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Abstract 

Electronic voting systems are being implemented in several countries to provide 

accuracy and efficiency for the electoral processes with an increased level of security. 

The Secure National Electronic Voting System (S-Vote) is adopted in this study for its 

state-of-the-art technologies, privacy, and secure processes. The S-Vote system is a 

homomorphic e-voting system that uses zero knowledge (ZK) proof protocol to 

preserve the voter’s privacy. Unfortunately, The ZK proofs’ is a complex and time 

consuming protocol which affects the scalability of any homomorphic e-voting system.  

 

This thesis investigates the parallel implementation of the S-Vote verification 

and tallying processes to reduce the time of vote verification checks especially the ZK 

proofs verification. Basically, the vote verification process consists of ZK proof, digital 

signature, and voter eligibility checks.  

 

This thesis work implements parallelism using java multithreaded programs for 

parallel program execution. It proposes three parallel implementation schemes for the 

vote verification and tallying processes which are task, master/slave, and data. The task 

parallelism spawns a separate thread to perform one of the verification process checks 

(tasks). The master/slave scheme spawns a thread for each voting kiosk package (client) 

that performs all the checks. The data parallelism scheme spawns a number of threads 

equal to the number of physical cores of the tallying machine. Each thread performs the 

whole verification process checks where the voting kiosk packages are dynamically 

distributed among them. 

 

This thesis uses java development libraries and the library of the Paillier thep 

java project to simulate the vote casting process and develop the verification and tallying 

processes based on S-Vote proposed processes. It implements and evaluates the three 

parallel execution schemes and compares their performance against the serial 

implementation.  

 

The obtained results show that the data parallelism scheme is the best. It has the 

highest relative speedup and efficiency with lowest processing cost. It can verify and 

tally 64,000 ballots in about 44 minutes with 27.5 relative speedup and 86% efficiency 

while using 32 threads running on the multi-core tallying machine with 32 cores.   
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The data parallelism scheme reduces ZK proof time. It has a linear speedup with 

respect to the number of cores and can be used to extend the use of S-Vote system for 

large electoral processes. For example, using a tallying machine with 128 cores can 

reduce the verification and tallying processes time for a country as big as Jordan from 

25.4 days to 5.7 hours.     
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1. Introduction 
 

Many democratic societies all over the world suffer from election fraud, 

suppression, falsification and mock elections (Allansson et al., 2012). They have serious 

problems throughout their election processes which include, but not limited to, voter 

lists manipulation, ballots stuffing, voter intimidation and vote buying. On the other 

hand, the voting centers are often heavily staffed to administer identity check, voting 

eligibility and ballot dispersal. Some staff members unfaithfully enforce the regulations 

for the benefit of their favorite candidates. Identity check is intricate business in cultures 

where women or men cover their faces. Moreover, primitive techniques are often used 

to disallow multiple voting such as cutting the edge of the ID card or dipping the voter’s 

finger in special ink.   

These societies look forward to new fair election systems that can overcome the 

traditional election systems weaknesses, prevent electoral fraud and improve voter 

participation and trust.  The electronic voting systems can become a popular alternative 

if they satisfy the following main challenges (Antonyan et al., 2007), (Karro et al., 

1999), and (Joaquim et al., 2003): 

1. Accuracy: count only the valid votes without being tampered with and 

exclude any invalid vote from the final tally. 

2. Democracy: allow only eligible voters to vote and every voter to vote only 

once. 

3. Privacy: do not reveal any voter’s choice or allow any voter to prove how 

he voted. This is to avoid voter intimidation and vote selling. 
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4. Verifiability: allow anyone to check that each vote was cast by an eligible 

voter and all votes are correctly counted. In case of electoral disputes, 

provides means for rechecking the results. 

5. Security: always satisfy reliability, availability and data integrity 

requirements. Additionally, satisfy the accuracy, democracy and privacy 

requirements and prevent inside or outside attackers from undermining 

these requirements.  

6. Flexibility: support various election types such as parliaments, 

municipalities, student boards, plebiscites, referendums, etc. Support any 

eligible voter to vote irrespective of his native language, special needs or 

literacy level. Allow him to vote in any voting center that is convenient to 

him. One more aspect; is the flexibility of changing the hardware devices 

when new or better devices are available. 

7. Cost effectiveness: use economic software and hardware components that 

are important for large-scale elections. 

8. Scalability: efficiently carry out various sizes of elections that achieve 

flexibility, provide better return on investment and facilitate mass 

quantities production. 

1.1 Purpose  

 

The electronic voting schemes are based on blind signatures, homomorphic 

encryption or mix-net (Huszti, 2011). The most popular schemes are based on 

homomorphic electronic voting (Peng and Bao, 2009), (James et al., 2000), (Baudron 

et al., 2001), and (Hirt et al., 2000).  
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These schemes count the votes without decrypting them. Such systems have an 

efficiency bottleneck in vote validity check that is required to preserve the system’s 

privacy property. The vote validity check uses ZK proof to verify that each encrypted 

vote contains valid data without revealing the vote itself. This proof has too long 

computation time which limits the application of e-voting, especially in large-scale 

elections. 

Zero-knowledge proof is a method by which one party (the prover) can prove to 

another party (the verifier) that a given statement is true, without conveying any 

information apart from the fact that the statement is indeed true. The goal is to prove a 

statement without leaking extra information 

Unlike traditional paper based elections, it is impossible to monitor all electronic 

operations performed on data from ballot casting to tallying. Accordingly, the validity 

of votes must be proved by the voters and publicly be verified. The concept of election 

verifiability that votes have been recorded, tallied and correctly declared is called end-

to-end verifiability (Adida, 2006) and (Dagstuhl et al., 2007). This verification is long 

and complex. 

This thesis adopts the S-Vote homomorphic based e-voting system for national 

and local elections (Abandah et al., 2014). This system relies on homomorphic 

cryptography, ZK proofs, biometrics, smartcards, open source software, and secure 

computers for securely and efficiently implementing the system processes over the 

various stages of the electoral process. It efficiently achieves the e-voting requirements 

described earlier in term of high accuracy, security, flexibility, privacy, scalability, and 

cost. However, it is not suitable for large electoral processes due to the time consuming 

cost of ZK proofs. 
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It is believed that the S-Vote system can practically be implemented in many 

countries and would improve trust and participation in the political life if we can 

overcome the ZK proof overhead. Consequently, we can perform the final verification 

and tallying processes in not more than eight hours.  

 

1.2 Objective  

 

The objective of the study is to minimize the effect of ZK proof overhead using 

parallel implementation. So that, we can perform the vote verification and tallying 

processes in not more than eight hours. Respectively, the S-Vote system will be more 

trusted for democracies since it satisfies all e-voting requirements in conjunction with 

practical deployment.   For this purpose, we do the following: 

- Review S-Vote system’s aspects and design. 

- Efficiently implement the voting, verification and tallying processes based on S-

Vote determinants.  

- Employ the multithreading programing techniques to exploit the parallelism and 

solve the problem of long ZK proofs computation. 

- Provide alternative parallel implementation schemes. 

- Evaluate the parallel schemes and offer the approach that leads toward acceptable 

system performance. 

 

1.3 Research Questions 

  

This study implements end-to-end verifiability processes and evaluates the 

performance of their sequential and parallel executions. Finally, it will try to find out 

the answers for the following questions: 
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1. Does the use of parallel execution reduce the votes’ verifiability overhead 

in homomorphic e-voting systems? 

2. Which parallel technique is more efficient for deployment?   

3. Does the designated parallel solution meet e-vote system requirements? 

4. Does the designated parallel solution spread the use of S-Vote system?  

 

1.4 Thesis Organization 

  

The following chapter (chapter 2) explores the complexity of e-voting system, 

sheds light on the homolographic e-voting bottleneck and reviews the related work in 

the field of e-voting systems and parallel programming. Chapter 3 describes the 

technologies used in the implementation of vote casting, vote verification and tallying 

processes. This chapter also provides guidelines for developing a parallel program. 

Chapter 4 details the implementation of voting, verification and tallying processes. It 

also proposes solutions that can assist in reducing the time consumed in vote verification 

process. Chapter 5 evaluates the proposed parallel implementation schemes and 

discusses the performance evaluation results.  The conclusion chapter includes the 

concluding remarks of this thesis and outlines the future work. 
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2. Literature Review  
 

 

There have been a number of e-voting systems used in different countries with 

varying success degrees. Most of the existing e-voting schemes can be classified into 

two main categories mix-net and homomorphic voting.  Mix-net voting employs a mix 

network to shuffle the encrypted votes before they are decrypted so that the votes cannot 

be traced back to the voters (Schryen et al., 2009), (Groth, 2003), and (Andrew Neff, 

2003). Homomorphic voting schemes exploit homomorphism of certain encryption 

algorithms. They tallying the votes without decrypting them and only decrypt the sum 

of the votes (Peng, 2005), (Groth, 2005), and (Peng et al., 2004). Homomorphic voting 

tallying process costs one single decryption operation for each candidate, so it is much 

more efficient than tallying in mix-net voting that includes a costly mix network. For 

this property, Homomorphic voting scheme is preferable for its accuracy, privacy and 

robustness. 

Cramer et al. (1997) proposed a scheme that sends all encrypted votes to a single 

combiner that computes encrypted tally in a publicly verifiable way using homomorphic 

cryptosystem. It forwards the tally by running threshold cryptosystem. This model is 

optimal for the communication between voters and authorities but has tallying 

computation overhead as the number of candidates increases. 

The homomorphic cryptosystem of Paillier provides an efficient public key 

cryptography. Its additively homomorphic property can be utilized by secure electronic 

voting systems (Paillier, 1999) and (Damgaård et al., 2001). 

Unfortunately, the ZK proofs requisite is the bottleneck of homomorphic e-

voting systems for its high time consuming cost. 

Many researchers such as (James et al., 2000), (Baudron et al., 2001), (Peng et 

al., 2004), (Katz et al., 2001), (Kiayias et al., 2002), and (Lee et al., 2002) employ 
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complex Zero knowledge proofs.  Cramer et al. (1994) used ZK proof of partial 

knowledge that has a linear cost relationship with the number of candidates for every 

vote. 

Many researches were introduced to overcome this bottleneck. Baudron et al. 

(2001) proposed an election system in which the tally is computed in intermediary levels 

such as local, regional and national results. The separation between levels is non-

cryptographic feature. It is a way to reduce the computational cost by distributing the 

ZK proofs’ calculations. On the other hand, weaknesses consideration is ongoing to 

system’s scalability.  

Lee et al. (2000), Katz et al. (2001), and Groth (2005) proposed homomorphic e-

voting schemes that adjust the vote format and the corresponding vote validity check 

mechanism. The large number of checks in small ranges are replaced by a smaller 

number of checks in larger ranges. Chida et al. (2008) reduces the cost of computation 

and communication by one fourth to one half. So it is still not efficient enough for large-

scale election processes. 

An interesting technique called batched bid validity check was designed in (Neff, 

2003) and (Peng et al., 2007) to improve the efficiency of bid validity check.  It is not a 

new technique; it is an extension of the traditional batch verification techniques. 

Meanwhile, this technique has three drawbacks: Firstly, it employs different sealing and 

parameter settings and cannot guarantee whether it can suit the frequently employed 

Paillier encryption or its distributed version in homomorphic e-voting schemes. 

Secondly, it supports one-candidate Yes/No election. Thirdly, it is still not efficient 

enough for large-scale election applications.  

Peng and Bao (2009) proposed two new non-interactive ZK vote validity checks 

called Protocol 1 and Protocol 2. Their improvements are more advanced than that in 
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(Peng et al., 2007). They not only do integrate proof of validity of multiple votes like in 

(Peng et al., 2007) but also the operations within each proof of validity of vote. Both 

protocols can guarantee much more efficient validity scheme of vote with an 

overwhelmingly large probability. There is general solution for homomorphic e-voting 

schemes. They are not limited to special election rules or additive homomorphic 

encryptions. 

Protocol 1 modifies and extends the batched bid validity check in (Peng et al., 

2007) and (Neff, 2003). It greatly improves the efficiency of vote validity check 

computation when only one candidate is selected in a vote. It provides more formal 

security model than that in (Kikuchi et al., 2000) and (Peng et al., 2007) to illustrate the 

privacy. However, it supports only one-candidate per vote, needs six rounds of 

communication and may be too interactive for some applications. In addition, it is not 

efficient enough for large-scale election applications. 

Protocol 2 employs batched ZK proof too, but it is a completely novel. It is more 

flexible since it does not limit the number of selected candidates in a vote. Moreover, it 

needs fewer rounds of communication and has efficient computation than Protocol 1. 

Peng and Bao (2010) employed honest verifier ZK proof security model such 

that the privacy depends on a trust assumption that verifiers are honest. They also 

proposed a scheme to improve the efficiency of homomorphic e-voting system without 

optimizing the ZK proof itself. This scheme can only handle a small number of voters. 

The voters’ votes must be grouped. The tallying must separately be carried out in every 

group. After that, all results will be aggregated to get the final electoral results.  

Abandah et al. (2014) proposed a new end-to-end homomorphic e-voting system 

(S-Vote). It relies on Paillier homomorphic cryptography and non-interactive zero-

knowledge Protocol 2 described in (Peng and Bao, 2009). Hence, the vote tallying takes 
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negligible time compared to verifying the vote validity and authenticity. Verifying the 

vote validity involves checking the ZK proof. 

Adida (2006), provided constructions of e-voting system using BGN (Boneh et 

al., 2005) and Paillier homomorphic cryptosystems.  The BGN constructions is only 

practical for small number of voters and small cipher-text size. Messages computing 

evaluating are performed in long time. He noted that all constructions are easily 

parallelized. He assumed that the running time can be reduced directly by using more 

computers. 

Clarkson (2008) introduced Civitas mix-net e-voting system based on (Catalano 

et al., 2005) cryptographic voting scheme1. The Civitas security is not free. Tradeoffs 

exist between the levels of security provided by Civitas tabulation, the time required for 

tabulation and the tabulation monetary cost. Clarkson (2008) divided the votes into 

blocks. The blocks were exploited independently to decrease tabulation time by 

processing blocks in parallel and giving a set of tabulation teller machines for each 

block. Tabulation time then does not depend on number of voters. Therefore 

performance can scale independently of the number of voters. 

 Baudron et al. (2001), Adida (2006) and Clarkson (2008) used distributed 

system architecture to reduce the vote verification running time. The applications are 

still sequentially executed but they run on multiple computers (cluster) with high cost 

of parallelism. 

Feng and Balaji (2009) and Loka et al. (2010) said that sequential programming 

is dead. The single-core efficiency affects sequential execution model performance. 

Kirk and Hwu (2010) show that the stalling of clock frequencies due to heat dissipation 

and energy consumption issues prevents further improvements in this area.  
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Parallel computer revolution is introduced as the processors’ developers switch 

to a model where the microprocessor has multiple processing units (cores) (Hwu, 2008). 

The number of cores per processor chip doubles every 18-24 months based on Moore’s 

law. 

Clearly, this change of paradigm has had a huge impact on the software 

development. Parallel computing can increase the application performance by the 

execution on multiple cores. For this to happen, the applications must be programmed 

to exploit parallelism. Dongarra et al. (2003) shows that the responsibility for achieving 

this falls on the application developers. This new interest toward parallel programming 

is called concurrency revolution (Sutter and Larus, 2005) and is taking prominent role 

on the stage.  

Kasim (2008) discussed two main approaches to parallelize a program: auto-

parallelization and parallel programing. In the auto-parallelization approach, the 

sequential program is automatically parallelized using parallel compiler. Thus, the 

program needs to recompile with parallel compiler and no manual modifications are 

required. However, the amount of parallelism reached using this approach is low due to 

the complexity of the required automatic transformation. In the parallel programming 

approach, the application is explicitly modified or developed to exploit parallelism. 

Generally, this approach obtains a higher performance than auto parallelization one but 

with the cost of more programing efforts. 

Pusukuri et al. (2011) presented that the performance of a parallel application 

depends on the number of threads used to run on a multi-core system. He provided 

guidelines for finding the appropriate number of threads for getting best performance. 
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Diaz et al. (2012) provided tips of motivation showing the relationships between 

the problem and the various approaches to divide it into parts. These parts are intended 

to be executed simultaneously via threads to solve the problem.    
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3. Theoretical Background   
 

 This chapter provides the theoretical basis used in S-Vote system giving more 

attention to the verification and tallying processes implementations. As this research is 

mainly within the field of parallel programming, we recall here the best practices of 

parallel implementation design and evaluation. 

3.1 S-Vote System  

 
Abandah et al. (2014) adopts state-of-the-art technologies to meet the e-voting 

requirements in their proposed S-Vote system. This thesis uses cryptography, 

homomorphic cryptography, and zero-knowledge proofs for implementing the voting, 

verification, and tallying processes described in the S-Vote. 

3.1.1 Cryptography  

 

Industry standard public key cryptography (PKC) is used for achieving the S-

Vote system authenticity and confidentiality (Schneier, 2007). Public key cryptography 

relies on key pairs. A key pair for system 𝑋 consists of a private key 𝐾𝑥
− and a public 

key 𝐾𝑥
+. The private key is only known by system 𝑋 where the public key is available 

to other systems that need to communicate with system 𝑋. 

Authentication: System 𝑋 signs a message m by encrypting it using its private key 

(𝐾𝑥
−(𝑚)) and sends it. The receiver of the encrypted message validates/authenticates the 

source of the message when it successfully retrieves the original message using the 

system public key (Schneier, 2007). 

 𝑚 = 𝐾𝑥
+(𝐾𝑥

−(𝑚)) (1) 

   

Confidentiality: A message m is encrypted using system X public key (𝐾𝑥
+(𝑚)). Only 

system 𝑋; who is the holder of the private key, can retrieve the original message using 

its private key. 

 𝑚 = 𝐾𝑥
−(𝐾𝑥

+(𝑚)) (2) 
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Using RSA industrial cryptography provides sufficient security level for S-Vote 

system (Silverman, 2002). 

 

Data Integrity: The public key cryptography is also used to check the integrity of data 

in addition to authentication which is defined as digital signature. A signed message is 

a message along with its signed digest (𝑚 + 𝐾𝑥
−(𝐻(𝑚))). The cryptographic hash 

algorithm is used to compute the message digest 𝐻(𝑚). The authenticity and integrity 

are validated when the digest computed from the received message m, matches the 

recovered digest received.    

 𝐻(𝑚) = 𝐾𝑥
+ (𝐾𝑥

−(𝐻(𝑚))) (3) 

 

The RSA key pair cryptography and SHA-256 hash algorithm are used in the S-

Vote system to provide the authenticity and data integrity of the encrypted ballot records 

casted via the voting kiosk.  

  

3.1.2 Homomorphic Cryptography  
 

S-Vote uses Paillier key pair cryptosystem for encrypting the voting vectors and 

decrypting the encrypted tallies. It is adopted for its useful homomorphic addition 

feature in preserving the privacy of votes (Paillier, 1999). Principally, the Paillier 

homomorphic allows finding the sum of the clear votes by multiplying their encrypted 

votes. 

 𝐾𝑣
+(𝑚1 + 𝑚2) = 𝐾𝑣

+(𝑚1)  ×  𝐾𝑣
+(𝑚2) 

 

(4) 

 𝑚1 + 𝑚2 = 𝐾𝑣
−(𝐾𝑣

+(𝑚1) × 𝐾𝑣
+(𝑚2)) (5) 

 

For flexibility, S-Vote allows each voter to select up to 𝑂 options of the 𝐶 

Candidates. The vote of each voter 𝑉𝑖  is encoded as a voting vector 



- 14 - 

 

(𝑚𝑖,1 ;  𝑚𝑖 ,2 ;  … 𝑚𝑖,𝑗 … ; 𝑚𝑖,𝐶 ) where 𝑚𝑖,𝑗  =  0 𝑜𝑟 1 for 𝑗 =  {1;  2;  … … ;  𝐶}. When 

the voter choses the candidate 𝑗, then 𝑚𝑖 ,𝑗  =  1 otherwise it is 0. The voting vector is 

encrypted to (𝐶𝑖,1 ;  𝐶𝑖 ,2 ; … 𝐶𝑖,𝑗 … ; 𝐶𝑖,𝐶 ) where the homomorphic property allows 

finding the encrypted tally of candidate j from N number of voters through 

 
𝐾𝑣

+(∑ 𝑚𝑖 ,𝑗 ) =  ∏ 𝐾𝑣
+(𝑚𝑖,𝑗 )

𝑁

𝑖=1

𝑁

𝑖=1
 (6) 

 

As a result, we can count the votes casted for candidate j by just decrypting the 

encrypted tally (Paillier, 1999). For this reason, the Pallier cryptography is fit for this 

system as it can get the final results while preserving the individual vectors privacy. 

 

3.1.3 Zero-Knowledge Proofs 

 

As S-Vote requires keeping the voter privacy, the zero knowledge proofs are a 

necessity to ensure that encrypted voting vectors carry valid votes. For instance, voter 

𝑉𝑖 can cheat by submitting for his favorite candidate j the vote  𝐶𝑖,𝑗 = 𝐾𝑉
+(100) instead 

of 𝐶𝑖 ,𝑗 = 𝐾𝑉
+(1). For this reason, the system requires that each voter must submit his 

ZK proof (Lipmaa et al., 2003).  

Vote verification checks are typically the bottleneck of the homomorphic e-

voting systems for its lengthy and complex calculations (Groth, 2005).  The advantage 

of ZK proofs is allowing one party called prover to convince another party called 

verifier that he knows some secret or knowledge about specific object without revealing 

what is the object itself.  

Generally, both of the prover and verifier possess the object 𝑥, the prover wishes 

to convince the verifier that 𝑥 is in the set 𝑆. The prover needs to prove this without 

giving away any information about the object and guaranteeing that no prover strategy 

may fool the verifier to accept an object not in S, except with negligible probability. 
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The first property is called completeness and the second one is soundness. It is a 

probabilistic protocol and can be amplified to a proof with soundness error  2−𝑘 by 

repeating it k times (Sarath and Ainapurkar, 2014). 

The non-interactive zero knowledge proofs do not require an interaction between 

the prover and verifier.  De Santis et al. (2001) change the model in a way that reduces 

the number of rounds in ZK proofs where just a single message is sent from the prover 

to the verifier. They showed the possibility of disposing the interaction between the 

prover and the verifier if they share a common random public reference string. This is 

enough to perform zero-knowledge proof check without requiring interaction. 

Honest-verifier ZK is the simplest type of ZK proofs. The ZK protocol is called 

honest if both the verifier and the prover fully follow the protocol. The prover shall 

certainly know the secret and the verifier shall follow the behaviour specified in the 

protocol to accept the prover claim (Goldreich et al., 1998).  

The ZK proofs play a central role in building secure public key cryptosystem. Its 

complexity-theoretic assumptions secure the system against the cipher text attacks (De 

Santis et al., 2001). 

 The S-Vote system adopts an efficient honest verifier ZK protocol which is the 

non-interactive version of protocol 2 described in (Peng and Bao, 2009). This is made 

non-interactive using Fiat-Shamir heuristic (Fiat and Shamir, 1987). In this protocol, 

each 𝑣𝑜𝑡𝑒𝑟𝑖 proofs the following two criteria: 

 ∧𝑗=1
𝐶 (𝐾𝑣

−(𝑐𝑖,𝑗 ) = 0 ∨ 𝐾𝑣
−(𝑐𝑖,𝑗 ) = 1) (7) 

  
 

𝐾𝑁 [((∏ 𝐶𝑖,𝑗
𝐶

𝑗=1
) /𝐺𝑂)

1/𝑁

] 

 

(8) 

 

Criterion 1 is a proof that every vote in the voting vector is either 1 (for) or 0 (against). 
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Criterion 2 is a proof of knowledge of the 𝑁𝑡ℎ   root and demonstrates that there are 

exactly 𝑂 ones in the voting vector where 𝐺 and 𝑁 are part of the cryptosystem public 

key.  

The following describes the ZK proof protocol 2 adopted by S-Vote from Peng 

et al., (2009). It is a brief overview for proving that the encrypted value 𝑐𝑖,𝑗 is within 

the set 𝑆 of {0, 1}. For full description, kindly refer to (Peng et al., 2009). 

 

Vote Casting: 

1. Suppose there are 𝑛 voters and each voter has to choose 𝑂 parties from the 𝐶 

candidates. 

2. Each voter 𝑉𝑖 has his voting vector (𝑚𝑖,1 ;  𝑚𝑖,2 ;  … 𝑚𝑖,𝑗 … ; 𝑚𝑖,𝐶 ) where 𝑚𝑖,𝑗  =

 0 𝑜𝑟 1 for 𝑗 =  {1;  2;  … … ;  𝐶}. A rule is followed: 𝑚𝑖,𝑗  =  1 iff the voter 𝑉𝑖 

chooses the 𝑗𝑡ℎ candidate.  

3. The voting vector is encrypted to (𝐶𝑖 ,1 ;  𝐶𝑖 ,2 ; … 𝐶𝑖,𝑗 … ; 𝐶𝑖,𝐶 ) using homomorphic 

cryptography where 𝑁 =  𝑝𝑞 is the RSA Modulus (Boneh and Franklin, 2001). 

 

ZK Proof: 

The prover generates the proving values and challenge for proving that the 

encrypted vote 𝐶𝑖 ,𝑗 is in the set of {0, 1} for 𝑗 =  {1;  2; … … ;  𝐶} that shall be sent to 

the verifier. A security parameter 𝐿 is used and is chosen to be 40 according to Fiat-

Shamir heuristic (Peng et al., 2009). Since Fiat-Shamir is run for L = 20 to 40 executions, 

the probability for an adversary to fool the verifier for all executions of L is very small and 

does not exceed 2−𝐿. 

1. The prover randomly selects the following proving values for 𝑗 =  {1;  2;  … … ;  𝐶} 

where: 



- 17 - 

 

 𝑡𝑗 ,0  ∈ { 0,1, … , 2𝐿 − 1} 
(9) 

 𝑡𝑗 ,1  ∈ { 0,1, … , 2𝐿 − 1} 
(10) 

 𝑐ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒 𝑣 ∈ { 0,1, … , 2𝐿 − 1} 
(11) 

 𝑣𝑗 ,1 _𝑚𝑖,𝑗   ∈ { 0,1, … , 2𝐿 − 1} 
(12) 

 𝑟 ∈ 𝑍𝑁
∗  

(13) 

 

2. The prover generates another proving value for 𝑗 =  {1;  2;  … … ;  𝐶} where: 

𝑣𝑗 ,𝑚𝑖,𝑗  = 𝑣 − 𝑣𝑗 ,1−𝑚𝑖,𝑗
 𝑚𝑜𝑑 2𝐿 

3. The prover generates the commitments that shall be sent to the verifier  

 

𝑎 = 𝑟𝑁  ∏ (𝑐𝑖,𝑗 𝑔𝑚𝑖,𝑗−1) 
𝐶

𝑗=1

𝑡𝑗,1−𝑚𝑖,𝑗
 𝑣𝑗,1_𝑚𝑖,𝑗  

 𝑚𝑜𝑑 𝑁2  
(14) 

 
𝑢 = 𝑟 ∏ 𝑆𝑖,𝑗

𝑡𝑗,𝑚𝑖,𝑗
𝑣𝑗,𝑚𝑖,𝑗  𝑚𝑜𝑑 𝑁2

𝐶

𝑗=1
 

(15) 

 

Public Verification: 

The verifier calculates the commitments, checks the response, and returns true 

when they are matched in probability of 1 − 2−40 (Peng and Bao, 2009). 

 

𝑢𝑁 = 𝑎 ∏ 𝐶𝑖,𝑗
𝑡𝑗,0 𝑣𝑗,0

𝐶

𝑗=1
 (

𝐶𝑖,𝑗

𝑔
)

𝑡𝑗,1 𝑣𝑗,1

𝑚𝑜𝑑 𝑁2 
(16) 

 𝑣 = 𝑣𝑗 ,0+ 𝑣𝑗 ,1 𝑚𝑜𝑑 2𝐿  𝑓𝑜𝑟 𝑗 =  {1;  2;  … … ;  𝐶} 
(17) 

 

The Thep, 2011 Paillier java project developed the ZK proofs according to 

Paillier cryptosystem (𝑁 𝑎𝑛𝑑 𝐺). The project has updated the algorithm such that 𝑆 can 

be any integer value and not limited by {0, 1}.  
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3.2 Parallel Implementation Theoretical Framework   

 

There are several aspects that must be considered when developing a parallel 

program. Mainly, designing the parallel algorithm for a given application problem, 

implementing the proposed design using parallel programing languages, and evaluating 

the developed program. 

 

3.2.1 Parallel Algorithm Design and Implementation 
 

Designing a parallel algorithm follows three main steps in spite of the 

environment or system are used: decomposition, scheduling, and mapping (Sutter and 

Larus 2005). 

Decomposition divides the application computations and data into parts which 

can be concurrently processed on parallel processors. Defining the partitions in an 

appropriate way is one of the intellectual tasks of developing a parallel program. There 

are many possibilities for partitioning the same problem.  Fortunately, there are some 

typical kinds of decomposition such as task, data, recursive, and pipelined (Sottile et al., 

2010) (Andrews, 2000) (Mattson, 2005). The programmers most commonly focus on 

the computation associated with the problem and the data on which this computation 

operates to select the appropriate decomposition. 

In data decomposition, programmers decompose the data associated with a 

problem by dividing it into small pieces with approximately equal sizes. They associate 

the computation with the data portion (Barney, 2012). As a result, each processor 

performs the same task on different pieces of partitioned data. Data decomposition is 

also known as domain decomposition.  

Contrary to data decomposition, task decomposition initially focuses on the 

computation to be performed and then dealing with the data. Accordingly, each 
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processor executes different process on the same or different data but communication 

usually takes place. The processed data may require passing from one computation unit 

to the next one as part of a workflow to avoid replication of data (Rauber and Runger, 

2010). This scheme is also known as function or control decomposition.  

The selected decompositions are coded in a parallel programing language and 

are typically assigned to threads to be mapped to physical computation units for 

execution (Rauber and Runger, 2010). Such languages often provide special parallel 

programing constructs and statements that allow sharing variables and parallel code 

sections (threads) to be declared. Threads contain regular high-level code sequences that 

will be assigned later to individual computing unit to be run in parallel. Finally, the 

compiler is responsible for producing the final executable code.  

Scheduling is the assignment of problem partitions to processes or threads. It 

fixes the order in which the partitions are executed. This can be done statically at the 

compile time or dynamically at the runtime. Mapping is the assignment of threads onto 

physical computing units (cores) and is usually done by the runtime environment, but 

sometimes can be influenced by the programmer (Lewis and Berg, 1999) (Rauber and 

Runger, 2010). 

Threads can run independently, but may also depend on each other resulting in 

data or control dependencies of threads. The concurrency in parallel programs 

introduces several classes of potential software bugs of which the race condition are the 

most commonly known problems. These dependencies are scheduling constrains and 

may require a specific execution order of the parallel tasks. In this case, synchronization 

and communication must be put in place. For example; any thread that needs data 

produced by another one, should only be started after the first thread has actually 

produced this data (Jacobsen et al., 2010) (Chapman et al., 2007). 
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3.2.2 Parallel Algorithm Performance Measures   

 

The parallel computing execution time for an application is the time elapsed 

between the start of the application on the first processor and the end of its execution 

on all used processors. It should be smaller than the sequential execution time on one 

processor (Barney, 2012). Generally, smaller parallel execution times are obtained 

when the workload is equally distributed among the cores, which is called load 

balancing. In addition, smaller overhead of information exchange, synchronization, and 

idle times reduces the parallel execution time. Consequently, finding an appropriate 

scheduling and mapping strategy leads to a good load balance and small overhead but 

this is often difficult to achieve due to the multiple interactions.  

Cost measures like speedup and efficiency are quantitative evaluations of the 

parallel application performance. The relative speedup factor SR measures the increase 

in speed using multiprocessing and is defined by the ratio of the sequential execution 

time 𝑡𝑠 to the parallel time 𝑡𝑝.  

 
𝑆𝑅 =  

𝑡𝑠

𝑡𝑝
 

(18) 

 

The relative efficiency 𝐸𝑅 is a measure of how efficient is the parallel 

implementation in using the given parallel resources and is defined by the ratio of 

relative speedup 𝑆𝑅 to the number of processors/cores 𝑃.  

 
𝐸𝑅 =  

𝑆𝑅

𝑃
 (19) 

 
The relative cost of parallel computation is proportional to the number of 

processors used and the parallel execution time and is also defined by the ratio of 
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sequential execution time ts to the relative efficiency of the parallel implementation 

 𝐸𝑅 (Wilkinson and Allen 2004).  

 
𝐶𝑜𝑠𝑡𝑅 = 𝑃 × 𝑡𝑝 =  

𝑡𝑠

𝐸𝑅
 

(20) 

The isoefficiency scalability metric of the parallel system establishes a 

relationship between the workload (W) to be accomplished and the number of cores or 

processers such that 𝐸𝑅 remains constant as P increases (Grama et al., 1993).  This 

metric dictates the rate of W growth required to keep the efficiency fixed as  𝑃 is 

increased.  

As a result, there is a continual interplay between parallel algorithms, languages, 

architecture, and performance evaluation.  

 

  

http://what-when-how.com/Tutorial/Multithreaded-Programming-with-JAVA/Multithreaded-Programming-with-JAVA-00179.html
http://what-when-how.com/Tutorial/Multithreaded-Programming-with-JAVA/Multithreaded-Programming-with-JAVA-00179.html
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4. Implementation Details 
 

This research attempts to reduce the votes’ verification process time of S-Vote 

model. First, the voting, verification and tallying processes are implemented in a manner 

that meets the S-Vote technical and procedural levels of assurance.  This 

implementation applies the system’s regulations and determinants that keep the notion 

of system’s trust and transparency valuable properties. It employs the technologies 

necessary for its secure implementation. Then java multithreading capabilities are used 

to reduce the verification time. At the end, all running procedures and alternatives are 

tested and evaluated.  

As a consequence, we develop the projvoting java project using java 1.7 

development kit for building the processes and alternative running procedures. The 

developed java project uses standard java libraries and the software components from 

homomorphic thep encryption project (thep, 2011). These components implement 

Paillier cryptosystem in java along with its homomorphic operations, key generation, 

and zero knowledge proof where the BigInteger is the underlying class. 

 

4.1 Initialization Routine  

 

At first, the initialization routine prepares the eligible voters list. The 

Projvoting.NIDTable() java class generates the eligible voter list that is globally 

announced for all system’s components. For illustration, we create an eligible voters list 

consists of two million national ID (NID). The list is created once, arranged in hash 

table data structure, and read by system components whenever needed.   

The idea of hashing is to distribute the list entries (values) across an array of 

buckets (slots). The hash table uses a hash function to compute an index within the array 

of buckets from which the value shall be correctly stored or found. The hash function 
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uses a key and run the hash algorithm to compute the index that suggests where the 

value can be stored or found. The hash collisions will occur when different keys are 

hashed to the same bucket and must be accommodated in some way (Donald, 1998) 

(Cormen et al., 2001).  

We use the hash table data structure as the average cost for each lookup is 

independent of the number of elements stored in the table (Demaine and Lind, 2003). 

In many situations, hash tables are more efficient than the tree search or other table 

lookup algorithms.  

For simplicity, NIDTable()defines a continuous range of two millions NID 

entries.  We create a hash table of 200,000 slots where each slot is an array of ten 

elements. The NID list is stored in the hash table. Each NID is a key for the hash function 

to compute the 𝑖𝑛𝑑𝑒𝑥. A prime number 𝑝𝑟𝑖𝑚𝑒 is chosen from the NID list such that the 

NIDs will be equally distributed within the hash table. If a hash collision occurs, the 

value is stored in the next free index within the slot’s array. For example, consider that 

we have A, B, and C values. The indices are 𝐻(𝐴) = 3, 𝐻(𝐵) = 𝑁, and 𝐻(𝐶) = 3. The 

values will be stored into the hash table such that: 3[0] = 𝐴 (free collision) , 𝑁[0]  =

 𝐵 (free collision), and 3[1]  =  𝐶 (collision). Figure 1 illustrates the above procedure.  

 

http://en.wikipedia.org/wiki/Donald_Knuth
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Figure 1: Eligible Voter List Hash Table 

The final initialization step is for setting the system’s parameters. They are 

globally declared across the project’s classes within the 

projvoting.GlobalConstants()class. These constants are used by voting, 

verification, and tallying processes:   

1. Number of candidates 𝐶 

2. Number of options 𝑂 

3. Number of kiosk packages 𝐾 

4. Number of thread  𝑇 

5. Number of ballots 𝐵  

6. Public voting encryption key 𝐾𝑣
+ 

To generate public voting encryption key 𝐾𝑣
+, the 

projvoting.paillierp.PrivateKey class generates the encryption private key 𝐾𝑣
−, 

then it generates the corresponding public key 𝐾𝑣
+ using getPublicKey()method from 

projvoting.paillierp.PublicKey class and declares it as a global constant while 

keeping the private one for final tallying decryption.  
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4.2 Voting Process Simulation 

 

The voting process is responsible for vote casting and kiosk packages’ 

preparation.  Figure 2 shows the developed procedure used to simulate the voting 

process. The Projvoting.MainVoting() class is responsible for generating the kiosk 

packages. It performs the steps of Fig. 2 flowchart for each ballot within the kiosk which 

are:  

1. Creating voters voting vector: The kioskEntry.ClearKioskTable() method 

randomly selects a voter from the eligible voter list, then casts his vote by randomly 

selects 𝑂 options out of 𝐶 candidates (𝑂 of ones). Finally, it produces the clear kiosk 

voting vectors. Figure 3 describes the clear kiosk voting vectors. 

𝑉𝑖 = (𝑉𝑖,1 ; 𝑉𝑖,2 ; … … ; 𝑉𝑖,𝑐 ),          𝑤ℎ𝑒𝑟𝑒 𝑉𝑖,𝑐  

→   𝑉𝑜𝑡𝑒𝑟𝑖 𝑉𝑜𝑡𝑒 𝑓𝑜𝑟 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑐  

(21) 

 

2. Generating encrypted voting vectors and ZK proof (Message): Figure 4 shows these 

steps which are started with EncryptingKiosk.GetPublicKey(Vi,j)method. It 

generates for each vote 𝑉𝑖,𝑗 an encrypted vote 𝐶𝑖,𝑗 and ZK proof 𝑃𝑖 ,𝑗. This is done by 

performing the following: 

a) Calling the projvoting.Paillier.EncryptedInteger(Vi,j,K+v) Paillier 

encryption class to encrypt the clear vote 𝑉𝑖,𝑗 using the vote encryption public key 

𝐾𝑣
+and produce encrypted vote 𝐶𝑖,𝑗. 

𝐶𝑖 =  𝐾𝑣
+(𝑉𝑖) = (𝑐𝑖 ,1 ; 𝑐𝑖,2 ; … ; 𝑐𝑖, 𝑐),      

 𝑤ℎ𝑒𝑟𝑒 𝑐𝑖,𝑐  → 𝑉𝑜𝑡𝑒𝑟𝑖 𝐸𝑛𝑐𝑦𝑟𝑝𝑡𝑒𝑑 𝑉𝑜𝑡𝑒 𝑓𝑜𝑟 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑐 
(22) 
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Figure 2: Simulated Voting Process 
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Figure 3: Clear Voting Vectors of B Ballots each of C Candidates 

 

b) Calling projvoting.Paillier.ZKSetMembershipProver(K+v,Set, 

msgIndex, Ci,j) Paillier ZK prover class to generate a proof 𝑃𝑖 ,𝑗 for each 

encrypted vote 𝐶𝑖,𝑗 . This proof claims that the encrypted vote is within the vote 

set of {0, 1} in our case.  

Thep, (2011) Paillier prover class first generates the commitments 𝑢𝑖 ,𝑗 for 

proving that the encrypted vote 𝐶𝑖.𝑗 is in the set of {0, 1}. The commitments 

should be sent to the verifier. It then uses the idea behind the Fiat-Shamir 

paradigm to generate the challenge 𝑒𝑖,𝑗 from the commitments 𝑢𝑖,𝑗 for a non-

interactive proof. After that, it computes the prover response to the challenge 𝑒𝑖 ,𝑗 

from the random number 𝑟𝑖,𝑗. It then uses getVs() and getEs()to send those 

𝑉𝑠𝑖,𝑗 and 𝐸𝑠𝑖,𝑗values to the verifier that needed for the last part of the proof. As 

a result, the proof 𝑃𝑖 ,𝑗 is a big integer vector of [𝑢𝑖 ,𝑗 , 𝑒𝑖,𝑗 , 𝑉𝑠𝑖,𝑗 , 𝐸𝑠𝑖,𝑗 ]. Figure 5 

describes the above algorithm. For further detail and correctness proofs, kindly 

see (Peng and Bao, 2009). 
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Finally, the EncryptingKiosk.GetKeyPublicBallotStr(Oi)method 

generates for each voting vector an encrypted value 𝐶𝑖,𝑂 for the number of options 

𝑂𝑖 within the vector 𝑉𝑖. Then, it generates ZK proof 𝑃𝑖 ,𝑂 that the voting vector 

has 𝑂 options. Paillier ZK prover class is used where the set is {O} in this case. 

NIDi . . .. . .Vi
Vi,1 Vi,2 Vi,CVi,j Vi,C-1Clear Voting Vector

NIDi . . .. . .Ci
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. . .. . .Pi,1 Pi,2 Pi,CPi,j Pi,C-1 Pi,O

{0,1} ZK Proof {O} ZK Proof
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Figure 4: The Process of Encrypting and Adding ZK Proofs for One Voting Vector 
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Figure 5: Paillier Zero Knowledge Prover Algorithm 

 

3. Digital Signature: Figure 6 shows that each Message 𝑀𝑖 is digitally signed using 

SHA-256 hash function and RSA cryptosystem.  The resulting signature 𝑅𝑖 is the 

vote Receipt. Referring to the S-Vote system architecture, the voter’s smartcard 

signs the ballot. For simulation purposes it is performed by the process of kiosk 

package preparation. The digital signature is required to ensure the authenticity 

and integrity of the encrypted voting vector and its proof 𝑀𝑖. The following 

summarizes this stage :  

a) The RSAGenerateKeys.GenerateKeys(NIDi) method generates RSA 

cryptosystem key pair for each voter and is used in digital signature. Voteri RSA 
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private key 𝐾𝑖
− is kept private while the public key 𝐾𝑖

+is available for verification 

process. 

b) The RsaSign.GetMessageDigestPrvKey(Encrypted Balloti + ZK 

Proofsi) method runs the  SHA-256 hash function to calculate the message 

digest from each of the encrypted voting vector and the associated ZK proof . 

c) The RsaSign.GetDigitalSignRsaEncPrvKey(Digesti,NID) method is 

responsible for signing the message digest 𝐷𝑖using voteri RSA private key 𝐾𝑖
−. 

This is defined by S-Vote system as vote receipt 𝑅𝑖. 

 𝑅𝑖 = 𝐾𝑖
−(𝐻(𝐶𝑖 + 𝑃𝑖)) =  𝐾𝑖

−(𝐻(𝑀𝑖))  
(23) 
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Figure 6: Adding Digital Signature to Voting Message 
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After the termination of the voting stage, the kiosk packages are ready for 

verification and tallying processes. Each kiosk package includes the voter IDs, the 

encrypted voting vectors, and the voting receipts. 

 
4.3 Verification and Tallying Processes Implementation  

 

 
Figure 7 shows the implemented vote verification and tallying processes based 

on the S-Vote techniques. S-Vote uses several security controls to meet the system’s 

security requirements. These controls are effectively integrated within the system 

functional and operational requirements. These are implemented into the form of voting 

vector validity check (zero knowledge proof), voting vector authenticity and data 

integrity check (digital signature), voter eligibility check, and multiple voting check.   

The verification process starts with preforming the above checks for each voter 

ballot record. Upon finishing the verification stage, the eligible voting vectors move to 

tallying process using homomorphic property. Finally, the resultant encrypted tally is 

decrypted using Paillier decryption algorithm.  

The Projvoting.MainVerfication() class is responsible for the sequential 

execution of the verification and tallying processes by calling the following methods for 

performing the steps shown in Fig. 7.  

 

4.3.1. Verification Checks  
 

The three main steps in this stage are: 

 

1. Voter Eligibility and Multiple Voting Checks: Figure 8 shows the voter eligibility 

and multiple voting checks that are applied on each ballot record. The 

Verfication.CheckValidNID(NIDi)method checks that each voter NID is in the 
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eligible voter list. It looks for this NID in the eligible voter NIDs hash table. The 

hash table data structure is used for its good performance. 
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Figure 7: S-Verification and Tallying Processes 
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The three possible cases for this check are: 

I. Voter ID is found within the voter list: It is marked as a voted voter and the check 

passes (see NID3i example in Fig. 8). 

II. Voter ID is not found within the Voter List: Eligible voter ID error occurs. The 

associated voting vector is not forwarded to the tallying process. The check fails 

for this voter ID. It is reported for voter eligibility check failure (see NID60 

example in Fig. 8). 

III. Vector ID is found within the voter list but with multiple voting error: the 

duplicated voting vectors of this Voter ID are excluded from the tallying process. 

The check fails. It is reported for voter eligibility check failure (see NID4N 

example in Fig. 8). 
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Figure 8: Voter Eligibility and Multiple Voting Check 

 

2. Ballot validity (zero knowledge proof) check: Figure 9 shows ZK proof check that 

is applied to check the validity of each voting vector. The 

Verfication.CheckVerfication()method checks that each encrypted vote is 
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within the set {0, 1}. The Verfication.CheckCalcSum() class checks that the 

number of options in the encrypted voting vector is 𝑂. The details are as follows:  

a) The projvoting.Paillier.ZKSetMembershipVerifier(K+v, Ci,j, ui,j, 

theSet) Paillier zero knowledge vrifier class calculates the proof values  𝑃𝑖 ,𝑗 for 

each encrypted vote 𝐶𝑖,𝑗. The verifier class uses the commitments 𝑢𝑖 ,𝑗 generated by 

the prover to check that 𝐶𝑖,𝑗 is in the set {0, 1}.  

b) The projvoting.Paillier.checkResponseNonInteractive(eVals, vVals, 

e) method checks the response from the prover 𝑉𝑠𝑖 ,𝑗, 𝑈𝑠𝑖,𝑗, and the challenge 𝑒𝑖,𝑗 

using the Fiat-Shamir heuristic. The response check returns true if it is OK and accept 

the prover claim that 𝐶𝑖,𝑗 in the set {0, 1}, otherwise it returns false.  

Same class and method are used to check the prover claim that the voting vector has 

O options. 𝐶𝑖 ,𝑂 , {𝑂} set, and 𝑃𝑖,𝑂 proof vector are used instead. There are four 

possible outcomes and actions for these checks: 

I. The ZK verifier accepts the prover claim that all 𝐶𝑖,𝑗 are in {0, 1}: The true 

response is reported for each 𝐶𝑖,𝑗 , and the ZK proof check passes.  

II. The ZK verifier rejects the prover claim that a 𝐶𝑖,𝑗 j is in {0, 1}: Invalid voting 

vector error occurs. False response is reported for 𝐶𝑖,𝑗  . The associated voting 

vector is excluded from the tallying process. The ZK proof check fails. It is 

reported that the voter‘s 𝑏𝑎𝑙𝑙𝑜𝑡𝑖 is excluded for vote validity check failure. 

III. The ZK verifier accepts the prover claim that 𝐶𝑖,𝑂 has 𝑂 options: The true 

response is reported for the encrypted vectori and the ZK proof check passes.  

IV. The ZK verifier rejects the prover claim that 𝐶𝑖,𝑂 has 𝑂 options: Invalid voting 

vector error occurs. False response is reported for the voting 𝑣𝑒𝑐𝑡𝑜𝑟𝑖. It is 

excluded from the tallying process. The ZK proof check fails. It is reported that 

the voter‘s 𝑏𝑎𝑙𝑙𝑜𝑡𝑖 is excluded for vote validity check failure. 
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Figure 9: Ballot Validity Check (ZK Proof) 

 

3. Ballot authenticity and integrity (digital signature) check: Figure 10 shows digital 

signature check that is applied to check the integrity of each voting vector. The  

Verfication.CheckValidData()method is responsible for performing this check. 

The detailed procedure is described below:  

a) The RsaSign.GetMessageDigestPrvKey(Received Encrypted Balloti + ZK 

Proofsi) method runs SHA-256 hash function to calculate the message digest from 

each received Message 𝑀𝑖 encrypted voting vector and its associated ZK proofs . 
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 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝐷𝑖𝑔𝑒𝑠𝑡 = 𝐻(𝐶𝑖 + 𝑃𝑖) (24) 

 

b) The RsaSign.GetDecSignEncrUsePublicKey(Received Ri, NID)method is 

responsible for decrypting the receipt 𝑅𝑖 received using voteri RSA public key 𝐾𝑖
+.  

 𝑅𝑒𝑐𝑖𝑒𝑣𝑒𝑑 𝐷𝑖𝑔𝑒𝑠𝑡 = 𝐾𝑖
+(𝑅𝑖) (25) 

 

c) The Verfication.CheckValidData()caller method compares the received digest  

with the calculated one and considers this check is passed if they match.  

 𝐻(𝐶𝑖 + 𝑃𝑖) = 𝐾𝑖
+(𝑅𝑖) (26) 

There are two possible outcomes and related actions for this check: 

I. The encrypted ballot and its ZK proof 𝑀𝑖 are authentic: The digital signature 

check passes for the encrypted voting vector Ci.  

II. The encrypted ballot and its ZK proof 𝑀𝑖 are not authentic: The 𝑏𝑎𝑙𝑙𝑜𝑡𝑖 is 

excluded from the tallying process. Digital signature check fails. It is reported that 

the voter‘s 𝑏𝑎𝑙𝑙𝑜𝑡𝑖 is excluded for ballot authenticity check failure. 
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Figure 10: Ballot Authenticity Check (Digital Signature) 

 

4.3.2. Tallying Process   
 

The final tallying process goes as follows: 

 

1. Ballot tallying: All encrypted ballots that passed the four checks are considered 

eligible voting vectors and are included in the final tallying process. Figure 11 shows 

that tallying process. It finds the final encrypted tally for each candidate 𝐶𝑗  

according to the Paillier homomorphic property.  

a) The Verfication.CheckCalcColum(Cj)method finds the encrypted tally 𝑇𝑗 for 

each candidate by calculating the product of all eligible encrypted votes casted for 

this candidate. 

 
𝑇𝑗 =  ∏ 𝐶𝑖,2

𝑛

𝑖=1
 (27) 
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2. Result Decryption: The projvoting.paillierp.DecryptedInteger(Tj)class 

decrypts the final tally 𝑇𝑗 for each candidate using the voting private key 𝐾𝑣
− . By 

this step, the final election results are found, reported in final result report, and the 

election process finishes.  

 

𝑅𝑗 = 𝐾𝑣
−(𝑇𝑗) =  ∑ 𝑉𝑖,𝑗

𝑛

𝑖=1

 (28) 
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Figure 11: Tallying Process and Final Tally’s Decryption 
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4.4 Verification and Tallying Processes Parallel Implementations  

 

Java multithreading programing is used to speed up the verification and tallying 

processes. As there are no dependencies among the verification checks, they can be 

excuted in parallel. Additionally, each kiosk package can be performed in parallel and 

all results can be aggregated together. Consequently, three parallel schemes are 

implemented and evaluated: task, master/slave, and data schemes. The following 

subsections describers these shames   

 

4.4.1. Task Parallelism Scheme 
 

 

The ballot verification process has multiple checks (tasks): voter eligibility 

check, multiple voting check, ballot authenticity check, and vote validity check. When 

you think in parallel execution, you start with dividing the problem into tasks. 

Accordingly, the vote verification checks are divided into tasks. Each task is responsible 

for one check and runs through a separate thread with the intention that all threads work 

on the entire data set, but each thread does a specific task.  

This scheme is known as task decomposition. The verification function is divided 

into four separated sub functions and the kiosk packages (ballots) are given to all threads 

for processing. The final tallying process starts after the finish of the last running thread.  

Figure 12 clarifies this scheme, where projvoting.MainRunThread2() class 

spawns the following threads: 

a) The projvoting.RunThreadCheckValidNID(Voter IDs) thread to perform the 

task of voter validity and multiple voting (hash table lookup) checks.  

b) The projvoting.RunThreadCheckValidData(Receipts) thread to perform the 

task of ballot authenticity (digital signature) check.   
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c) The projvoting.RunThreadCheckVerfication2(Encrypted Votes, {0,1} 

Proofs) thread to perform the task of vote validity ({0,1} ZK proof) check.   

d) The projvoting.RunThreadCheckCalcSum(Encrypted Votes Sum, {O} 

Proof) thread to perform the task of ballot validity ({O} ZK proof) check.   

The projvoting.MainRunThread2Calc(Eligible Encrypted Votes) class starts 

at the finish of the last verification thread run. This class calls 

projvoting.RunThreadCheckCalcCol(Eligible Encrypted Votes) to perform the 

final tallying process. The election process ends at the completion of this task.   
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Figure 12: Task Parallelism Scheme 
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4.4.2. Master/Slave Parallelism Scheme 

  

In this Master/Slave parallelism scheme. The projvoting.MainRunThread() 

server class spawns one client thread to handle every kiosk package request. This is 

some kind of data parallelism in which data is partitioned to a large the number of 

threads and each thread handles one kiosk package. Each of the 

projvoting.RunThreadCheckVerfication(Kiosk Package) client thread works on the 

kiosk package independently, and exists when it is done.  

Figure 13 clarifies this scheme where each thread performs all vote verification 

checks on a single kiosk package. projvoting.MainRunThreadCalc() class starts at 

the finish of the last client thread. This class calls 

projvoting.RunThreadCheckCalcCol(Eligible Encrypted Votes) to perform the 

final tallying process. The election process ends at the completion of this task.   
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Figure 31: Master/Slave Parallelism Scheme 
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4.4.3. Data Parallelism Scheme 

  
 

When having many kiosk packages (data) to process, we can divide this large set 

of data among multiple threads. This concepts is knows as data parallelism in which 

each thread does the same work but on its subset of data. Supercomputers have excelled 

at for years. In presence of this, the numbers of simultaneously running threads will be 

equivalent to the numbers of physical cores to get higher efficiency.  Each thread 

performs the verification and tallying processes as the way as the sequential 

implementation does but on a sub set of data. The kiosk packages (data) will be 

dynamically distributed among the different threads in a round robin manner during the 

run time.          

Figure 14 clarifies this scheme. The 

projvoting.MainRunThreadVerification() class spawns 

projvoting.RunThreadVerification()threads as many as the 

GlobalConstant.NumThread set. Each running thread asks 

projvoting.GetKiosPackege() class for an available kiosk package to process. 

Accordingly, this class updates the global kiosk counter and gives the requester thread 

an available package. The kiosk assignment step is synchronously executed so that only 

one thread can be served at a time to keep data consistency.  

Java lock() and unlock() method are used to control the access to this shared 

resource by the multiple threads. Commonly, lock() grants on thread at a time an 

exclusive access to kiosk assignment procedure, and it is released for another thread by 

unlock(). Finally, by the end of the last kiosk package processing, the electoral process 

ends.  
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Figure 14: Data Parallelism Scheme 
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5. Experimental Evaluation Results and Discussions  
 

This chapter evaluates the three parallelism schemes implemented in the last 

chapter. It starts with the experimental setup then continued with the conducted 

experiments.  

5.1 Experimental Setup 

 

All experiments were done on a host with four Intel Xeon processors E7-8837, 

each with eight cores, 2.67 GHz clock rate, and has an access to 256 GB memory. All 

implemented cryptography, classes, threads, and methods are coded in the projvoting 

java project which is based on JRE 1.7 standard java libraries and Paillier cryptography 

thep java project (thep, 2011). This project is compiled using GNU Complier for Java 

(GCJ) version 4.8 and runs on an Ubuntu 12.04 virtual machine. The host is windows 

server 2012 R2 datacenter edition -x64 bit. The virtual machine monitor is Microsoft 

Hyper-v 2012 R2. This host serves only the Ubuntu virtual machine in which the 

experiments are run.  This virtual machine has access to 160 GB memory. The number 

of assigned cores varies from 4 to 32 according to the experiment. The number of ballots 

in a kiosk package is 500 ballots. The number of candidates is sixteen unless it is 

configured otherwise. The number of options is four unless it is configured otherwise. 

The ballot’s storage size is 52 KB. The size of each encrypted vote 𝐶𝑖,𝑗  along with its 

ZK proofs values {𝑒, 𝑢𝑣𝑎𝑙𝑠, 𝑒𝑣𝑎𝑙𝑠, & 𝑣𝑙𝑎𝑙𝑠} are 3KB, the encrypted number of options 

and its ZK proof values are 3 KB,   and the digital signature size is 1 KB. Accordingly, 

the storage requirements for each ballot is given by: 

 𝐵𝑎𝑙𝑙𝑜𝑡 𝑆𝑖𝑧𝑒 (𝐾𝐵) = 3 𝐶 + 3 + 1 = 3 𝐶 + 4   (29) 
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Additionally, Runtime.getMemory() java instrumentations are used to estimate 

the memory usage for verifying a ballot. 273 KB is occupied to verify a ballot and 308 

MB for creating the NID hash table with 2,000,000 entry. 

 

5.2 Sequential Implementation Results   

 

The sequential implementation of the verification and tallying processes is 

evaluated in terms of sequential execution time as a function of the number of ballots.   

 

Table 1 summarizes the performance measures of executing the verification and 

tallying processes serially. Additionally, it summarizes the distribution of the execution 

time among the processes tasks. Figure 15 shows that there is a direct linear relationship 

between the execution time and the number of ballots as any homomorphic e-voting 

systems  

Table 1: Sequential Execution Time Distributed 

No. of Ballots 
Total Eligibility Validity Authenticity Tallying 

ts(hr) ts(hr) ts(hr) ts(hr) ts(hr) 

5,000 1.6 6 × 10−4 1.51 0.02 0.05 

10,000 3.1 8 × 10−4 2.96 0.02 0.10 

15,000 4.6 8 × 10−4 4.49 0.01 0.14 

20,000 6.3 11 × 10−4 6.06 0.01 0.20 

 

 

Figure 15: Overall Sequential Execution Time 
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Additionally, Figure 16 shows that tallying takes negligible time compared to the 

verification. Furthermore, it shows that about 95% of time is spent in verifying the vote 

validity which involves checking the ZK proofs. This emphasizes the long ZK proof 

computations.  

 

 Figure 16: Serial Execution Time Distribution  
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The previous sequential implementation evaluation suggests that the verification 

time linearly increases with more voters. Therefore, parallel implementation is required 

to get the final tally in an acceptable time by exploiting the potentials of parallel 

processing computers.   
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Table 2: Performance Time Evaluation of the Parallel Schemes with four cores 

Scheme tp (hr) Speedup Efficiency Cost 

Sequential 6.27   6.27 

Task 5.89 1.06 27% 23.55 

Data 1.74 3.61 90% 6.95 

Client-Server 1.71 3.66 91% 6.85 
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Figure 17 show that the task parallelism does not give good speedup in addition 

to its expensive cost and poor efficiency. This scheme not able to divide the problem 

into equivalent tasks, the load is unbalanced because the ZK proof check still run 

sequentially and takes very long time compared to the others. It gives only a slight 

speedup.  In this scheme, all checks finish much earlier than the ZK proof check.  

 

Figure 17: Parallel Implementation Speedups with Four Cores 
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Therefore, writing the program with a limit on the number of threads would be 

best for handling the problem in order to control the number of threads. As a result, the 

proposed data parallelism scheme is the most preferable one. Beside its acceptable 

performance, it limits the number of spawned threads, proportionally maps the thread 

to physical cores. It dynamically balanced system as the workload is distributed among 

the spawned threads in round robin manner.   

    

5.4 Data Parallelism Speedup Evaluation   

 

The data parallelism implementation of the verification and tallying processes is 

evaluated according to the number of running cores so the number of threads 

respectively. Table 3 summarizes the running cost when the number of threads is 

increased. The experiment is performed on a number of ballots 𝐵 = 64,000. 

Table 3: Data Parallelism Speedup Evaluation 

Cores tp(hr) Speedup Efficiency Cost 

Serial 19.50   19.50 

4 4.99 3.9 98% 19.95 

8 2.66 7.3 91% 21.32 

16 1.32 14.8 92% 21.13 

32 0.73 27.5 86% 22.68 

 

Table 3 and Figure 18 shows that we can get sub-linear speedup improvement as 

we increase the number of cores. The number of threads are increased to match the 

number of available cores. Thus, the assigned workload becomes smaller as the number 

of threads increased and reduces the overall computation time.   Based on this, we can 

determine the hardware specifications requirements for serving a number of ballots 

within 8 hours. 
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Figure 18: Data Parallelism Speedup 

On the other hand, when the number of threads is increased, the synchronization 

delay becomes larger and the contention on the memory and storage increases. In 

average, each thread will ask for a kiosk package 𝐾/𝑇 times. The thread waits up to 𝑇 

time units till it has an exclusive access to kiosk assignment procedure. Thus, each 

thread has 𝐾 overhead time. For this reason, Figure 19 shows a slight degradation in 

parallelization efficiency as the number of threads increases due to the synchronization 

of kiosk assignment.    

 

Figure 19: Data Parallelism Efficiency 
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Moreover, a set of experiments are conducted to check the scalability of data 

parallelism scheme based on the isoefficiency metric. Figure 20 plots speedup against 

number of cores for different values of B up to 32 cores.  

 

Figure 20: Data Parallelism Scheme Isoefficiency Metric 

 
Table 4: Data Parallelism Scheme Isoefficiency 

Core → 4 8 16 32 
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64K 98% 91% 92% 86% 

 

Figure 20 and Table 4 illustrate two things. First, for a given problem instance, 

the speedup does not keep the linear increase as the number of cores increases beyond 

the assigned workload. The speedup curve tends to saturate as in the instance of 

processing 8,000 ballots on 32 cores. In other words, the efficiency drops with 

increasing the number of cores. Second, a larger number of B yields higher efficiency 

for the same number cores. 
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constant by increasing both the size of the problem and the number of cores 

simultaneously to consider that the parallel system is scalable. For instance, in  

Table 4, the efficiency of verifying and tallying 8,000 ballots on tallying machine with 

four cores is 86%. If the number of cores is increased to eight, the number of ballots is 

scaled up to verify and tally 16,000 ballots the efficiency remains in the average of 86%. 

Accordingly, the S-Vote with data parallelism is scalable since the efficiency of 

data parallel execution maintained at a constant value by simultaneously increasing the 

number of cores and the number of ballots being verified. 

 

 

5.5 Studying the Effect of Number of Candidates and Options    

 

As another point of view, we study the factors that may affect the zero knowledge 

proof itself. The next two experiments are performed to study the effects of numbers of 

the candidates and options on the ZK proof check.  

The experiment is running on 32 cores using the data parallelism scheme, number 

of ballots 𝐵 = 64,000, and number of options 𝑂 = 2 

Table 5: Number of Candidates Effect on ZK Proof 

No. of Candidate Timep (min) 

4 17.7 

8 27.3 

12 37.0 

16 44.5 

 

Table 4 and Figure 20 show that the ZK proof has a direct linear relationship with 

the number of candidates. The ZK proof is a function of the number of votes per ballot. 

This true as the ZK proof is conducted for each encrypted vote within the ballot and its 

execution time proportioned to the increase number of votes within the ballots.   
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Figure 21: Number of Candidates Effect on the ZK Proof Check Time 

  

On the other hand, the number of options per ballot does not affect the ZK proof 

as only one proof is required to ensure that there is O option in the ballots for each ballot 

regardless what is the value of O is. The experiment is running on 32 cores and number 

of ballots 𝐵 = 64,000. 

Figure 21 shows that the number of options does not affect the ZK proof time 

since it runs once per ballot.  Only the {O} set need to be updated to correctly perform 

this check. 

 

Figure 22: Number of Options Effect on the ZK Proof 
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5.6 Discussion 

 

The cost of ballot verification is clearly dependent on number of ballots. Data 

parallelism scheme offers the capability of reducing its cost for an acceptable time. The 

parallel processing degree can be determined according to the election process size.  For 

example; Table 3 results illustrate that the kiosk package can be processed in about 11 

minutes. Using data parallelism scheme, a 128 cores machine can verify and tally 2 

million ballots with 16 candidates each in a country like Jordan in 5.7 hour 

((2,000,000/500)*11)/(128*60)) = 5.7 hours. Larger elections require larger servers. 

Faster and larger servers would decrease this time even further. 
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6. Conclusion and Future Work  
 

In this thesis, we adopted the S-Vote homomorphic e-voting system for its e-

voting requirements satisfaction. S-Vote uses public key cryptography, hashing 

techniques, homomorphic cryptography, and zero knowledge proofs for achieving the 

e-voting requirements of privacy, authentication, and validation of data integrity. The 

implemented vote casting, verification, and tallying processes efficiently permit testing 

the corresponding technologies and processes used in S-Vote.  

The implemented processes use thep Paillier homomorphic cryptography and ZK 

proofs java project for encrypting the casted votes, keeping their privacy, and 

decrypting their final encrypted tallies. The homomorphic cryptosystem allows tallying 

the ballots without decrypting them, thus preserving the voters’ privacy. A hash table 

data structure is used for creating the eligible voters list for its efficient search feature.  

Standard SHA-256 hash function and RSA public key cryptography java libraries are 

used for authenticating/signing the encrypted ballots and for generating the voting 

receipts. These receipts prevent multiple voting and allow voters to verify that their 

votes have reached the final tally. 

The sequential implementation shows that the verification process has long 

execution time and has a linear relationship with the number of voters. This thesis uses 

parallel implementation to reduce the ballots verification time. It presents and evaluates 

three parallel schemes for ballot verification and tallying: task, master/slave, and data. 

It uses java-multithreading techniques to exploit parallelism of the three problem 

decomposition schemes. Function decomposition gives inefficient task parallelism 

scheme as it unbalances the workload among the verification checks (tasks). Thread 

per request decomposition is used in the master/slave scheme. New thread is spawned 

to serve each kiosk package. This scheme may crash the system as the number of ballots 
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increases for the threads competition on the limited hardware resources. Domain 

decomposition is used in the data parallelism scheme in which the number of threads 

is relative to the number of physical cores and the kiosk packages are dynamically 

distributed across the spawned threads.   

The three parallelism schemes are evaluated against the sequential one. It shows 

that the data parallelism is the winner scheme in speeding up the verification process. 

The analysis shows that data parallelism speedup has direct correlation with the number 

of physical cores. An increase in the number of cores; number of spawned threads, 

results in a decrease in the time required for performing vote verification checks.  It 

can verify and tally 64,000 ballots in about 44 minutes and with 86% efficiency when 

using 32 threads running on the multi-core tallying machine of 32 cores. So that, we 

can determine the hardware size required to verify and tally a number of ballots within 

an eight hours. For example, we can verify and tally two millions ballots for a country 

as big as Jordan in about 5.7 hours using 128 cores.  The analysis also shows that the 

ZK proof is a function of number of candidates per ballots and is not affected by the 

number of options per ballot. As a result, Data parallelism scheme enhances e-voting 

systems’ acceptance, reduces the costs of electoral process compared with the paper-

based ones, and complies with e-voting systems requirements.  

My directions for future work, is to extend our work to a full implementation of S-

Vote system. Beside of the parallel implementation for vote validity and authenticity 

checks, we would like to cover all aspects of the S-Vote proposed components including 

the distributed key generation, threshold cryptography, kiosk design, and smartcard 

implementations.  
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نية كترويجاد طرق فاعلة لعمليتي الفرز والتأكد من صحة الأصوات الإإالتحقيق في 
 توازيةباستخدام التقنيات والبرمجيات الم

 

 إعداد

 إسراء أحمد حسن سعادة

 

 المشرف

 الدكتور غيث عبندة

 

 ملخــــــــص

 

تتناول هذه الرسالة موضوع استخدام أنظمة التصويت الإلكتروني لخدمة الانتخابات 
ليات الدقة والكفاءة في العمبأنواعها عوضاً عن استخدام الأنظمة الورقية. توفر الأنظمة الإلكترونية 

بحيث لا يتمكن أي شخص أو جهة من العبث  يةمتطلبات الأمنفضلاً عن تحقيقها لل الانتخابية
 ه الأنظمة.بعمليات أو معلومات أو نتائج هذ

 
( لتلبيته للمتطلبات S-Voteتبنت هذه الرسالة نظام التصويت الاكتروني الوطني الآمن )
تصويت الحديثة التي تجعل ال الواجب توفرها في أنظمة التصويت الإكترونية، واستخدامه التقنيات

الإلكتروني حلاً ممكناً وآمناً، واتباع عملياته لاجراءات آمنة، وتحليه بالحفاظ على الخصوصية 
 التي تضمن عدم إمكانية كشف أي صوت لأي ناخب وذلك لتلافي شراء الأصوات.

 
 لى فكعلى تقنية تشفير تمكنه من فرز الأصوات دون الحاجة إ S-Voteيعتمد نظام الـ 

تشفير أي منها للحفاظ على الخصوصية. إن استخدامه لهذه التقنية يستوجب اعتماده على فحص 
zero knowledge (ZK) proof  الذي يقوم بدوره بالتأكد من صحة أصوات الناخبين دون

الحاجة إلى الكشف عن أي منها وضمان وصول الأصوات الصحيحة فقط لعملية العد النهائية. 
بالحفاظ على الدقة والخصوصية إلا أن تعقيد وطول العمليات  ZKفعالية فحص بالرغم من 

الحسابية التي يمر بها يحد من استخدام أنظمة التصويت الإلكترونية لعمليات انتخابية كبيرة 
 كالانتخابات القومية أو النيابية واقتصارها على انتخابات صغيرة مثل الانتخابات البلدية والطلابية.

 
ذه الرسالة إلى استخدام تقنيات الحاسوب المتوازية لإجراء كل من عملية التحقق سعت ه

من صحة أصوات الناخبين وعملية فرز الأصوات الصحيحة وذلك للتقليل من الوقت المستغرق 
(. تقوم عملية التحقق من الأصوات ZK proofفي اجراء فحص التأكد من صحة الأصوات )

ص التأكد من هوية الناخب وأنه ممن يحق لهم التصويت وأنه  قام على اجراء ثلاثة فحوصات: فح
(، وفحص ZK proofبالتصويت لمرة واحدة فقط، فحص التأكد من صحة تصويت الناخب )

 التأكد من صحة التوقيع الإلكتروني للناخب.
 

قدمت الرسالة ثلاث طرق مختلفة لتنفيذ عمليتي فحص وفرز الأصوات باستخدام  التنفيذ 
( والاستفادة من وحدات Java Multithreadingعدد للخيوط الخاصة بلغة البرمجة جافا )المت

( لتنفيذ الخيوط أو سلاسل Multicore Computersالمعالجة المركزية المتعددة النوى )
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حيث يتم  Task Parallelism Schemeالتعليمات بشكل متزامن. تعرف الطريقة الأولى بـ 
وظائف منفصلة تقوم كل منها بإجراء إحدى الفحوصات وتنفذ بإنشاء تقسيم عملية الفحص إلى 

 Master/Slaveخاصة بها. الطريقة الثانية تعرف بـ  (threadمسار أو سلسلة تعليمات  )

Parallel Scheme  حيث يتم انشاء مسار خاص بفحص وفرز أصوات كل مركز اقتراع على
وتقوم بتوليد عدد من سلاسل  Data Parallelism Schemeحدا. الطريقة الأخيرة تعرف بـ 

التعليمات مساوٍ لعدد نوى وحدات المعالجة المركزية بحيث تكون كل منها مسؤولة عن فحص 
 وفرز مجموعة من الأصوات التي تقاسمتها فيما بينها بشكل دينامكي ومتوازن. 

 
 وفرزتم تمثيل عملية الاقتراع بإنشاء حزم من الأصوات وإخضاعها لعمليتي فحص 

، من ثم تم تطبيق كل من طرق التنفيذ المتوازي S-Voteالأصوات وفقاً لإجراءات ومحددات نظام 
 Data Parallelismوتقييمها مقارنة بالتنفيذ المتسلسل لعمليتي الفحص والفرز. أتت النتائج بتفوق 

Scheme  ذه الطريقة هعن نظيراتها بتحقيقها لنسب تحسين وكفاءة عالية وبأقل التكاليف. تمكنت
دقيقة وبنسبة كفاءة  44مرشحاً خلال  31صوتاً يحوي كل منها على  64,000من فحص وفرز 

 نواة. 13عند استخدامها لحاسوب يحتوي على  %61بلغت 
 

 ZK من تقليل الوقت المستغرق بتنفيذ فحص Data Parallelism Schemeتمكنت 

proof  مع عدد نوايا جهاز الحاسوب الخاص وكانت نسبة التسريع والتحسين بعلاقة طردية
 S-Voteبفحص الأصوات وفرزها. يمكن باستخدام هذه الطريقة توسيع نطاق استخدام نظام 

سبيل المثال،  . علىتقليل كلفة الامتلاك والتشغيلإلى جانب استعماله في مختلف أنواع الانتخابات و
ي الفحص والفرز لدولة بحجم نواة تقليص وقت انجاز عمليت 336يمكن باستخدام خادم يحوي 

 ساعة.  55,يوماً إلى  3,54الأردن من 
 


