruction stream on a multi-core system.

In addition, we need to develop CIAT to handle new parallelization techniques where

there are some modern applications that use different parallelization techniques such as

the pipeline parallelization model that is used in three applications of PARSEC suite,

which are Dedup, Ferret, and X264.

Abandah, (1998) developed three tools for characterizing applications on

distributed shared memory systems, which are CIAT, CDAT, and Communication

Contention Analysis Tool (CCAT). In addition, he developed a tool to characterize

event time distributions, which is called Time Distribution Analysis Tool (TDAT). In

this thesis, we ported one of these tools, which is CIAT to work on multi-core systems.

We plan to port the remaining tools to work on the modern multi-core systems. As

mentioned in this thesis, CIAT characterizes the inherent characteristics of applications

that do not depend on system configuration. Other characteristics depend on

configuration parameters such as cache misses and false sharing need to be

characterized. Therefore, it is important to port CDAT and CCAT for characterizing

these characteristics. Also, TDAT is important to characterize the communication

events over time.

66

APPENDIX A: USAGE INSTRUCTIONS

All developed tools and the studied applications are put in one compressed file, which is

called new-ciat.tar.gz. Extract the compressed file in the home directory. The

new-ciat directory contains three directories, which are ciat, pin, and parsec-

splash, which contains both PARSEC and SPLASH-2 suites.

A.1 Applications Installation

 First, go to parsec-splash directory and add the needed environment variables by

running the following commands:

cd ~/new-ciat/parsec-splash

source env.sh

Make sure the required libraries shown in Table A.1 are installed. This table specifies

the required libraries and how to install them.

Table A.1. The required libraries.

Library Method of installation

g++ sudo apt-get install g++

x11 sudo apt-get install libx11-dev

expat sudo apt-get install libexpat1-dev

xt sudo apt-get install libxt-dev

xext sudo apt-get install libxext-dev

xmu sudo apt-get install libxmu-dev

xi sudo apt-get install libxi-dev

m4 sudo apt-get install m4

perl5
1- Download perl, perl-base, and perl-module of version 5.20.1-1 from

https://launchpad.net/ubuntu/+source/perl

2- Force install by "sudo dpkg --force-all -i perl*", where you must

run it from the same downloaded files directory.

In addition, there are other libraries that are included in parsec-splash directory.

Install them by running the following command:

67

parsecmgmt -a build –p libs

Second, to build one of the applications, run the following command:

 parsecmgmt -a build -p [suite].[app]

Where suite is the benchmark suite, either parsec or splash2 and app is the

name of application that you want to build. The names for suite.app are in Table

A.2. For example to build Radix, run the following command:

parsecmgmt -a build –p splash2.radix

Table A.2. The names of suite.app for the studied applications.

Application Suite.app

Radix splash2.radix

FFT splash2.fft

LU splash2.lu_cb

Chole splash2.cholesky

Cann parsec.canneal

Black parsec.blackscholes

Fluid parsec.fluidanimate

Swap parsec.swaptions

Note: The source files of some PARSEC’s and SPLASH-2’s applications have been

modified according to the instructions in the site:

https://lists.cs.princeton.edu/pipermail/parsec-users/2012-September/001421.html

A.2 CIAT Installation

After building the applications, go to ciat directory and build it by running the

following commands:

cd ../ciat

make -f ciat.mak

68

Copy the executable file of CIAT to psmait directory by running the following

command: cp ./ciat ../pin/source/tools/psmait

A.3 Pin Installation

After installing the applications and CIAT, it is time to install Pin, but before that, you

need to add the following environment variables to /etc/environment:

PATH=”/home/[user-name]/new-ciat/pin”

LD_LIBRARY_PATH="/usr/local/lib"

Where user-name is your user name. You can edit /etc/environment by running

the following commands:

sudo gedit /etc/environment

After adding the environment variables, go to psmait directory within the pin

directory and build PSMAIT by running the following commands:

cd ~/new-ciat/pin/source/tools/psmait

make obj-ia32/psmait.so

Where obj-32 is a directory that will be created in psmait directory when building

PSMAIT.

A.4 Running

To run the tools, run the following commands as root:

sudo su

cd ~/new-ciat/pin/source/tools/psmait

pin -t obj-ia32/psmait.so -n [number of threads] -f [CIAT report

file name] –- [application’s path/app] [application’s

parameters]

Table A.3 shows the full path and the parameters for each application. For example to

characterize FFT on four threads and using problem Size I, run the following command:

69

pin –t obj-ia32/psmait.so –n 4 –f fft -- ~/new-ciat/parsec-

splash/ext/splash2/kernels/fft/inst/i686-linux.gcc/bin/

fft -p4 -m16

7
0

Table A.3. The full path and the parameters for the eight applications.

Application Application’s path /app
Parameters

Size I Size II

7
1

Notes: n = number of threads.

 All input files must be in the same directory of the application.

Radix
~/new-ciat/parsec-splash/ext/splash2/kernels/

radix/inst/i686-linux.gcc/bin/radix

-pn -r1024 -

n262144 -m524288

-pn -r1024 -n2097152

-m4194304

FFT
~/new-ciat/parsec-splash/ext/splash2/kernels/

fft/inst/i686-linux.gcc/bin/fft

-pn -m16 -pn -m20

LU
~/new-ciat/parsec-splash/ext/splash2/kernels/

lu_cb/inst/i686-linux.gcc/bin/lu_cb

-pn -n256 -b16 -pn -n512 -b16

Chole
~/new-ciat/parsec-splash/ext/splash2/kernels/

cholesky/inst/ i686-linux.gcc/bin/cholesky

-pn < tk15.O -pn < tk29.O

Cann
~/new-ciat/parsec-splash/pkgs/kernels/

canneal/inst/i686-linux.gcc/bin/canneal

n 10000 2000

100000.nets 32

n 15000 2000

200000.nets 64

Black
~/new-ciat/parsec-splash/pkgs/apps/blackscholes/

inst/i686-inux.gcc/bin/blackscholes

n in_4K.txt

prices.txt

n in_16K.txt

prices.txt

Fluid
~/new-ciat/parsec-splash/pkgs/apps/fluidanimate/

inst/i686-linux.gcc/bin/fluidanimate

n 5 in_35K.fluid

out.fluid

n 5 in_100K.fluid

out.fluid

Swap
~/new-ciat/parsec-splash/pkgs/apps/swaptions/

inst/i686-linux.gcc/bin/swaptions

-ns 16 -sm 10000

-nt n

-ns 32 -sm 20000

-nt n

72

REFERENCES

Abandah, G. A. (1996), Tools for Characterizing Distributed Shared Memory

Applications. Technical Report, HPL-96-157, Hewlett-Packard Labs.

Abandah, G. A. (1997). Characterizing Shared-memory Applications: A Case Study of

NAS Parallel Benchmarks. Technical Report, HPL-97-24, Hewlett-Packard Labs.

Abandah, G. A. (1998), Reducing Communication Cost in Scalable Shared Memory

Systems. Doctoral Dissertation, University of Michigan, Ann Arbor, MI, USA.

Abandah, G. A. and Davidson, E. S. (1998), Configuration Independent Analysis for

Characterizing Shared-Memory Applications. In Proceedings of the 12th International

Parallel Processing Symposium (IPPS), Orlando, FL, USA, 30 March - 3 April 1998,

485-491.

Alam, S. R., Barrett, R. F., Kuehn, J. A., Roth, P. C., and Vetter, J. S. (2006),

Characterization of Scientific Workloads on Systems with Multi-Core Processors. In

Proceedings of the 2006 IEEE International Symposium on Workload

Characterization (IISWC), San Jose, CA, USA, 25-27 October 2006, 225-236.

Bertels, K., Ostadzadeh, S. A., and Meeuws, R. J. (2011), Advanced profiling of

applications for heterogeneous multi-core platforms. In Proceedings of the 2011

International Conference on Engineering of Reconfigurable Systems & Algorithms

(ERSA), Las Vegas, Nevada, USA, 18-21 July 2011, 171-183.

Bhadauria, M., Weaver, V. M., and McKee, S. A. (2009), Understanding PARSEC

Performance on Contemporary CMPs. In Proceedings of the 2009 IEEE International

Symposium on Workload Characterization (IISWC), Austin, TX, USA, 4-6 October

2009, 98-107.

Bhattacharjee, A. and Martonosi, M. (2009), Characterizing the TLB Behavior of

Emerging Parallel Workloads on Chip Multiprocessors. In Proceedings of the 18th

International Conference on Parallel Architectures and Compilation Techniques

(PACT), Raleigh, NC, USA, 12-16 September 2009, 29-40.

Bienia, C., Kumar, S., Singh, J. P., and Li, K. (2008), The PARSEC Benchmark Suite:

Characterization and Architectural Implications. In Proceedings of the 17th

International Conference on Parallel Architectures and Compilation Techniques

(PACT), Toronto, ON, Canada, 25-29 October 2008, 72-81.

Bienia, C., Kumar, S., and Li, K. (2008b). PARSEC vs. SPLASH-2: A quantitative

comparison of two multithreaded benchmark suites on chip-multiprocessors. In

Proceedings of the 2008 IEEE International Symposium on Workload

Characterization (IISWC), Seattle, WA, USA, 14-16 September 2008, 47-56.

Borkar, S. (2007), Thousand Core Chips: A Technology Perspective. In Proceedings of

the 44th Annual Design Automation Conference (DAC), San Diego, CA, USA, 4-8

June 2007, 746-749.

73

Buck, B. and Hollingsworth, J. K. (2000), An API for Runtime Code Patching.

International Journal of High Performance Computing Applications, 14(4), 317-

329.

Buttlar, D. and Farrell, J. (1996), PThreads Programming: A POSIX Standard for

Better Multiprocessing, (1st Ed.). California: O'Reilly Media, Inc.

Cantrill, B., Shapiro, M. W., and Leventhal, A. H. (2004), Dynamic Instrumentation of

Production Systems. In Proceedings of the 2004 USENIX Annual Technical

Conference, General Track, Boston, MA, USA, 27 June -2 July 2004, 15-28.

Chai, L., Gao, Q., and Panda, D. K. (2007), Understanding the Impact of Multi-Core

Architecture in Cluster Computing: A Case Study with Intel Dual-Core System. In

Proceedings of the 7th Symposium on Cluster Computing and the Grid (CCGrid),

Rio de Janeiro, Brazil, 14-17 May 2007, 471-478.

Contreras, G. and Martonosi, M. (2008), Characterizing and Improving the Performance

of Intel Threading Building Blocks. In Proceedings of the 2008 IEEE International

Symposium on Workload Characterization (IISWC), Seattle, WA, USA, 14-16

September 2008, 57-66.

Dagum, L. and Menon, R. (1998), OpenMP: An Industry Standard API for Shared-

Memory Programming. IEEE Computational Science and Engineering, 5(1), 46-55.

Das, R., Ausavarungnirun, R., Mutlu, O., Kumar, A., and Azimi, M. (2013),

Application-to-Core Mapping Policies to Reduce Memory System Interference in

Multi-Core Systems. In Proceedings of the 19th International Symposium on High

Performance Computer Architecture (HPCA), Shenzhen, China, 23-27 February

2013, 107-118.

Dean, J. and Ghemawat, S. (2004), MapReduce: Simplified Data Processing on Large

Clusters. In Proceedings of the 6th Symposium on Operating System Design and

Implementation (OSDI), San Francisco, CA, USA, 6-8 December 2004, 137-150.

Devadas, S. (2013), Toward a Coherent Multicore Memory Model. IEEE Computer,

46(10), 30-31.

Dey, T., Wang, W., Davidson, J. W., and Soffa, M. L. (2011), Characterizing Multi-

Threaded Applications Based on Shared-Resource Contention. In Proceedings of the

2011 IEEE International Symposium on Performance Analysis of Systems and

Software (ISPASS), Austin, TX, USA, 10-12 April 2011, 76-86.

Dongarra, J., Moore, S., Mucci, P., Seymour, K., & You, H. (2004). Accurate cache and

TLB characterization using hardware counters. In Proceedings of the International

Conference on Computational Science (ICCS), Kraków, Poland, 6-9 June 2004, 432-

439. Springer Berlin Heidelberg.

Dubey, P. (2005), Recognition, Mining and Synthesis Moves Computers to the Era of

Tera. Technology@Intel Magazine, 1-10.

74

Ferdman, M., Adileh, A., Kocberber, O., Volos, S., Alisafaee, M., Jevdjic, D., ansu

Kaynak, C., Popescu, A., Ailamaki, A., and Falsafi, B. (2012). Clearing the clouds: a

study of emerging scale-out workloads on modern hardware. ACM SIGARCH

Computer Architecture News, 40(1), 37-48.

Hennessy, J. L., and Patterson, D. A. (2012). Computer architecture: a quantitative

approach, (5th Ed.). Massachusetts: Elsevier.

HP (1997), Exemplar Programming Guide for HP-UX Systems, (1st ed.), Hewlett-

Packard.

HP (1994), PA-RISC 1.1 Architecture and Instruction Set, (3rd ed.), Hewlett-

Packard.

Jaleel, A., Mattina, M., and Jacob, B. (2006), Last Level Cache (LLC) Performance of

Data Mining Workloads on a CMP- A Case Study of Parallel Bioinformatics

Workloads. In Proceedings of the 12th International Symposium on High-

Performance Computer Architecture (HPCA), Austin, TX, USA, 11-15 February

2006, 88-98.

Jaleel, A., Cohn, R. S., Luk, C. K., and Jacob, B. (2008), CMP$im: A Pin-Based On-

The-Fly Multi-Core Cache Simulator. In Proceedings of the 4th Annual Workshop on

Modeling, Benchmarking and Simulation (MoBS), Beijing, China, 22 June 2008, 28-

36.

Jaleel, A., Najaf-Abadi, H. H., Subramaniam, S., Steely, S. C., and Emer, J. (2012),

CRUISE: Cache Replacement and Utility-Aware Scheduling. ACM SIGARCH

Computer Architecture News, 40(1), 249-260.

Jia, Z., Wang, L., Zhan, J., Zhang, L., and Luo, C. (2013). Characterizing Data Analysis

Workloads in Data Centers. 2013 IEEE International Symposium on Workload

Characterization (IISWC), Portland, OR, USA, 22-24 September 2013, 66-76.

Krishna, T., Kwon, W. C., Subramanian, S., Chen, C. H. O., Park, S., Chandrakasan, A.

P., and Peh, L. S. (2013), Single-Cycle Multihop Asynchronous Repeated Traversal: A

SMART Future for Reconfigurable On-Chip Networks. IEEE Computer, 46(10), 48-

55.

Pusukuri, K., Kishore, Gupta, R., and Bhuyan, L. N. (2013), ADAPT: A Framework for

Coscheduling Multithreaded Programs. ACM Transactions on Architecture and

Code Optimization (TACO), 9(4), 45.

Larus, J. R., and Schnarr, E. (1995), EEL: Machine-independent executable editing.

ACM Sigplan Notices, 30(6), 291-300.

Laurenzano, M., Tikir, M., Carrington, L., and Snavely, A. (2010), PEBIL: Efficient

static binary instrumentation for linux. In Performance the 2010 IEEE International

Symposium on Analysis of Systems & Software (ISPASS), White Plains, NY, USA,

28-30 March 2010, 175-183. IEEE Computer Society.

75

Luk, C. K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S., Reddi,

V. J., and Hazelwood, K. (2005), Pin: Building Customized Program Analysis Tools

with Dynamic Instrumentation. ACM SIGPLAN Notices, 40(6), 190-200.

Nanda, S., Li, W., Lam, L. C., and Chiueh, T. C. (2006), BIRD: Binary interpretation

using runtime disassembly. In Proceedings of the International Symposium on Code

Generation and Optimization (CGO), New York, New York, USA, 26-29 March

2006, 358-370. IEEE Computer Society.

Natarajan, R., and Chaudhuri, M. (2013). Characterizing Multi-Threaded Applications

for Designing Sharing-Aware Last-Level Cache Replacement Policies. In Proceedings

of the 2013 IEEE International Symposium on Workload Characterization

(IISWC), Portland, OR, USA, 22-24 September 2013, 1-10.

Nguyen, A. T., Michael, M., Sharma, A., and Torrellas, J. (1996), The Augmint

Multiprocessor Simulation Toolkit for Intel x86 Architectures. In Proceedings of the

1996 International Conference on Computer Design (ICCD), VLSI in Computers

and Processors, Austin, TX, USA, 7-9 October 1996, 486-490.

Pin -A Dynamic Binary Instrumentation Tool, Intel, Retrieved March 22, 2015, from

https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-

tool.

Ranger, C., Raghuraman, R., Penmetsa, A., Bradski, G., and Kozyrakis, C. (2007),

Evaluating MapReduce for Multi-Core and Multiprocessor Systems. In Proceedings of

the 13th International Symposium on High Performance Computer Architecture

(HPCA), Phoenix, AZ, USA, 10-14 February 2007, 13-24.

Reinders, J. (2007), Intel Threading Building Blocks: outfitting C++ for multi-core

processor parallelism. California: O'Reilly Media, Inc.

Schuchhardt, M., Memik, G., Choudhary, A., Das, A., and Hardavellas, N. (2013), The

Impact of Dynamic Directories on Multicore Interconnects. IEEE Computer, 46(10),

32-39.

Shriraman, A., Zhao, H., and Dwarkadas, S. (2013), An Application-Tailored Approach

to Hardware Cache Coherence. IEEE Computer, 46(10), 40-47.

Srivastava, A., and Eustace, A. (1994). ATOM: A system for building customized

program analysis tools. ACM SIGPLAN Notices, 29(6), 196-205.

Srivastava, A., and Wall, D. W. (1992) A practical system for intermodule code

optimization at link-time. Journal of Programming Languages, 1(1), 1–18.

Standard Performance Evaluation Corporation (SPEC), SPEC CPU2006, Retrieved

March 25, 2014, from http://www.spec.org/cpu2006/.

Wang, R., Gao, Y., and Zhang, G. (2013), Real Time Cache Performance Analyzing for

Multi-core Parallel Programs. In Proceedings of the 2013 International Conference on

Cloud and Service Computing (CSC), Beijing, China, 4-6 November 2013, 16-23.

IEEE Computer Society.

76

Woo, S. C., Ohara, M., Torrie, E., Singh, J. P., and Gupta, A. (1995), The SPLASH-2

Programs: Characterization and Methodological Considerations. ACM SIGARCH

Computer Architecture News, 23(2), 24-36.

77

 على مواصفات تركيب الحاسوبتوصيف برمجيات الحواسيب متعددة النوى بدون الاعتماد

 إعداد

 محمد سلطان أحمد محمد

 المشرف

 الدكتور غيث علي عبندة

 الملخص

فرة قات المتولتطبيالمعالجات المتعددة النوى شعبية متزايدة في السنوات الأخيرة. لكن عدد من ا اتمعماري اكتسبت

قات ي إما تطبيأنّ هذه التطبيقات هوذلك بسبب المعالجة لا تستفيد بشكل كامل من الزيادة في عدد نوى حاليا

 parallelizationمتسلسلة أو أنها تملك كمية كبيرة من أنواع الاتصال وأعباء إضافية نتيجة الموازاة)

overhead) ه هذي ضبط لمساعدة المبرمجين ف التطبيقات على منصات متعددة النوىهذه . لذلك من المهم توصيف

لنوى اتعددة متصميم معماريات في المستقبل، وكذلك لمساعدة المصممين في متوازية يقاتتطوير تطبالتطبيقات و

 المتوازية بكفاءة.تقوم بتشغيل التطبيقات

ريقة ه الطهذه الاطروحة تعرض طريقة فريدة في توصيف التطبيقات المتوازية على المنصات متعددة النوى. هذ

ص هو توصيف الخصائ غير المعتمد على المواصفاتتوصيف الغير المعتمد على المواصفات. توصيف الهي

 ي مواصفاتأعلى المتأصلة للتطبيقات وذلك بتتبع عمليات القراءة والكتابة لكل موقع في الذاكرة، وهي لا تعتمد

يانات برسال يتم امحددة. وهذه الطريقة في التوصيف أسرع من الطريقة التقليدية التي تعتمد على المواصفات.

 لية إرسالزين. عممباشرة دون التخزين على وحدات التخبدون الاعتماد على المواصفات مراقبة الى أداة التحليل ال

 ئلة.ين هاتسمح بتوصيف تطبيقات ذات مدخلات كبيرة بدون الاحتياج الى مساحات تخز ةبيانات التحليل مباشر

-SPLASHو PARSECية)مجموعتين من التطبيقات القياسثمانية تطبيقات من في هذا البحث، قمنا أولا باختيار

التي كانت CIAT(لمراقبة التطبيقات المختارة. وقمنا بتعديل أداة PSMAIT(. ثم قمنا بتطوير أداة مراقبة)2

تعمل على منصات متعددة المعالجات لكي تعمل على منصات متعددة النوى. كما قمنا بتنفيذ عدد من التجارب بأعداد

 (لحجمين من المدخلات لكل التطبيقات المختارة.threadsة من المسارات)مختلف

 ةالذاكر منالقراءة والكتابة تعليمات تصف أربعة جوانب من خصائص التطبيقات المدروسة وهي CIATأداة

 أنماطو (communication slack) الاتصال فواصلو (communication patterns)الاتصال أنواعو

 نسبةلديها المدروسة التطبيقات من اثنانأظهرت أنّ التجارب هذه. نتائج (communication locality) الاتصال

 عباءالأ من% 80لدية Fluidanimate .Cholskyو Cholesky وهما الموازاة نتيجة الإضافية عباءمن الأ عالية

 العمليات نسبة مع نةمسار بسبب انه يملك نسبه عالية من الاتصال مقار-16الإضافية نتيجة الموازاة عند تشغيل

 الاتصال بسببمسار -16 تشغيل عند الموازاة نتيجة الإضافية عباءالأ من% 60لدية Fluidanimate. الحسابية

. التطبيقات هذه سرعة زيادة من الحد الى تؤدي قد الموازاة نتيجة الإضافية عباءالأ .الخلايا بين الحدود على الكبير

ولكن هناك .القراءة بعد والكتابة الكتابة بعد القراءة هيفي التطبيقات المدروسة الشائعة الاتصال أنوع معظم

حوالي Radix. في Swaptionsو Radixوهما (WAWالكتابة) بعد الكتابة تطبيقان يمتلكان جزء كبير من

 Swaptions. في التبديل عمليات بسببمسار -16عند تشغيل WAW% من أجمالي أنواع الاتصال هي 36

مسار بسبب إعادة استخدام بعض -16عند تشغيل WAWن أجمالي أنواع الاتصال هي م% 100تقريبا

 store) قد يؤدي الى قضاء وقت كبير في معالجة مفقودات التخزين WAWالجزء الكبير من . المتغيرات

misses) .نتائج فاصل الاتصال أنّ جميع التطبيقات المدروسة يمكنها أن تستفيد من الجلب المسبق تظهر

الأول يتصل مع بقية المسارات الأخرى في كل التطبيقات المسارالاتصال تظهر أنّ أنماط نتائجلمعلومات.

 .الاتصال كلفة لتقليل المنتصفينصح بجعل هذا المسار على النوى الذي في لذلكوسة. المدر

