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Abstract

Electronic voting systems are being implemented in several countries to provide
accuracy and efficiency for the electoral processes with an increased level of security.
The Secure National Electronic Voting System (S-Vote) is adopted in this study for its
state-of-the-art technologies, privacy, and secure processes. The S-Vote system is a
homomorphic e-voting system that uses zero knowledge (ZK) proof protocol to
preserve the voter’s privacy. Unfortunately, The ZK proofs’ is a complex and time
consuming protocol which affects the scalability of any homomorphic e-voting system.

This thesis investigates the parallel implementation of the S-Vote verification
and tallying processes to reduce the time of vote verification checks especially the ZK
proofs verification. Basically, the vote verification process consists of ZK proof, digital
signature, and voter eligibility checks.

This thesis work implements parallelism using java multithreaded programs for
parallel program execution. It proposes three parallel implementation schemes for the
vote verification and tallying processes which are task, master/slave, and data. The task
parallelism spawns a separate thread to perform one of the verification process checks
(tasks). The master/slave scheme spawns a thread for each voting kiosk package (client)
that performs all the checks. The data parallelism scheme spawns a number of threads
equal to the number of physical cores of the tallying machine. Each thread performs the
whole verification process checks where the voting kiosk packages are dynamically
distributed among them.

This thesis uses java development libraries and the library of the Paillier thep
java project to simulate the vote casting process and develop the verification and tallying
processes based on S-Vote proposed processes. It implements and evaluates the three
parallel execution schemes and compares their performance against the serial
implementation.

The obtained results show that the data parallelism scheme is the best. It has the
highest relative speedup and efficiency with lowest processing cost. It can verify and
tally 64,000 ballots in about 44 minutes with 27.5 relative speedup and 86% efficiency
while using 32 threads running on the multi-core tallying machine with 32 cores.



-Xi -

The data parallelism scheme reduces ZK proof time. It has a linear speedup with
respect to the number of cores and can be used to extend the use of S-Vote system for
large electoral processes. For example, using a tallying machine with 128 cores can
reduce the verification and tallying processes time for a country as big as Jordan from
25.4 days to 5.7 hours.



1. Introduction

Many democratic societies all over the world suffer from election fraud,
suppression, falsification and mock elections (Allansson et al., 2012). They have serious
problems throughout their election processes which include, but not limited to, voter
lists manipulation, ballots stuffing, voter intimidation and vote buying. On the other
hand, the voting centers are often heavily staffed to administer identity check, voting
eligibility and ballot dispersal. Some staff members unfaithfully enforce the regulations
for the benefit of their favorite candidates. Identity check is intricate business in cultures
where women or men cover their faces. Moreover, primitive techniques are often used
to disallow multiple voting such as cutting the edge of the ID card or dipping the voter’s
finger in special ink.

These societies look forward to new fair election systems that can overcome the
traditional election systems weaknesses, prevent electoral fraud and improve voter
participation and trust. The electronic voting systems can become a popular alternative
if they satisfy the following main challenges (Antonyan et al., 2007), (Karro et al.,
1999), and (Joaquim et al., 2003):

1. Accuracy: count only the valid votes without being tampered with and
exclude any invalid vote from the final tally.

2. Democracy: allow only eligible voters to vote and every voter to vote only
once.

3. Privacy: do not reveal any voter’s choice or allow any voter to prove how

he voted. This is to avoid voter intimidation and vote selling.
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4. Verifiability: allow anyone to check that each vote was cast by an eligible
voter and all votes are correctly counted. In case of electoral disputes,
provides means for rechecking the results.

5. Security: always satisfy reliability, availability and data integrity
requirements. Additionally, satisfy the accuracy, democracy and privacy
requirements and prevent inside or outside attackers from undermining
these requirements.

6. Flexibility: support various election types such as parliaments,
municipalities, student boards, plebiscites, referendums, etc. Support any
eligible voter to vote irrespective of his native language, special needs or
literacy level. Allow him to vote in any voting center that is convenient to
him. One more aspect; is the flexibility of changing the hardware devices
when new or better devices are available.

7. Cost effectiveness: use economic software and hardware components that
are important for large-scale elections.

8. Scalability: efficiently carry out various sizes of elections that achieve
flexibility, provide better return on investment and facilitate mass

quantities production.

1.1 Purpose

The electronic voting schemes are based on blind signatures, homomorphic
encryption or mix-net (Huszti, 2011). The most popular schemes are based on
homomorphic electronic voting (Peng and Bao, 2009), (James et al., 2000), (Baudron

etal., 2001), and (Hirt et al., 2000).



These schemes count the votes without decrypting them. Such systems have an
efficiency bottleneck in vote validity check that is required to preserve the system’s
privacy property. The vote validity check uses ZK proof to verify that each encrypted
vote contains valid data without revealing the vote itself. This proof has too long
computation time which limits the application of e-voting, especially in large-scale
elections.

Zero-knowledge proof is a method by which one party (the prover) can prove to
another party (the verifier) that a given statement is true, without conveying any
information apart from the fact that the statement is indeed true. The goal is to prove a
statement without leaking extra information

Unlike traditional paper based elections, it is impossible to monitor all electronic
operations performed on data from ballot casting to tallying. Accordingly, the validity
of votes must be proved by the voters and publicly be verified. The concept of election
verifiability that votes have been recorded, tallied and correctly declared is called end-
to-end verifiability (Adida, 2006) and (Dagstuhl et al., 2007). This verification is long
and complex.

This thesis adopts the S-VVote homomorphic based e-voting system for national
and local elections (Abandah et al., 2014). This system relies on homomorphic
cryptography, ZK proofs, biometrics, smartcards, open source software, and secure
computers for securely and efficiently implementing the system processes over the
various stages of the electoral process. It efficiently achieves the e-voting requirements
described earlier in term of high accuracy, security, flexibility, privacy, scalability, and
cost. However, it is not suitable for large electoral processes due to the time consuming

cost of ZK proofs.
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It is believed that the S-Vote system can practically be implemented in many
countries and would improve trust and participation in the political life if we can
overcome the ZK proof overhead. Consequently, we can perform the final verification

and tallying processes in not more than eight hours.

1.2 Objective
The objective of the study is to minimize the effect of ZK proof overhead using
parallel implementation. So that, we can perform the vote verification and tallying
processes in not more than eight hours. Respectively, the S-Vote system will be more
trusted for democracies since it satisfies all e-voting requirements in conjunction with

practical deployment. For this purpose, we do the following:

Review S-Vote system’s aspects and design.

- Efficiently implement the voting, verification and tallying processes based on S-
Vote determinants.

- Employ the multithreading programing techniques to exploit the parallelism and
solve the problem of long ZK proofs computation.

- Provide alternative parallel implementation schemes.

- Evaluate the parallel schemes and offer the approach that leads toward acceptable

system performance.

1.3 Research Questions
This study implements end-to-end verifiability processes and evaluates the
performance of their sequential and parallel executions. Finally, it will try to find out

the answers for the following questions:
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1. Does the use of parallel execution reduce the votes’ verifiability overhead
in homomorphic e-voting systems?

2. Which parallel technique is more efficient for deployment?

3. Does the designated parallel solution meet e-vote system requirements?

4. Does the designated parallel solution spread the use of S-Vote system?

1.4 Thesis Organization

The following chapter (chapter 2) explores the complexity of e-voting system,
sheds light on the homolographic e-voting bottleneck and reviews the related work in
the field of e-voting systems and parallel programming. Chapter 3 describes the
technologies used in the implementation of vote casting, vote verification and tallying
processes. This chapter also provides guidelines for developing a parallel program.
Chapter 4 details the implementation of voting, verification and tallying processes. It
also proposes solutions that can assist in reducing the time consumed in vote verification
process. Chapter 5 evaluates the proposed parallel implementation schemes and
discusses the performance evaluation results. The conclusion chapter includes the

concluding remarks of this thesis and outlines the future work.



2. Literature Review

There have been a number of e-voting systems used in different countries with
varying success degrees. Most of the existing e-voting schemes can be classified into
two main categories mix-net and homomorphic voting. Mix-net voting employs a mix
network to shuffle the encrypted votes before they are decrypted so that the votes cannot
be traced back to the voters (Schryen et al., 2009), (Groth, 2003), and (Andrew Neff,
2003). Homomorphic voting schemes exploit homomorphism of certain encryption
algorithms. They tallying the votes without decrypting them and only decrypt the sum
of the votes (Peng, 2005), (Groth, 2005), and (Peng et al., 2004). Homomorphic voting
tallying process costs one single decryption operation for each candidate, so it is much
more efficient than tallying in mix-net voting that includes a costly mix network. For
this property, Homomorphic voting scheme is preferable for its accuracy, privacy and
robustness.

Cramer et al. (1997) proposed a scheme that sends all encrypted votes to a single
combiner that computes encrypted tally in a publicly verifiable way using homomaorphic
cryptosystem. It forwards the tally by running threshold cryptosystem. This model is
optimal for the communication between voters and authorities but has tallying
computation overhead as the number of candidates increases.

The homomorphic cryptosystem of Paillier provides an efficient public key
cryptography. Its additively homomorphic property can be utilized by secure electronic
voting systems (Paillier, 1999) and (Damgaard et al., 2001).

Unfortunately, the ZK proofs requisite is the bottleneck of homomaorphic e-
voting systems for its high time consuming cost.

Many researchers such as (James et al., 2000), (Baudron et al., 2001), (Peng et

al., 2004), (Katz et al., 2001), (Kiayias et al., 2002), and (Lee et al., 2002) employ
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complex Zero knowledge proofs. Cramer et al. (1994) used ZK proof of partial
knowledge that has a linear cost relationship with the number of candidates for every
vote.

Many researches were introduced to overcome this bottleneck. Baudron et al.
(2001) proposed an election system in which the tally is computed in intermediary levels
such as local, regional and national results. The separation between levels is non-
cryptographic feature. It is a way to reduce the computational cost by distributing the
ZK proofs’ calculations. On the other hand, weaknesses consideration is ongoing to
system’s scalability.

Lee et al. (2000), Katz et al. (2001), and Groth (2005) proposed homomorphic e-
voting schemes that adjust the vote format and the corresponding vote validity check
mechanism. The large number of checks in small ranges are replaced by a smaller
number of checks in larger ranges. Chida et al. (2008) reduces the cost of computation
and communication by one fourth to one half. So it is still not efficient enough for large-
scale election processes.

An interesting technique called batched bid validity check was designed in (Neff,
2003) and (Peng et al., 2007) to improve the efficiency of bid validity check. It is not a
new technique; it is an extension of the traditional batch verification techniques.
Meanwhile, this technique has three drawbacks: Firstly, it employs different sealing and
parameter settings and cannot guarantee whether it can suit the frequently employed
Paillier encryption or its distributed version in homomorphic e-voting schemes.
Secondly, it supports one-candidate Yes/No election. Thirdly, it is still not efficient
enough for large-scale election applications.

Peng and Bao (2009) proposed two new non-interactive ZK vote validity checks

called Protocol 1 and Protocol 2. Their improvements are more advanced than that in
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(Peng et al., 2007). They not only do integrate proof of validity of multiple votes like in
(Peng et al., 2007) but also the operations within each proof of validity of vote. Both
protocols can guarantee much more efficient validity scheme of vote with an
overwhelmingly large probability. There is general solution for homomorphic e-voting
schemes. They are not limited to special election rules or additive homomorphic
encryptions.

Protocol 1 modifies and extends the batched bid validity check in (Peng et al.,
2007) and (Neff, 2003). It greatly improves the efficiency of vote validity check
computation when only one candidate is selected in a vote. It provides more formal
security model than that in (Kikuchi et al., 2000) and (Peng et al., 2007) to illustrate the
privacy. However, it supports only one-candidate per vote, needs six rounds of
communication and may be too interactive for some applications. In addition, it is not
efficient enough for large-scale election applications.

Protocol 2 employs batched ZK proof too, but it is a completely novel. It is more
flexible since it does not limit the number of selected candidates in a vote. Moreover, it
needs fewer rounds of communication and has efficient computation than Protocol 1.

Peng and Bao (2010) employed honest verifier ZK proof security model such
that the privacy depends on a trust assumption that verifiers are honest. They also
proposed a scheme to improve the efficiency of homomorphic e-voting system without
optimizing the ZK proof itself. This scheme can only handle a small number of voters.
The voters’ votes must be grouped. The tallying must separately be carried out in every
group. After that, all results will be aggregated to get the final electoral results.

Abandah et al. (2014) proposed a new end-to-end homomorphic e-voting system
(S-Vote). It relies on Paillier homomorphic cryptography and non-interactive zero-

knowledge Protocol 2 described in (Peng and Bao, 2009). Hence, the vote tallying takes
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negligible time compared to verifying the vote validity and authenticity. Verifying the
vote validity involves checking the ZK proof.

Adida (2006), provided constructions of e-voting system using BGN (Boneh et
al., 2005) and Paillier homomorphic cryptosystems. The BGN constructions is only
practical for small number of voters and small cipher-text size. Messages computing
evaluating are performed in long time. He noted that all constructions are easily
parallelized. He assumed that the running time can be reduced directly by using more
computers.

Clarkson (2008) introduced Civitas mix-net e-voting system based on (Catalano
et al., 2005) cryptographic voting schemel. The Civitas security is not free. Tradeoffs
exist between the levels of security provided by Civitas tabulation, the time required for
tabulation and the tabulation monetary cost. Clarkson (2008) divided the votes into
blocks. The blocks were exploited independently to decrease tabulation time by
processing blocks in parallel and giving a set of tabulation teller machines for each
block. Tabulation time then does not depend on number of voters. Therefore
performance can scale independently of the number of voters.

Baudron et al. (2001), Adida (2006) and Clarkson (2008) used distributed
system architecture to reduce the vote verification running time. The applications are
still sequentially executed but they run on multiple computers (cluster) with high cost
of parallelism.

Feng and Balaji (2009) and Loka et al. (2010) said that sequential programming
is dead. The single-core efficiency affects sequential execution model performance.
Kirk and Hwu (2010) show that the stalling of clock frequencies due to heat dissipation

and energy consumption issues prevents further improvements in this area.
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Parallel computer revolution is introduced as the processors’ developers switch
to a model where the microprocessor has multiple processing units (cores) (Hwu, 2008).
The number of cores per processor chip doubles every 18-24 months based on Moore’s
law.

Clearly, this change of paradigm has had a huge impact on the software
development. Parallel computing can increase the application performance by the
execution on multiple cores. For this to happen, the applications must be programmed
to exploit parallelism. Dongarra et al. (2003) shows that the responsibility for achieving
this falls on the application developers. This new interest toward parallel programming
is called concurrency revolution (Sutter and Larus, 2005) and is taking prominent role
on the stage.

Kasim (2008) discussed two main approaches to parallelize a program: auto-
parallelization and parallel programing. In the auto-parallelization approach, the
sequential program is automatically parallelized using parallel compiler. Thus, the
program needs to recompile with parallel compiler and no manual modifications are
required. However, the amount of parallelism reached using this approach is low due to
the complexity of the required automatic transformation. In the parallel programming
approach, the application is explicitly modified or developed to exploit parallelism.
Generally, this approach obtains a higher performance than auto parallelization one but
with the cost of more programing efforts.

Pusukuri et al. (2011) presented that the performance of a parallel application
depends on the number of threads used to run on a multi-core system. He provided

guidelines for finding the appropriate number of threads for getting best performance.
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Diaz et al. (2012) provided tips of motivation showing the relationships between
the problem and the various approaches to divide it into parts. These parts are intended

to be executed simultaneously via threads to solve the problem.
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3. Theoretical Background
This chapter provides the theoretical basis used in S-Vote system giving more
attention to the verification and tallying processes implementations. As this research is
mainly within the field of parallel programming, we recall here the best practices of
parallel implementation design and evaluation.
3.1 S-Vote System
Abandah et al. (2014) adopts state-of-the-art technologies to meet the e-voting
requirements in their proposed S-Vote system. This thesis uses cryptography,
homomorphic cryptography, and zero-knowledge proofs for implementing the voting,
verification, and tallying processes described in the S-Vote.
3.1.1 Cryptography
Industry standard public key cryptography (PKC) is used for achieving the S-
Vote system authenticity and confidentiality (Schneier, 2007). Public key cryptography
relies on key pairs. A key pair for system X consists of a private key K, and a public
key K. The private key is only known by system X where the public key is available
to other systems that need to communicate with system X.
Authentication: System X signs a message m by encrypting it using its private key
(K, (m)) and sends it. The receiver of the encrypted message validates/authenticates the
source of the message when it successfully retrieves the original message using the
system public key (Schneier, 2007).
m = K7 (Kx (m)) (1)
Confidentiality: A message m is encrypted using system X public key (K, (m)). Only
system X; who is the holder of the private key, can retrieve the original message using
its private key.

m = K; (K (m)) @)
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Using RSA industrial cryptography provides sufficient security level for S-Vote

system (Silverman, 2002).

Data Integrity: The public key cryptography is also used to check the integrity of data
in addition to authentication which is defined as digital signature. A signed message is
a message along with its signed digest (m + K, (H(m))). The cryptographic hash
algorithm is used to compute the message digest H (m). The authenticity and integrity
are validated when the digest computed from the received message m, matches the

recovered digest received.

H(m) = K3 (Kz (H(m))) 3)

The RSA key pair cryptography and SHA-256 hash algorithm are used in the S-
Vote system to provide the authenticity and data integrity of the encrypted ballot records

casted via the voting kiosk.

3.1.2 Homomorphic Cryptography
S-Vote uses Paillier key pair cryptosystem for encrypting the voting vectors and
decrypting the encrypted tallies. It is adopted for its useful homomorphic addition
feature in preserving the privacy of votes (Paillier, 1999). Principally, the Paillier
homomorphic allows finding the sum of the clear votes by multiplying their encrypted
votes.
Kj(my +m;) = Ky (my) X K;(my) )

m; +my, =K (KJ (my) X K (mz)) ®)

For flexibility, S-Vote allows each voter to select up to O options of the C

Candidates. The wvote of each voter V; is encoded as a voting vector
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(mi,l; mi,n; ...mi,]- ey mi,c) where mi,j =0or1l for] = {1, 2, ...... 5 C} When
the voter choses the candidate j, then m;,; = 1 otherwise it is 0. The voting vector is

encrypted to (Cmi Cirg s o Ciyj wor; Ci,c) where the homomorphic property allows

finding the encrypted tally of candidate j from N number of voters through
N N
KJ(Zizlmi;j) = l_L=1Kv+(mi'j) (6)

As a result, we can count the votes casted for candidate j by just decrypting the
encrypted tally (Paillier, 1999). For this reason, the Pallier cryptography is fit for this

system as it can get the final results while preserving the individual vectors privacy.

3.1.3 Zero-Knowledge Proofs
As S-Vote requires keeping the voter privacy, the zero knowledge proofs are a
necessity to ensure that encrypted voting vectors carry valid votes. For instance, voter

V; can cheat by submitting for his favorite candidate j the vote C;,; = K/ (100) instead

of C;

i,j = Ky (1). For this reason, the system requires that each voter must submit his

ZK proof (Lipmaa et al., 2003).

Vote verification checks are typically the bottleneck of the homomorphic e-
voting systems for its lengthy and complex calculations (Groth, 2005). The advantage
of ZK proofs is allowing one party called prover to convince another party called
verifier that he knows some secret or knowledge about specific object without revealing
what is the object itself.

Generally, both of the prover and verifier possess the object x, the prover wishes
to convince the verifier that x is in the setS. The prover needs to prove this without
giving away any information about the object and guaranteeing that no prover strategy

may fool the verifier to accept an object not in S, except with negligible probability.
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The first property is called completeness and the second one is soundness. It is a
probabilistic protocol and can be amplified to a proof with soundness error 27% by
repeating it k times (Sarath and Ainapurkar, 2014).

The non-interactive zero knowledge proofs do not require an interaction between
the prover and verifier. De Santis et al. (2001) change the model in a way that reduces
the number of rounds in ZK proofs where just a single message is sent from the prover
to the verifier. They showed the possibility of disposing the interaction between the
prover and the verifier if they share a common random public reference string. This is
enough to perform zero-knowledge proof check without requiring interaction.

Honest-verifier ZK is the simplest type of ZK proofs. The ZK protocol is called
honest if both the verifier and the prover fully follow the protocol. The prover shall
certainly know the secret and the verifier shall follow the behaviour specified in the
protocol to accept the prover claim (Goldreich et al., 1998).

The ZK proofs play a central role in building secure public key cryptosystem. Its
complexity-theoretic assumptions secure the system against the cipher text attacks (De
Santis et al., 2001).

The S-Vote system adopts an efficient honest verifier ZK protocol which is the
non-interactive version of protocol 2 described in (Peng and Bao, 2009). This is made
non-interactive using Fiat-Shamir heuristic (Fiat and Shamir, 1987). In this protocol,

each voter; proofs the following two criteria:

Ny Ky (cj) =0 VK (cij) =1) (7

c 1/N
. ((nj=1 CM) /GO> ®)

Criterion 1 is a proof that every vote in the voting vector is either 1 (for) or 0 (against).
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Criterion 2 is a proof of knowledge of the N** root and demonstrates that there are
exactly O ones in the voting vector where G and N are part of the cryptosystem public
key.

The following describes the ZK proof protocol 2 adopted by S-Vote from Peng

et al., (2009). It is a brief overview for proving that the encrypted value c;,; is within

the set S of {0, 1}. For full description, kindly refer to (Peng et al., 2009).

Vote Casting:

1. Suppose there are n voters and each voter has to choose O parties from the C
candidates.

2. Each voter V; has his voting vector (mi,l; Mz 5 e Myyj one; mi,c) where m;,; =
Oor1 forj = {1; 2; ...... ; C}. A rule is followed: m;,; = 1 iff the voter V;
chooses the jt" candidate.

3. The voting vector is encrypted to (Cm; Cirzs o Ciyj v Cl-,c) using homomaorphic

cryptography where N = pgq is the RSA Modulus (Boneh and Franklin, 2001).

ZK Proof:

The prover generates the proving values and challenge for proving that the
encrypted vote C;,; is in the set of {0, 1} forj = {1; 2; ...... ; C} that shall be sent to
the verifier. A security parameter L is used and is chosen to be 40 according to Fiat-
Shamir heuristic (Peng et al., 2009). Since Fiat-Shamir is run for L = 20 to 40 executions,
the probability for an adversary to fool the verifier for all executions of L is very small and
does not exceed 2L,

1. The prover randomly selects the following proving values for j = {1; 2; ...... ; C}

where:
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tio €{01,..,2F =1}

9)
tjy €{0,1,..,2 — 1} 10)
challengev € {0,1,...,2L — 1} 1)
Vit -m,; €{01,..,2" =1} 12)
r €Zy (13)
2. The prover generates another proving value for j = {1; 2; ...... ; C} where:
Vinmg,; = V= Vjri-m,, mod 2L
3. The prover generates the commitments that shall be sent to the verifier
c tjr—my,; Vir-my;
a=1rV 1_L=1(ci,j gmii—h mod N? (19)
€ o Umptime 2
u=r l_L=1Si,j mod N (15)

Public Verification:
The verifier calculates the commitments, checks the response, and returns true

when they are matched in probability of 1 — 274° (Peng and Bao, 2009).

c C: ~\Einvja
t',o Vi 18]
uV =aqa | | c.,”’ (—]> mod N?
Jj=1

i 7 (16)

v =j,0+ vjymod 28 forj = {1; 2; ... ; C} an

The Thep, 2011 Paillier java project developed the ZK proofs according to
Paillier cryptosystem (N and G). The project has updated the algorithm such that S can

be any integer value and not limited by {0, 1}.
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3.2 Parallel Implementation Theoretical Framework

There are several aspects that must be considered when developing a parallel
program. Mainly, designing the parallel algorithm for a given application problem,
implementing the proposed design using parallel programing languages, and evaluating

the developed program.

3.2.1 Parallel Algorithm Design and Implementation

Designing a parallel algorithm follows three main steps in spite of the
environment or system are used: decomposition, scheduling, and mapping (Sutter and
Larus 2005).

Decomposition divides the application computations and data into parts which
can be concurrently processed on parallel processors. Defining the partitions in an
appropriate way is one of the intellectual tasks of developing a parallel program. There
are many possibilities for partitioning the same problem. Fortunately, there are some
typical kinds of decomposition such as task, data, recursive, and pipelined (Sottile et al.,
2010) (Andrews, 2000) (Mattson, 2005). The programmers most commonly focus on
the computation associated with the problem and the data on which this computation
operates to select the appropriate decomposition.

In data decomposition, programmers decompose the data associated with a
problem by dividing it into small pieces with approximately equal sizes. They associate
the computation with the data portion (Barney, 2012). As a result, each processor
performs the same task on different pieces of partitioned data. Data decomposition is
also known as domain decomposition.

Contrary to data decomposition, task decomposition initially focuses on the

computation to be performed and then dealing with the data. Accordingly, each



-19-

processor executes different process on the same or different data but communication
usually takes place. The processed data may require passing from one computation unit
to the next one as part of a workflow to avoid replication of data (Rauber and Runger,
2010). This scheme is also known as function or control decomposition.

The selected decompositions are coded in a parallel programing language and
are typically assigned to threads to be mapped to physical computation units for
execution (Rauber and Runger, 2010). Such languages often provide special parallel
programing constructs and statements that allow sharing variables and parallel code
sections (threads) to be declared. Threads contain regular high-level code sequences that
will be assigned later to individual computing unit to be run in parallel. Finally, the
compiler is responsible for producing the final executable code.

Scheduling is the assignment of problem partitions to processes or threads. It
fixes the order in which the partitions are executed. This can be done statically at the
compile time or dynamically at the runtime. Mapping is the assignment of threads onto
physical computing units (cores) and is usually done by the runtime environment, but
sometimes can be influenced by the programmer (Lewis and Berg, 1999) (Rauber and
Runger, 2010).

Threads can run independently, but may also depend on each other resulting in
data or control dependencies of threads. The concurrency in parallel programs
introduces several classes of potential software bugs of which the race condition are the
most commonly known problems. These dependencies are scheduling constrains and
may require a specific execution order of the parallel tasks. In this case, synchronization
and communication must be put in place. For example; any thread that needs data
produced by another one, should only be started after the first thread has actually

produced this data (Jacobsen et al., 2010) (Chapman et al., 2007).
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3.2.2 Parallel Algorithm Performance Measures

The parallel computing execution time for an application is the time elapsed
between the start of the application on the first processor and the end of its execution
on all used processors. It should be smaller than the sequential execution time on one
processor (Barney, 2012). Generally, smaller parallel execution times are obtained
when the workload is equally distributed among the cores, which is called load
balancing. In addition, smaller overhead of information exchange, synchronization, and
idle times reduces the parallel execution time. Consequently, finding an appropriate
scheduling and mapping strategy leads to a good load balance and small overhead but
this is often difficult to achieve due to the multiple interactions.

Cost measures like speedup and efficiency are quantitative evaluations of the
parallel application performance. The relative speedup factor Sg measures the increase
in speed using multiprocessing and is defined by the ratio of the sequential execution

time t; to the parallel time t,,.

& | o~
'dlrn

(18)

The relative efficiency E; is a measure of how efficient is the parallel
implementation in using the given parallel resources and is defined by the ratio of
relative speedup Sy to the number of processors/cores P.

SR
Er= 5 (19)

The relative cost of parallel computation is proportional to the number of

processors used and the parallel execution time and is also defined by the ratio of
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sequential execution time t¢ to the relative efficiency of the parallel implementation

Er (Wilkinson and Allen 2004).

ts
Costp =P X t, = E_R (20)

The isoefficiency scalability metric of the parallel system establishes a
relationship between the workload (W) to be accomplished and the number of cores or
processers such that E; remains constant as P increases (Grama et al., 1993). This
metric dictates the rate of W growth required to keep the efficiency fixed as P is
increased.

As a result, there is a continual interplay between parallel algorithms, languages,

architecture, and performance evaluation.


http://what-when-how.com/Tutorial/Multithreaded-Programming-with-JAVA/Multithreaded-Programming-with-JAVA-00179.html
http://what-when-how.com/Tutorial/Multithreaded-Programming-with-JAVA/Multithreaded-Programming-with-JAVA-00179.html
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4, Implementation Details

This research attempts to reduce the votes’ verification process time of S-Vote
model. First, the voting, verification and tallying processes are implemented in a manner
that meets the S-Vote technical and procedural levels of assurance.  This
implementation applies the system’s regulations and determinants that keep the notion
of system’s trust and transparency valuable properties. It employs the technologies
necessary for its secure implementation. Then java multithreading capabilities are used
to reduce the verification time. At the end, all running procedures and alternatives are
tested and evaluated.

As a consequence, we develop the projvoting java project using java 1.7
development kit for building the processes and alternative running procedures. The
developed java project uses standard java libraries and the software components from
homomorphic thep encryption project (thep, 2011). These components implement
Paillier cryptosystem in java along with its homomorphic operations, key generation,

and zero knowledge proof where the Biginteger is the underlying class.

4.1 Initialization Routine

At first, the initialization routine prepares the eligible voters list. The
Projvoting.NIDTable () java class generates the eligible voter list that is globally
announced for all system’s components. For illustration, we create an eligible voters list
consists of two million national 1D (NID). The list is created once, arranged in hash
table data structure, and read by system components whenever needed.

The idea of hashing is to distribute the list entries (values) across an array of
buckets (slots). The hash table uses a hash function to compute an index within the array

of buckets from which the value shall be correctly stored or found. The hash function
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uses a key and run the hash algorithm to compute the index that suggests where the
value can be stored or found. The hash collisions will occur when different keys are
hashed to the same bucket and must be accommodated in some way (Donald, 1998)
(Cormen et al., 2001).

We use the hash table data structure as the average cost for each lookup is
independent of the number of elements stored in the table (Demaine and Lind, 2003).
In many situations, hash tables are more efficient than the tree search or other table
lookup algorithms.

For simplicity, NIpTable () defines a continuous range of two millions NID
entries. We create a hash table of 200,000 slots where each slot is an array of ten
elements. The NID list is stored in the hash table. Each NID is a key for the hash function
to compute the index. A prime number prime is chosen from the NID list such that the
NIDs will be equally distributed within the hash table. If a hash collision occurs, the
value is stored in the next free index within the slot’s array. For example, consider that
we have A, B, and C values. The indicesare H(A) = 3, H(B) = N,and H(C) = 3. The
values will be stored into the hash table such that: 3[0] = A (free collision) , N[0] =

B (free collision), and 3[1] = C (collision). Figure 1 illustrates the above procedure.


http://en.wikipedia.org/wiki/Donald_Knuth
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Figure 1: Eligible Voter List Hash Table

The final initialization step is for setting the system’s parameters. They are
globally declared across the project’s classes within the
projvoting.GlobalConstants ()class. These constants are used by voting,
verification, and tallying processes:

1. Number of candidates C

2. Number of options 0

3. Number of kiosk packages K

4. Number of thread T

5. Number of ballots B

6. Public voting encryption key K,

To generate public voting encryption key K.}, the
projvoting.paillierp.PrivateKey Class generates the encryption private key K,
then it generates the corresponding public key K,/ using getpublickey () method from
projvoting.paillierp.PublicKey Cclass and declares it as a global constant while

keeping the private one for final tallying decryption.
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4.2 Voting Process Simulation

The voting process is responsible for vote casting and kiosk packages’
preparation. Figure 2 shows the developed procedure used to simulate the voting
process. The projvoting.Mainvoting () class is responsible for generating the kiosk
packages. It performs the steps of Fig. 2 flowchart for each ballot within the kiosk which
are:

1. Creating voters voting vector: The kioskEntry.ClearKioskTable () mMmethod
randomly selects a voter from the eligible voter list, then casts his vote by randomly
selects O options out of C candidates (O of ones). Finally, it produces the clear kiosk
voting vectors. Figure 3 describes the clear kiosk voting vectors.

Vi= Wi Vig ;oo e i Viee ) where V,,, (21)

— Voter; Vote for Candidate,

2. Generating encrypted voting vectors and ZK proof (Message): Figure 4 shows these
steps which are started with EncryptingKiosk.GetPublicKey (Vi) method. It

generates for each vote V;,; an encrypted vote C;,; and ZK proof P;

irj This is done by

’j+
performing the following:
a) Calling the projvoting.Paillier.EncryptedInteger (Vi,s, K'y) Paillier

encryption class to encrypt the clear vote V;,; using the vote encryption public key

Ky and produce encrypted vote C;, ;.
Ci = Ky (V) = (con; Cinzs 5 €1, €),
(22)
where c;,. = Voter; Encyrpted Vote for Candidate,
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Figure 2: Simulated Voting Process
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b) Calling projvoting.Paillier.ZKSetMembershipProver (K+v, Set,
msgIndex, Ci,j) Paillier ZK prover class to generate a proof P;,; for each

encrypted vote C;,; . This proof claims that the encrypted vote is within the vote

rj
set of {0, 1} in our case.

Thep, (2011) Paillier prover class first generates the commitments wu;,; for
proving that the encrypted vote C;.; is in the set of {0, 1}. The commitments
should be sent to the verifier. It then uses the idea behind the Fiat-Shamir
paradigm to generate the challenge e;,; from the commitments w;,; for a non-
interactive proof. After that, it computes the prover response to the challenge e;, ;
from the random number r;,;. It then uses getvs () and getEs () to send those
Vs;,j and E's;, jvalues to the verifier that needed for the last part of the proof. As
a result, the proof P, ; is a big integer vector of [u;,;,e;,;,Vs;,;, Es;,j ]. Figure 5
describes the above algorithm. For further detail and correctness proofs, kindly

see (Peng and Bao, 2009).
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Finally, the EncryptingKiosk.GetKeyPublicBallotStr (0;)method
generates for each voting vector an encrypted value C; ,, for the number of options
0; within the vector ;. Then, it generates ZK proof P;,, that the voting vector

has O options. Paillier ZK prover class is used where the set is {O} in this case.

4 - \\
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Figure 4: The Process of Encrypting and Adding ZK Proofs for One Voting Vector
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Figure 5: Paillier Zero Knowledge Prover Algorithm

Digital Signature: Figure 6 shows that each Message M; is digitally signed using
SHA-256 hash function and RSA cryptosystem. The resulting signature R; is the
vote Receipt. Referring to the S-Vote system architecture, the voter’s smartcard
signs the ballot. For simulation purposes it is performed by the process of kiosk
package preparation. The digital signature is required to ensure the authenticity
and integrity of the encrypted voting vector and its proof M;. The following
summarizes this stage :

The  RSAGenerateKeys.GenerateKeys (NID;) method generates RSA

cryptosystem key pair for each voter and is used in digital signature. VVoteri RSA
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private key K, is kept private while the public key K;*is available for verification
process.

The RsaSign.GetMessageDigestPrvKey (Encrypted Ballot; +  ZK
Proofs;) mMmethod runs the SHA-256 hash function to calculate the message
digest from each of the encrypted voting vector and the associated ZK proof .
The RsaSign.GetDigitalSignRsaEncPrvKey (Digest;,NID) method is
responsible for signing the message digest D;using voter; RSA private key K, .

This is defined by S-Vote system as vote receipt R;.

Ry = K7 (H(Ci + P)) = K (H(M)) 23)
4 )
4 )
- )\
Encrypted Voting  \ [Spy Cia | Giz| ~--| Cij |=--|Cica| Cic| Cio
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N J g
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\ 4 &
Hash ﬁ
Functio <
a0
wn
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. J
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Voter RSA Reciept < £
Private Key 25
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M; + R;| NID; Ri
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Figure 6: Adding Digital Signature to Voting Message
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After the termination of the voting stage, the kiosk packages are ready for
verification and tallying processes. Each kiosk package includes the voter IDs, the

encrypted voting vectors, and the voting receipts.

4.3  Verification and Tallying Processes Implementation

Figure 7 shows the implemented vote verification and tallying processes based
on the S-Vote techniques. S-Vote uses several security controls to meet the system’s
security requirements. These controls are effectively integrated within the system
functional and operational requirements. These are implemented into the form of voting
vector validity check (zero knowledge proof), voting vector authenticity and data
integrity check (digital signature), voter eligibility check, and multiple voting check.

The verification process starts with preforming the above checks for each voter
ballot record. Upon finishing the verification stage, the eligible voting vectors move to
tallying process using homomorphic property. Finally, the resultant encrypted tally is
decrypted using Paillier decryption algorithm.

The Projvoting.Mainverfication () class is responsible for the sequential
execution of the verification and tallying processes by calling the following methods for

performing the steps shown in Fig. 7.

4.3.1. Verification Checks

The three main steps in this stage are:

1. Voter Eligibility and Multiple Voting Checks: Figure 8 shows the voter eligibility
and multiple voting checks that are applied on each ballot record. The

Verfication.CheckValidNID (NID;)method checks that each voter NID is in the
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eligible voter list. It looks for this NID in the eligible voter NIDs hash table. The

hash table data structure is used for its good performance.
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Ballot Authenticity and Integrity Check
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Reach
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Ballots Tallying
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Results Report

Result Reporting
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Figure 7: S-Verification and Tallying Processes
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The three possible cases for this check are:

I.  Voter ID is found within the voter list: It is marked as a voted voter and the check
passes (see NIDsj example in Fig. 8).

Il.  Voter ID is not found within the Voter List: Eligible voter ID error occurs. The
associated voting vector is not forwarded to the tallying process. The check fails
for this voter ID. It is reported for voter eligibility check failure (see NIDso
example in Fig. 8).

I1l.  Vector ID is found within the voter list but with multiple voting error: the
duplicated voting vectors of this VVoter ID are excluded from the tallying process.
The check fails. It is reported for voter eligibility check failure (see NIDan

example in Fig. 8).
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Figure 8: Voter Eligibility and Multiple Voting Check

2. Ballot validity (zero knowledge proof) check: Figure 9 shows ZK proof check that
is applied to check the wvalidity of each voting vector. The

Verfication.CheckVerfication ()method checks that each encrypted vote is
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within the set {0, 1}. The verfication.CheckCalcsum() class checks that the
number of options in the encrypted voting vector is 0. The details are as follows:
The projvoting.Paillier.zZKSetMembershipVerifier (K*,  Ci,5,  ui,i,
theset) Paillier zero knowledge vrifier class calculates the proof values P;,; for
each encrypted vote C;,;. The verifier class uses the commitments w;,; generated by
the prover to check that C;,; is in the set {0, 1}.

The projvoting.Paillier.checkResponseNonInteractive (eVals, vVals,
e) method checks the response from the prover Vs;,;, Us;,;, and the challenge e;,;
using the Fiat-Shamir heuristic. The response check returns true if it is OK and accept

the prover claim that C;,; in the set {0, 1}, otherwise it returns false.

rj
Same class and method are used to check the prover claim that the voting vector has
O options. C;,p, {0} set, and P;,, proof vector are used instead. There are four
possible outcomes and actions for these checks:

The ZK verifier accepts the prover claim that all C;,; are in {0,1}: The true

response is reported for each C;,;, and the ZK proof check passes.

L
The ZK verifier rejects the prover claim that a C;,;j is in {0, 1}: Invalid voting
vector error occurs. False response is reported for C;,; . The associated voting
vector is excluded from the tallying process. The ZK proof check fails. It is
reported that the voter‘s ballot; is excluded for vote validity check failure.

The ZK verifier accepts the prover claim that C;,, has O options: The true

response is reported for the encrypted vector; and the ZK proof check passes.

IV. The ZK verifier rejects the prover claim that C;,, has O options: Invalid voting

vector error occurs. False response is reported for the voting vector;. It is
excluded from the tallying process. The ZK proof check fails. It is reported that

the voter‘s ballot; is excluded for vote validity check failure.
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Figure 9: Ballot Validity Check (ZK Proof)

3. Ballot authenticity and integrity (digital signature) check: Figure 10 shows digital
signature check that is applied to check the integrity of each voting vector. The
Verfication.CheckValidData () method is responsible for performing this check.
The detailed procedure is described below:

a) The RsaSign.GetMessageDigestPrvKey (Received Encrypted Ballot; + ZK
Proofs;) method runs SHA-256 hash function to calculate the message digest from

each received Message M; encrypted voting vector and its associated ZK proofs .
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Calculated Digest = H(C; + P;) (24)

b) The RsaSign.GetDecSignEncrUsePublicKey (Received Ri, NID) method is
responsible for decrypting the receipt R; received using voter; RSA public key K.

Recieved Digest = K;* (R;) (25)

C) The verfication.CheckValidbData ()caller method compares the received digest
with the calculated one and considers this check is passed if they match.
H(C; + P) = K" (R) (26)
There are two possible outcomes and related actions for this check:
I.  The encrypted ballot and its ZK proof M; are authentic: The digital signature
check passes for the encrypted voting vector Ci.
Il.  The encrypted ballot and its ZK proof M; are not authentic: The ballot; is
excluded from the tallying process. Digital signature check fails. It is reported that

the voter‘s ballot; is excluded for ballot authenticity check failure.
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Figure 10: Ballot Authenticity Check (Digital Signature)

4.3.2. Tallying Process
The final tallying process goes as follows:
1. Ballot tallying: All encrypted ballots that passed the four checks are considered
eligible voting vectors and are included in the final tallying process. Figure 11 shows
that tallying process. It finds the final encrypted tally for each candidate C;
according to the Paillier homomorphic property.
a) The verfication.CheckCalcColum(C;)method finds the encrypted tally T; for
each candidate by calculating the product of all eligible encrypted votes casted for

this candidate.

n
Tj = | | Cii2 (27)
i=1
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The projvoting.paillierp.DecryptedInteger (T;)cClass

decrypts the final tally T; for each candidate using the voting private key K, . By

this step, the final election results are found, reported in final result report, and the

election process finishes.

= Kv_(Tj) = Z Vi (28)
i=1
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Figure 11: Tallying Process and Final Tally’s Decryption
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4.4  Verification and Tallying Processes Parallel Implementations

Java multithreading programing is used to speed up the verification and tallying
processes. As there are no dependencies among the verification checks, they can be
excuted in parallel. Additionally, each kiosk package can be performed in parallel and
all results can be aggregated together. Consequently, three parallel schemes are
implemented and evaluated: task, master/slave, and data schemes. The following

subsections describers these shames

4.4.1. Task Parallelism Scheme

The ballot verification process has multiple checks (tasks): voter eligibility
check, multiple voting check, ballot authenticity check, and vote validity check. When
you think in parallel execution, you start with dividing the problem into tasks.
Accordingly, the vote verification checks are divided into tasks. Each task is responsible
for one check and runs through a separate thread with the intention that all threads work
on the entire data set, but each thread does a specific task.

This scheme is known as task decomposition. The verification function is divided
into four separated sub functions and the kiosk packages (ballots) are given to all threads
for processing. The final tallying process starts after the finish of the last running thread.

Figure 12 clarifies this scheme, where projvoting.MainRunThread2 () class
spawns the following threads:

a) The projvoting.RunThreadCheckValidNID (Voter IDs) thread to perform the
task of voter validity and multiple voting (hash table lookup) checks.
b) The projvoting.RunThreadCheckValidData (Receipts) thread to perform the

task of ballot authenticity (digital signature) check.
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C) The projvoting.RunThreadCheckVerfication2 (Encrypted Votes, {0,1}
proofs) thread to perform the task of vote validity ({0,1} ZK proof) check.

d) The projvoting.RunThreadCheckCalcSum (Encrypted Votes  Sum, {0}
proof) thread to perform the task of ballot validity ({O} ZK proof) check.

The projvoting.MainRunThread2Calc (Eligible Encrypted Votes) class starts

at the finish of the Ilast \wverification thread run. This class calls

projvoting.RunThreadCheckCalcCol (Eligible Encrypted Votes) to perform the

final tallying process. The election process ends at the completion of this task.
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Figure 12: Task Parallelism Scheme
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4.4.2. Master/Slave Parallelism Scheme

In this Master/Slave parallelism scheme. The projvoting.MainRunThread ()
server class spawns one client thread to handle every kiosk package request. This is
some kind of data parallelism in which data is partitioned to a large the number of
threads and each thread handles one kiosk package. Each of the
projvoting.RunThreadCheckVerfication (kiosk Package) client thread works on the
kiosk package independently, and exists when it is done.

Figure 13 clarifies this scheme where each thread performs all vote verification
checks on a single kiosk package. projvoting.MainRunThreadcalc () class starts at
the finish of the last client thread. This class calls
projvoting.RunThreadCheckCalcCol (Eligible Encrypted Votes) to perform the

final tallying process. The election process ends at the completion of this task.



-42 -

K- Kiosk Packeges

e,

AR O ] Y801y ALy

.

r

4

-
el Bl bl bl
= P — e || p——
\

Y

SYOEL LA TRALLIA g

N

-

S

K,

K,

K- Threads

Figure 13: Master/Slave Parallelism Scheme



-43-

4.4.3. Data Parallelism Scheme

When having many kiosk packages (data) to process, we can divide this large set
of data among multiple threads. This concepts is knows as data parallelism in which
each thread does the same work but on its subset of data. Supercomputers have excelled
at for years. In presence of this, the numbers of simultaneously running threads will be
equivalent to the numbers of physical cores to get higher efficiency. Each thread
performs the verification and tallying processes as the way as the sequential
implementation does but on a sub set of data. The kiosk packages (data) will be

dynamically distributed among the different threads in a round robin manner during the

run time.

Figure 14 clarifies this scheme. The
projvoting.MainRunThreadVerification () class Spawns
projvoting.RunThreadvVerification () threads as many as the
GlobalConstant.NumThread set. Each running thread asks

projvoting.GetKiosPackege () class for an available kiosk package to process.
Accordingly, this class updates the global kiosk counter and gives the requester thread
an available package. The kiosk assignment step is synchronously executed so that only
one thread can be served at a time to keep data consistency.

Java 1ock () and unlock () method are used to control the access to this shared
resource by the multiple threads. Commonly, 1o0ck () grants on thread at a time an
exclusive access to kiosk assignment procedure, and it is released for another thread by
unlock () . Finally, by the end of the last kiosk package processing, the electoral process

ends.
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5. Experimental Evaluation Results and Discussions

This chapter evaluates the three parallelism schemes implemented in the last
chapter. It starts with the experimental setup then continued with the conducted
experiments.

5.1 Experimental Setup

All experiments were done on a host with four Intel Xeon processors E7-8837,
each with eight cores, 2.67 GHz clock rate, and has an access to 256 GB memory. All
implemented cryptography, classes, threads, and methods are coded in the projvoting
java project which is based on JRE 1.7 standard java libraries and Paillier cryptography
thep java project (thep, 2011). This project is compiled using GNU Complier for Java
(GCJ) version 4.8 and runs on an Ubuntu 12.04 virtual machine. The host is windows
server 2012 R2 datacenter edition -x64 bit. The virtual machine monitor is Microsoft
Hyper-v 2012 R2. This host serves only the Ubuntu virtual machine in which the
experiments are run. This virtual machine has access to 160 GB memory. The number
of assigned cores varies from 4 to 32 according to the experiment. The number of ballots
in a kiosk package is 500 ballots. The number of candidates is sixteen unless it is
configured otherwise. The number of options is four unless it is configured otherwise.
The ballot’s storage size is 52 KB. The size of each encrypted vote C;,; along with its
ZK proofs values {e, uvals, evals, & vlals} are 3KB, the encrypted number of options
and its ZK proof values are 3 KB, and the digital signature size is 1 KB. Accordingly,

the storage requirements for each ballot is given by:

Ballot Size (KB) =3C+3+1=3C+4 (29)
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Additionally, Runtime.getMemory () java instrumentations are used to estimate
the memory usage for verifying a ballot. 273 KB is occupied to verify a ballot and 308

MB for creating the NID hash table with 2,000,000 entry.

5.2 Sequential Implementation Results
The sequential implementation of the verification and tallying processes is

evaluated in terms of sequential execution time as a function of the number of ballots.

Table 1 summarizes the performance measures of executing the verification and
tallying processes serially. Additionally, it summarizes the distribution of the execution
time among the processes tasks. Figure 15 shows that there is a direct linear relationship
between the execution time and the number of ballots as any homomorphic e-voting

systems

Table 1: Sequential Execution Time Distributed

5,000 1.6 6x107* 1.51 0.02 0.05
10,000 3.1 8x 107* 2.96 0.02 0.10
15,000 4.6 8x 107* 4.49 0.01 0.14
20,000 6.3 11 x 1074 6.06 0.01 0.20
7.0 6.3
o
£ 6.0 A
2 50 46 _—
E 4.0 31 /
2 3.0 /
w10
0.0
5,000 10,000 15,000 20,000
Number of Ballots

Figure 15: Overall Sequential Execution Time
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Additionally, Figure 16 shows that tallying takes negligible time compared to the
verification. Furthermore, it shows that about 95% of time is spent in verifying the vote
validity which involves checking the ZK proofs. This emphasizes the long ZK proof

computations.
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5,000 10,000 15,000 20,000
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Figure 16: Serial Execution Time Distribution
5.3 Alternative Parallel Implementation Results

The previous sequential implementation evaluation suggests that the verification
time linearly increases with more voters. Therefore, parallel implementation is required
to get the final tally in an acceptable time by exploiting the potentials of parallel
processing computers.

We present here the result of evaluating the three parallel schemes: Task, Data,
and master/slave schemes. We evaluate the cost of each parallel implementation scheme
with respect to the sequential one. Table 2 summarizes the running cost of the three
schemes on a virtual machine with 4 cores and the number of ballots B = 20,000.

Table 2: Performance Time Evaluation of the Parallel Schemes with four cores

Sequential 6.27 6.27
Task 5.89 1.06 27% 23.55
Data 1.74 3.61 90% 6.95
Client-Server 1.71 3.66 91% 6.85
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Figure 17 show that the task parallelism does not give good speedup in addition
to its expensive cost and poor efficiency. This scheme not able to divide the problem
into equivalent tasks, the load is unbalanced because the ZK proof check still run
sequentially and takes very long time compared to the others. It gives only a slight

speedup. In this scheme, all checks finish much earlier than the ZK proof check.

4.00 361
3.50
3.00
2.50
2.00
1.50
1.00 -
0.50 -
0.00 -

Speedup

Task Data Master-Slave

Parallelism Scheme

Figure 17: Parallel Implementation Speedups with Four Cores

On the other hand, the data and master/server schemes give good speedups, high
efficiencies, and low running costs. Although the master/slave scheme has the best
performance for this set of data in addition to its simplicity and directness, it is not a
scalable solution. The cost of thread creation increases as the number of threads
increases and the OS will straggle with large number of threads. The excessive number
of threads leads to performance degradation due to their competition on the limited
number of cores, available memory and other resources. Running this program on a

large set of data will crash the system when it runs out of virtual memory.
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Therefore, writing the program with a limit on the number of threads would be
best for handling the problem in order to control the number of threads. As a result, the
proposed data parallelism scheme is the most preferable one. Beside its acceptable
performance, it limits the number of spawned threads, proportionally maps the thread
to physical cores. It dynamically balanced system as the workload is distributed among

the spawned threads in round robin manner.

5.4 Data Parallelism Speedup Evaluation

The data parallelism implementation of the verification and tallying processes is
evaluated according to the number of running cores so the number of threads
respectively. Table 3 summarizes the running cost when the number of threads is
increased. The experiment is performed on a number of ballots B = 64,000.

Table 3: Data Parallelism Speedup Evaluation

Cores | tp(hr) | Speedup | Efficiency | Cost
Serial | 19.50 19.50
4 4.99 3.9 98% 19.95
8 2.66 7.3 91% 21.32
16 1.32 14.8 92% 21.13
32 0.73 27.5 86% 22.68

Table 3 and Figure 18 shows that we can get sub-linear speedup improvement as
we increase the number of cores. The number of threads are increased to match the
number of available cores. Thus, the assigned workload becomes smaller as the number
of threads increased and reduces the overall computation time. Based on this, we can
determine the hardware specifications requirements for serving a number of ballots

within 8 hours.
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Figure 18: Data Parallelism Speedup

On the other hand, when the number of threads is increased, the synchronization
delay becomes larger and the contention on the memory and storage increases. In
average, each thread will ask for a kiosk package K /T times. The thread waits up to T
time units till it has an exclusive access to kiosk assignment procedure. Thus, each
thread has K overhead time. For this reason, Figure 19 shows a slight degradation in
parallelization efficiency as the number of threads increases due to the synchronization

of kiosk assignment.
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Figure 19: Data Parallelism Efficiency
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Moreover, a set of experiments are conducted to check the scalability of data
parallelism scheme based on the isoefficiency metric. Figure 20 plots speedup against

number of cores for different values of B up to 32 cores.
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Figure 20: Data Parallelism Scheme Isoefficiency Metric

Table 4: Data Parallelism Scheme Isoefficiency

8K 86% 2% 68% 34%
16K 89% 87% 81% 69%
32K 94% 89% 85% 7%
64K 98% 91% 92% 86%

Figure 20 and Table 4 illustrate two things. First, for a given problem instance,
the speedup does not keep the linear increase as the number of cores increases beyond
the assigned workload. The speedup curve tends to saturate as in the instance of
processing 8,000 ballots on 32 cores. In other words, the efficiency drops with
increasing the number of cores. Second, a larger number of B yields higher efficiency
for the same number cores.

Given that increasing the number of cores reduces efficiency and increasing the

size of the computation increases efficiency, it should be possible to keep the efficiency
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constant by increasing both the size of the problem and the number of cores
simultaneously to consider that the parallel system is scalable. For instance, in
Table 4, the efficiency of verifying and tallying 8,000 ballots on tallying machine with
four cores is 86%. If the number of cores is increased to eight, the number of ballots is
scaled up to verify and tally 16,000 ballots the efficiency remains in the average of 86%.

Accordingly, the S-Vote with data parallelism is scalable since the efficiency of
data parallel execution maintained at a constant value by simultaneously increasing the

number of cores and the number of ballots being verified.

5.5 Studying the Effect of Number of Candidates and Options

As another point of view, we study the factors that may affect the zero knowledge
proof itself. The next two experiments are performed to study the effects of numbers of
the candidates and options on the ZK proof check.

The experiment is running on 32 cores using the data parallelism scheme, number
of ballots B = 64,000, and number of options 0 = 2

Table 5: Number of Candidates Effect on ZK Proof

No. of Candidate | Timep (min)
4 17.7
8 27.3
12 37.0
16 44.5

Table 4 and Figure 20 show that the ZK proof has a direct linear relationship with
the number of candidates. The ZK proof is a function of the number of votes per ballot.
This true as the ZK proof is conducted for each encrypted vote within the ballot and its

execution time proportioned to the increase number of votes within the ballots.
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On the other hand, the number of options per ballot does not affect the ZK proof
as only one proof is required to ensure that there is O option in the ballots for each ballot
regardless what is the value of O is. The experiment is running on 32 cores and number
of ballots B = 64,000.

Figure 21 shows that the number of options does not affect the ZK proof time

since it runs once per ballot. Only the {O} set need to be updated to correctly perform

this check.
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Figure 22: Number of Options Effect on the ZK Proof




-54 -

5.6 Discussion

The cost of ballot verification is clearly dependent on number of ballots. Data
parallelism scheme offers the capability of reducing its cost for an acceptable time. The
parallel processing degree can be determined according to the election process size. For
example; Table 3 results illustrate that the kiosk package can be processed in about 11
minutes. Using data parallelism scheme, a 128 cores machine can verify and tally 2
million ballots with 16 candidates each in a country like Jordan in 5.7 hour
((2,000,000/500)*11)/(128*60)) = 5.7 hours. Larger elections require larger servers.

Faster and larger servers would decrease this time even further.
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6. Conclusion and Future Work

In this thesis, we adopted the S-Vote homomorphic e-voting system for its e-
voting requirements satisfaction. S-Vote uses public key cryptography, hashing
techniques, homomorphic cryptography, and zero knowledge proofs for achieving the
e-voting requirements of privacy, authentication, and validation of data integrity. The
implemented vote casting, verification, and tallying processes efficiently permit testing
the corresponding technologies and processes used in S-Vote.

The implemented processes use thep Paillier homomorphic cryptography and ZK
proofs java project for encrypting the casted votes, keeping their privacy, and
decrypting their final encrypted tallies. The homomorphic cryptosystem allows tallying
the ballots without decrypting them, thus preserving the voters’ privacy. A hash table
data structure is used for creating the eligible voters list for its efficient search feature.
Standard SHA-256 hash function and RSA public key cryptography java libraries are
used for authenticating/signing the encrypted ballots and for generating the voting
receipts. These receipts prevent multiple voting and allow voters to verify that their
votes have reached the final tally.

The sequential implementation shows that the verification process has long
execution time and has a linear relationship with the number of voters. This thesis uses
parallel implementation to reduce the ballots verification time. It presents and evaluates
three parallel schemes for ballot verification and tallying: task, master/slave, and data.
It uses java-multithreading techniques to exploit parallelism of the three problem
decomposition schemes. Function decomposition gives inefficient task parallelism
scheme as it unbalances the workload among the verification checks (tasks). Thread
per request decomposition is used in the master/slave scheme. New thread is spawned

to serve each kiosk package. This scheme may crash the system as the number of ballots
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increases for the threads competition on the limited hardware resources. Domain
decomposition is used in the data parallelism scheme in which the number of threads
is relative to the number of physical cores and the kiosk packages are dynamically
distributed across the spawned threads.

The three parallelism schemes are evaluated against the sequential one. It shows
that the data parallelism is the winner scheme in speeding up the verification process.
The analysis shows that data parallelism speedup has direct correlation with the number
of physical cores. An increase in the number of cores; number of spawned threads,
results in a decrease in the time required for performing vote verification checks. It
can verify and tally 64,000 ballots in about 44 minutes and with 86% efficiency when
using 32 threads running on the multi-core tallying machine of 32 cores. So that, we
can determine the hardware size required to verify and tally a number of ballots within
an eight hours. For example, we can verify and tally two millions ballots for a country
as big as Jordan in about 5.7 hours using 128 cores. The analysis also shows that the
ZK proof is a function of number of candidates per ballots and is not affected by the
number of options per ballot. As a result, Data parallelism scheme enhances e-voting
systems’ acceptance, reduces the costs of electoral process compared with the paper-
based ones, and complies with e-voting systems requirements.

My directions for future work, is to extend our work to a full implementation of S-
Vote system. Beside of the parallel implementation for vote validity and authenticity
checks, we would like to cover all aspects of the S-Vote proposed components including
the distributed key generation, threshold cryptography, kiosk design, and smartcard

implementations.
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