

INVESTIGATING PARALLEL IMPLEMENTATIONS OF

ELECTRONIC VOTING VERIFICATION AND TALLYING

PROCESSES

By

Israa Ahmad Saadeh

Supervisor

Dr. Gheith Abandah

This Thesis was Submitted in Partial Fulfillment of the Requirements for the

Master’s Degree of Computer Engineering and Network

Faculty of Graduate Studies

The University of Jordan

May, 2015

- ii -

Committee Decision

This Thesis (Investigating Parallel Implementations of Electronic Voting

Verification and Tallying Processes) was successfully defended and approved on

5/5/2015.

Examination Committee Signature

Dr. Ghieth Ali Abandah, (Supervisor) ------------------------------

Assoc. Prof. of at Computer Engineering Department

Dr. Khaled Ahmad Darabkeh (Member) -------------------------------

Assoc. Prof. of at Computer Engineering Department

Dr. Basel Ali Mahaftha (Member) --------------------------------

Assoc. Prof. at Computer Science Department

Dr. Ali Mohammad Shatnawi (Member) ---------------------------------

Assoc. Prof. of at Computer Engineering Department

(Jordan University of Science & Technology)

- iii -

Dedication

This thesis is dedicated to all my family members for their endless love, spiritual support,

and encouragement.

- iv -

Acknowledgement

First, I would like to sincerely thank my supervisor Dr. Gheith Abandah for his

guidance and support throughout this research. His advice, comments, discussions, and

interpretations were very beneficial for my completion of this thesis. I learned from his

insight a lot. I believe that I learned from the best and I deeply appreciate it.

Next and foremost, I owe my deepest gratitude towards my husband for his

eternal support, understanding of my aspirations, patience, sacrifice, and

encouragement in my many crises. His love and support have always been my strength.

Without him, I would not be able to complete much of what I have done and become

who I am.

My daughter and son deserved my wholehearted thanks as well for giving me

happiness during the years of my studies. My parents, thank you for your love and

support throughout my life. Thank you both for teaching me the value of hard work and

the good things that really matter in life. My parents in law, I gratefully thank your love,

affection, and moral support.

Thank you, God, for always being there for me.

- v -

List of Contents

Committee Decision ... ii

Dedication .. iii

Acknowledgement ... iv

List of Contents ... v

List of Tables .. vii

List of Figures .. viii

List of Abbreviations ... ix

Abstract ... x

1. Introduction ... 1

1.1 Purpose ... 2

1.2 Objective .. 4

1.3 Research Questions .. 4

1.4 Thesis Organization ... 5

2. Literature Review ... 6

3. Theoretical Background .. 12

3.1 S-Vote System .. 12

3.1.1 Cryptography .. 12

3.1.2 Homomorphic Cryptography .. 13

3.1.3 Zero-Knowledge Proofs .. 14

3.2 Parallel Implementation Theoretical Framework ... 18

3.2.1 Parallel Algorithm Design and Implementation 18

3.2.2 Parallel Algorithm Performance Measures ... 20

4. Implementation Details ... 22

4.1 Initialization Routine .. 22

4.2 Voting Process Simulation ... 25

4.3 Verification and Tallying Processes Implementation 31

4.3.1. Verification Checks .. 31

4.3.2. Tallying Process .. 37

4.4 Verification and Tallying Processes Parallel Implementations 39

4.4.1. Task Parallelism Scheme .. 39

4.4.2. Master/Slave Parallelism Scheme ... 41

4.4.3. Data Parallelism Scheme .. 43

- vi -

5. Experimental Evaluation Results and Discussions ... 45

5.1 Experimental Setup .. 45

5.2 Sequential Implementation Results .. 46

5.3 Alternative Parallel Implementation Results ... 47

5.4 Data Parallelism Speedup Evaluation .. 49

5.5 Studying the Effect of Number of Candidates and Options 52

5.6 Discussion .. 54

6. Conclusion and Future Work .. 55

References ... 57

Abstract in Arabic ... 62

- vii -

List of Tables

Table 1: Sequential Execution Time Distributed --- 46

Table 2: Performance Time Evaluation of the Parallel Schemes with four cores -------- 47

Table 3: Data Parallelism Speedup Evaluation --- 49

Table 4: Data Parallelism Scheme Isoefficiency -- 51

Table 5: Number of Candidates Effect on ZK Proof --- 52

- viii -

List of Figures

Figure 1: Eligible Voter List Hash Table -- 24

Figure 2: Simulated Voting Process -- 26

Figure 3: Clear Voting Vectors of B Ballots each of C Candidates ------------------------ 27

Figure 4: The Process of Encrypting and Adding ZK Proofs for One Voting Vector --- 28

Figure 5: Paillier Zero Knowledge Prover Algorithm --------------------------------------- 29

Figure 6: Adding Digital Signature to Voting Message ------------------------------------- 30

Figure 7: S-Verification and Tallying Processes -- 32

Figure 8: Voter Eligibility and Multiple Voting Check -------------------------------------- 33

Figure 9: Ballot Validity Check (ZK Proof) --- 35

Figure 10: Ballot Authenticity Check (Digital Signature) ----------------------------------- 37

Figure 11: Tallying Process and Final Tally’s Decryption ---------------------------------- 38

Figure 12: Task Parallelism Scheme-- 40

Figure 31: Master/Slave Parallelism Scheme --- 42

Figure 14: Data Parallelism Scheme -- 44

Figure 15: Overall Sequential Execution Time --- 46

Figure 16: Serial Execution Time Distribution --- 47

Figure 17: Parallel Implementation Speedups with Four Cores ---------------------------- 48

Figure 18: Data Parallelism Speedup --- 50

Figure 19: Data Parallelism Efficiency --- 50

Figure 20: Data Parallelism Scheme Isoefficiency Metric ---------------------------------- 51

Figure 21: Number of Candidates Effect on the ZK Proof Check Time ------------------ 53

Figure 22: Number of Options Effect on the ZK Proof -------------------------------------- 53

- ix -

List of Abbreviations

Acronym Definition

S-Vote Secure Electronic Voting System

ZK Zero Knowledge

PKC Public Key Cryptosystem

RSA
The Rivest-Shamir-Adleman cryptosystem, a cryptosystem for

public-key encryption

SHA-256 Secure Hash Algorithm with 256 bits Message Digest Size

- x -

INVESTIGATING PARALLEL IMPLEMENTATIONS OF

ELECTRONIC VOTING VERIFICATION AND TALLYING

PROCESSES

By

Israa A. Saadeh

Supervisor

Dr. Gheith A. Abandah

Abstract

Electronic voting systems are being implemented in several countries to provide

accuracy and efficiency for the electoral processes with an increased level of security.

The Secure National Electronic Voting System (S-Vote) is adopted in this study for its

state-of-the-art technologies, privacy, and secure processes. The S-Vote system is a

homomorphic e-voting system that uses zero knowledge (ZK) proof protocol to

preserve the voter’s privacy. Unfortunately, The ZK proofs’ is a complex and time

consuming protocol which affects the scalability of any homomorphic e-voting system.

This thesis investigates the parallel implementation of the S-Vote verification

and tallying processes to reduce the time of vote verification checks especially the ZK

proofs verification. Basically, the vote verification process consists of ZK proof, digital

signature, and voter eligibility checks.

This thesis work implements parallelism using java multithreaded programs for

parallel program execution. It proposes three parallel implementation schemes for the

vote verification and tallying processes which are task, master/slave, and data. The task

parallelism spawns a separate thread to perform one of the verification process checks

(tasks). The master/slave scheme spawns a thread for each voting kiosk package (client)

that performs all the checks. The data parallelism scheme spawns a number of threads

equal to the number of physical cores of the tallying machine. Each thread performs the

whole verification process checks where the voting kiosk packages are dynamically

distributed among them.

This thesis uses java development libraries and the library of the Paillier thep

java project to simulate the vote casting process and develop the verification and tallying

processes based on S-Vote proposed processes. It implements and evaluates the three

parallel execution schemes and compares their performance against the serial

implementation.

The obtained results show that the data parallelism scheme is the best. It has the

highest relative speedup and efficiency with lowest processing cost. It can verify and

tally 64,000 ballots in about 44 minutes with 27.5 relative speedup and 86% efficiency

while using 32 threads running on the multi-core tallying machine with 32 cores.

- xi -

The data parallelism scheme reduces ZK proof time. It has a linear speedup with

respect to the number of cores and can be used to extend the use of S-Vote system for

large electoral processes. For example, using a tallying machine with 128 cores can

reduce the verification and tallying processes time for a country as big as Jordan from

25.4 days to 5.7 hours.

- 1 -

1. Introduction

Many democratic societies all over the world suffer from election fraud,

suppression, falsification and mock elections (Allansson et al., 2012). They have serious

problems throughout their election processes which include, but not limited to, voter

lists manipulation, ballots stuffing, voter intimidation and vote buying. On the other

hand, the voting centers are often heavily staffed to administer identity check, voting

eligibility and ballot dispersal. Some staff members unfaithfully enforce the regulations

for the benefit of their favorite candidates. Identity check is intricate business in cultures

where women or men cover their faces. Moreover, primitive techniques are often used

to disallow multiple voting such as cutting the edge of the ID card or dipping the voter’s

finger in special ink.

These societies look forward to new fair election systems that can overcome the

traditional election systems weaknesses, prevent electoral fraud and improve voter

participation and trust. The electronic voting systems can become a popular alternative

if they satisfy the following main challenges (Antonyan et al., 2007), (Karro et al.,

1999), and (Joaquim et al., 2003):

1. Accuracy: count only the valid votes without being tampered with and

exclude any invalid vote from the final tally.

2. Democracy: allow only eligible voters to vote and every voter to vote only

once.

3. Privacy: do not reveal any voter’s choice or allow any voter to prove how

he voted. This is to avoid voter intimidation and vote selling.

- 2 -

4. Verifiability: allow anyone to check that each vote was cast by an eligible

voter and all votes are correctly counted. In case of electoral disputes,

provides means for rechecking the results.

5. Security: always satisfy reliability, availability and data integrity

requirements. Additionally, satisfy the accuracy, democracy and privacy

requirements and prevent inside or outside attackers from undermining

these requirements.

6. Flexibility: support various election types such as parliaments,

municipalities, student boards, plebiscites, referendums, etc. Support any

eligible voter to vote irrespective of his native language, special needs or

literacy level. Allow him to vote in any voting center that is convenient to

him. One more aspect; is the flexibility of changing the hardware devices

when new or better devices are available.

7. Cost effectiveness: use economic software and hardware components that

are important for large-scale elections.

8. Scalability: efficiently carry out various sizes of elections that achieve

flexibility, provide better return on investment and facilitate mass

quantities production.

1.1 Purpose

The electronic voting schemes are based on blind signatures, homomorphic

encryption or mix-net (Huszti, 2011). The most popular schemes are based on

homomorphic electronic voting (Peng and Bao, 2009), (James et al., 2000), (Baudron

et al., 2001), and (Hirt et al., 2000).

- 3 -

These schemes count the votes without decrypting them. Such systems have an

efficiency bottleneck in vote validity check that is required to preserve the system’s

privacy property. The vote validity check uses ZK proof to verify that each encrypted

vote contains valid data without revealing the vote itself. This proof has too long

computation time which limits the application of e-voting, especially in large-scale

elections.

Zero-knowledge proof is a method by which one party (the prover) can prove to

another party (the verifier) that a given statement is true, without conveying any

information apart from the fact that the statement is indeed true. The goal is to prove a

statement without leaking extra information

Unlike traditional paper based elections, it is impossible to monitor all electronic

operations performed on data from ballot casting to tallying. Accordingly, the validity

of votes must be proved by the voters and publicly be verified. The concept of election

verifiability that votes have been recorded, tallied and correctly declared is called end-

to-end verifiability (Adida, 2006) and (Dagstuhl et al., 2007). This verification is long

and complex.

This thesis adopts the S-Vote homomorphic based e-voting system for national

and local elections (Abandah et al., 2014). This system relies on homomorphic

cryptography, ZK proofs, biometrics, smartcards, open source software, and secure

computers for securely and efficiently implementing the system processes over the

various stages of the electoral process. It efficiently achieves the e-voting requirements

described earlier in term of high accuracy, security, flexibility, privacy, scalability, and

cost. However, it is not suitable for large electoral processes due to the time consuming

cost of ZK proofs.

- 4 -

It is believed that the S-Vote system can practically be implemented in many

countries and would improve trust and participation in the political life if we can

overcome the ZK proof overhead. Consequently, we can perform the final verification

and tallying processes in not more than eight hours.

1.2 Objective

The objective of the study is to minimize the effect of ZK proof overhead using

parallel implementation. So that, we can perform the vote verification and tallying

processes in not more than eight hours. Respectively, the S-Vote system will be more

trusted for democracies since it satisfies all e-voting requirements in conjunction with

practical deployment. For this purpose, we do the following:

- Review S-Vote system’s aspects and design.

- Efficiently implement the voting, verification and tallying processes based on S-

Vote determinants.

- Employ the multithreading programing techniques to exploit the parallelism and

solve the problem of long ZK proofs computation.

- Provide alternative parallel implementation schemes.

- Evaluate the parallel schemes and offer the approach that leads toward acceptable

system performance.

1.3 Research Questions

This study implements end-to-end verifiability processes and evaluates the

performance of their sequential and parallel executions. Finally, it will try to find out

the answers for the following questions:

- 5 -

1. Does the use of parallel execution reduce the votes’ verifiability overhead

in homomorphic e-voting systems?

2. Which parallel technique is more efficient for deployment?

3. Does the designated parallel solution meet e-vote system requirements?

4. Does the designated parallel solution spread the use of S-Vote system?

1.4 Thesis Organization

The following chapter (chapter 2) explores the complexity of e-voting system,

sheds light on the homolographic e-voting bottleneck and reviews the related work in

the field of e-voting systems and parallel programming. Chapter 3 describes the

technologies used in the implementation of vote casting, vote verification and tallying

processes. This chapter also provides guidelines for developing a parallel program.

Chapter 4 details the implementation of voting, verification and tallying processes. It

also proposes solutions that can assist in reducing the time consumed in vote verification

process. Chapter 5 evaluates the proposed parallel implementation schemes and

discusses the performance evaluation results. The conclusion chapter includes the

concluding remarks of this thesis and outlines the future work.

- 6 -

2. Literature Review

There have been a number of e-voting systems used in different countries with

varying success degrees. Most of the existing e-voting schemes can be classified into

two main categories mix-net and homomorphic voting. Mix-net voting employs a mix

network to shuffle the encrypted votes before they are decrypted so that the votes cannot

be traced back to the voters (Schryen et al., 2009), (Groth, 2003), and (Andrew Neff,

2003). Homomorphic voting schemes exploit homomorphism of certain encryption

algorithms. They tallying the votes without decrypting them and only decrypt the sum

of the votes (Peng, 2005), (Groth, 2005), and (Peng et al., 2004). Homomorphic voting

tallying process costs one single decryption operation for each candidate, so it is much

more efficient than tallying in mix-net voting that includes a costly mix network. For

this property, Homomorphic voting scheme is preferable for its accuracy, privacy and

robustness.

Cramer et al. (1997) proposed a scheme that sends all encrypted votes to a single

combiner that computes encrypted tally in a publicly verifiable way using homomorphic

cryptosystem. It forwards the tally by running threshold cryptosystem. This model is

optimal for the communication between voters and authorities but has tallying

computation overhead as the number of candidates increases.

The homomorphic cryptosystem of Paillier provides an efficient public key

cryptography. Its additively homomorphic property can be utilized by secure electronic

voting systems (Paillier, 1999) and (Damgaård et al., 2001).

Unfortunately, the ZK proofs requisite is the bottleneck of homomorphic e-

voting systems for its high time consuming cost.

Many researchers such as (James et al., 2000), (Baudron et al., 2001), (Peng et

al., 2004), (Katz et al., 2001), (Kiayias et al., 2002), and (Lee et al., 2002) employ

- 7 -

complex Zero knowledge proofs. Cramer et al. (1994) used ZK proof of partial

knowledge that has a linear cost relationship with the number of candidates for every

vote.

Many researches were introduced to overcome this bottleneck. Baudron et al.

(2001) proposed an election system in which the tally is computed in intermediary levels

such as local, regional and national results. The separation between levels is non-

cryptographic feature. It is a way to reduce the computational cost by distributing the

ZK proofs’ calculations. On the other hand, weaknesses consideration is ongoing to

system’s scalability.

Lee et al. (2000), Katz et al. (2001), and Groth (2005) proposed homomorphic e-

voting schemes that adjust the vote format and the corresponding vote validity check

mechanism. The large number of checks in small ranges are replaced by a smaller

number of checks in larger ranges. Chida et al. (2008) reduces the cost of computation

and communication by one fourth to one half. So it is still not efficient enough for large-

scale election processes.

An interesting technique called batched bid validity check was designed in (Neff,

2003) and (Peng et al., 2007) to improve the efficiency of bid validity check. It is not a

new technique; it is an extension of the traditional batch verification techniques.

Meanwhile, this technique has three drawbacks: Firstly, it employs different sealing and

parameter settings and cannot guarantee whether it can suit the frequently employed

Paillier encryption or its distributed version in homomorphic e-voting schemes.

Secondly, it supports one-candidate Yes/No election. Thirdly, it is still not efficient

enough for large-scale election applications.

Peng and Bao (2009) proposed two new non-interactive ZK vote validity checks

called Protocol 1 and Protocol 2. Their improvements are more advanced than that in

- 8 -

(Peng et al., 2007). They not only do integrate proof of validity of multiple votes like in

(Peng et al., 2007) but also the operations within each proof of validity of vote. Both

protocols can guarantee much more efficient validity scheme of vote with an

overwhelmingly large probability. There is general solution for homomorphic e-voting

schemes. They are not limited to special election rules or additive homomorphic

encryptions.

Protocol 1 modifies and extends the batched bid validity check in (Peng et al.,

2007) and (Neff, 2003). It greatly improves the efficiency of vote validity check

computation when only one candidate is selected in a vote. It provides more formal

security model than that in (Kikuchi et al., 2000) and (Peng et al., 2007) to illustrate the

privacy. However, it supports only one-candidate per vote, needs six rounds of

communication and may be too interactive for some applications. In addition, it is not

efficient enough for large-scale election applications.

Protocol 2 employs batched ZK proof too, but it is a completely novel. It is more

flexible since it does not limit the number of selected candidates in a vote. Moreover, it

needs fewer rounds of communication and has efficient computation than Protocol 1.

Peng and Bao (2010) employed honest verifier ZK proof security model such

that the privacy depends on a trust assumption that verifiers are honest. They also

proposed a scheme to improve the efficiency of homomorphic e-voting system without

optimizing the ZK proof itself. This scheme can only handle a small number of voters.

The voters’ votes must be grouped. The tallying must separately be carried out in every

group. After that, all results will be aggregated to get the final electoral results.

Abandah et al. (2014) proposed a new end-to-end homomorphic e-voting system

(S-Vote). It relies on Paillier homomorphic cryptography and non-interactive zero-

knowledge Protocol 2 described in (Peng and Bao, 2009). Hence, the vote tallying takes

- 9 -

negligible time compared to verifying the vote validity and authenticity. Verifying the

vote validity involves checking the ZK proof.

Adida (2006), provided constructions of e-voting system using BGN (Boneh et

al., 2005) and Paillier homomorphic cryptosystems. The BGN constructions is only

practical for small number of voters and small cipher-text size. Messages computing

evaluating are performed in long time. He noted that all constructions are easily

parallelized. He assumed that the running time can be reduced directly by using more

computers.

Clarkson (2008) introduced Civitas mix-net e-voting system based on (Catalano

et al., 2005) cryptographic voting scheme1. The Civitas security is not free. Tradeoffs

exist between the levels of security provided by Civitas tabulation, the time required for

tabulation and the tabulation monetary cost. Clarkson (2008) divided the votes into

blocks. The blocks were exploited independently to decrease tabulation time by

processing blocks in parallel and giving a set of tabulation teller machines for each

block. Tabulation time then does not depend on number of voters. Therefore

performance can scale independently of the number of voters.

 Baudron et al. (2001), Adida (2006) and Clarkson (2008) used distributed

system architecture to reduce the vote verification running time. The applications are

still sequentially executed but they run on multiple computers (cluster) with high cost

of parallelism.

Feng and Balaji (2009) and Loka et al. (2010) said that sequential programming

is dead. The single-core efficiency affects sequential execution model performance.

Kirk and Hwu (2010) show that the stalling of clock frequencies due to heat dissipation

and energy consumption issues prevents further improvements in this area.

- 10 -

Parallel computer revolution is introduced as the processors’ developers switch

to a model where the microprocessor has multiple processing units (cores) (Hwu, 2008).

The number of cores per processor chip doubles every 18-24 months based on Moore’s

law.

Clearly, this change of paradigm has had a huge impact on the software

development. Parallel computing can increase the application performance by the

execution on multiple cores. For this to happen, the applications must be programmed

to exploit parallelism. Dongarra et al. (2003) shows that the responsibility for achieving

this falls on the application developers. This new interest toward parallel programming

is called concurrency revolution (Sutter and Larus, 2005) and is taking prominent role

on the stage.

Kasim (2008) discussed two main approaches to parallelize a program: auto-

parallelization and parallel programing. In the auto-parallelization approach, the

sequential program is automatically parallelized using parallel compiler. Thus, the

program needs to recompile with parallel compiler and no manual modifications are

required. However, the amount of parallelism reached using this approach is low due to

the complexity of the required automatic transformation. In the parallel programming

approach, the application is explicitly modified or developed to exploit parallelism.

Generally, this approach obtains a higher performance than auto parallelization one but

with the cost of more programing efforts.

Pusukuri et al. (2011) presented that the performance of a parallel application

depends on the number of threads used to run on a multi-core system. He provided

guidelines for finding the appropriate number of threads for getting best performance.

- 11 -

Diaz et al. (2012) provided tips of motivation showing the relationships between

the problem and the various approaches to divide it into parts. These parts are intended

to be executed simultaneously via threads to solve the problem.

- 12 -

3. Theoretical Background

 This chapter provides the theoretical basis used in S-Vote system giving more

attention to the verification and tallying processes implementations. As this research is

mainly within the field of parallel programming, we recall here the best practices of

parallel implementation design and evaluation.

3.1 S-Vote System

Abandah et al. (2014) adopts state-of-the-art technologies to meet the e-voting

requirements in their proposed S-Vote system. This thesis uses cryptography,

homomorphic cryptography, and zero-knowledge proofs for implementing the voting,

verification, and tallying processes described in the S-Vote.

3.1.1 Cryptography

Industry standard public key cryptography (PKC) is used for achieving the S-

Vote system authenticity and confidentiality (Schneier, 2007). Public key cryptography

relies on key pairs. A key pair for system 𝑋 consists of a private key 𝐾𝑥
− and a public

key 𝐾𝑥
+. The private key is only known by system 𝑋 where the public key is available

to other systems that need to communicate with system 𝑋.

Authentication: System 𝑋 signs a message m by encrypting it using its private key

(𝐾𝑥
−(𝑚)) and sends it. The receiver of the encrypted message validates/authenticates the

source of the message when it successfully retrieves the original message using the

system public key (Schneier, 2007).

 𝑚 = 𝐾𝑥
+(𝐾𝑥

−(𝑚)) (1)

Confidentiality: A message m is encrypted using system X public key (𝐾𝑥
+(𝑚)). Only

system 𝑋; who is the holder of the private key, can retrieve the original message using

its private key.

 𝑚 = 𝐾𝑥
−(𝐾𝑥

+(𝑚)) (2)

- 13 -

Using RSA industrial cryptography provides sufficient security level for S-Vote

system (Silverman, 2002).

Data Integrity: The public key cryptography is also used to check the integrity of data

in addition to authentication which is defined as digital signature. A signed message is

a message along with its signed digest (𝑚 + 𝐾𝑥
−(𝐻(𝑚))). The cryptographic hash

algorithm is used to compute the message digest 𝐻(𝑚). The authenticity and integrity

are validated when the digest computed from the received message m, matches the

recovered digest received.

 𝐻(𝑚) = 𝐾𝑥
+ (𝐾𝑥

−(𝐻(𝑚))) (3)

The RSA key pair cryptography and SHA-256 hash algorithm are used in the S-

Vote system to provide the authenticity and data integrity of the encrypted ballot records

casted via the voting kiosk.

3.1.2 Homomorphic Cryptography

S-Vote uses Paillier key pair cryptosystem for encrypting the voting vectors and

decrypting the encrypted tallies. It is adopted for its useful homomorphic addition

feature in preserving the privacy of votes (Paillier, 1999). Principally, the Paillier

homomorphic allows finding the sum of the clear votes by multiplying their encrypted

votes.

 𝐾𝑣
+(𝑚1 + 𝑚2) = 𝐾𝑣

+(𝑚1) × 𝐾𝑣
+(𝑚2)

(4)

 𝑚1 + 𝑚2 = 𝐾𝑣
−(𝐾𝑣

+(𝑚1) × 𝐾𝑣
+(𝑚2)) (5)

For flexibility, S-Vote allows each voter to select up to 𝑂 options of the 𝐶

Candidates. The vote of each voter 𝑉𝑖 is encoded as a voting vector

- 14 -

(𝑚𝑖,1 ; 𝑚𝑖 ,2 ; … 𝑚𝑖,𝑗 … ; 𝑚𝑖,𝐶) where 𝑚𝑖,𝑗 = 0 𝑜𝑟 1 for 𝑗 = {1; 2; … … ; 𝐶}. When

the voter choses the candidate 𝑗, then 𝑚𝑖 ,𝑗 = 1 otherwise it is 0. The voting vector is

encrypted to (𝐶𝑖,1 ; 𝐶𝑖 ,2 ; … 𝐶𝑖,𝑗 … ; 𝐶𝑖,𝐶) where the homomorphic property allows

finding the encrypted tally of candidate j from N number of voters through

𝐾𝑣

+(∑ 𝑚𝑖 ,𝑗) = ∏ 𝐾𝑣
+(𝑚𝑖,𝑗)

𝑁

𝑖=1

𝑁

𝑖=1
 (6)

As a result, we can count the votes casted for candidate j by just decrypting the

encrypted tally (Paillier, 1999). For this reason, the Pallier cryptography is fit for this

system as it can get the final results while preserving the individual vectors privacy.

3.1.3 Zero-Knowledge Proofs

As S-Vote requires keeping the voter privacy, the zero knowledge proofs are a

necessity to ensure that encrypted voting vectors carry valid votes. For instance, voter

𝑉𝑖 can cheat by submitting for his favorite candidate j the vote 𝐶𝑖,𝑗 = 𝐾𝑉
+(100) instead

of 𝐶𝑖 ,𝑗 = 𝐾𝑉
+(1). For this reason, the system requires that each voter must submit his

ZK proof (Lipmaa et al., 2003).

Vote verification checks are typically the bottleneck of the homomorphic e-

voting systems for its lengthy and complex calculations (Groth, 2005). The advantage

of ZK proofs is allowing one party called prover to convince another party called

verifier that he knows some secret or knowledge about specific object without revealing

what is the object itself.

Generally, both of the prover and verifier possess the object 𝑥, the prover wishes

to convince the verifier that 𝑥 is in the set 𝑆. The prover needs to prove this without

giving away any information about the object and guaranteeing that no prover strategy

may fool the verifier to accept an object not in S, except with negligible probability.

- 15 -

The first property is called completeness and the second one is soundness. It is a

probabilistic protocol and can be amplified to a proof with soundness error 2−𝑘 by

repeating it k times (Sarath and Ainapurkar, 2014).

The non-interactive zero knowledge proofs do not require an interaction between

the prover and verifier. De Santis et al. (2001) change the model in a way that reduces

the number of rounds in ZK proofs where just a single message is sent from the prover

to the verifier. They showed the possibility of disposing the interaction between the

prover and the verifier if they share a common random public reference string. This is

enough to perform zero-knowledge proof check without requiring interaction.

Honest-verifier ZK is the simplest type of ZK proofs. The ZK protocol is called

honest if both the verifier and the prover fully follow the protocol. The prover shall

certainly know the secret and the verifier shall follow the behaviour specified in the

protocol to accept the prover claim (Goldreich et al., 1998).

The ZK proofs play a central role in building secure public key cryptosystem. Its

complexity-theoretic assumptions secure the system against the cipher text attacks (De

Santis et al., 2001).

 The S-Vote system adopts an efficient honest verifier ZK protocol which is the

non-interactive version of protocol 2 described in (Peng and Bao, 2009). This is made

non-interactive using Fiat-Shamir heuristic (Fiat and Shamir, 1987). In this protocol,

each 𝑣𝑜𝑡𝑒𝑟𝑖 proofs the following two criteria:

 ∧𝑗=1
𝐶 (𝐾𝑣

−(𝑐𝑖,𝑗) = 0 ∨ 𝐾𝑣
−(𝑐𝑖,𝑗) = 1) (7)

𝐾𝑁 [((∏ 𝐶𝑖,𝑗
𝐶

𝑗=1
) /𝐺𝑂)

1/𝑁

]

(8)

Criterion 1 is a proof that every vote in the voting vector is either 1 (for) or 0 (against).

- 16 -

Criterion 2 is a proof of knowledge of the 𝑁𝑡ℎ root and demonstrates that there are

exactly 𝑂 ones in the voting vector where 𝐺 and 𝑁 are part of the cryptosystem public

key.

The following describes the ZK proof protocol 2 adopted by S-Vote from Peng

et al., (2009). It is a brief overview for proving that the encrypted value 𝑐𝑖,𝑗 is within

the set 𝑆 of {0, 1}. For full description, kindly refer to (Peng et al., 2009).

Vote Casting:

1. Suppose there are 𝑛 voters and each voter has to choose 𝑂 parties from the 𝐶

candidates.

2. Each voter 𝑉𝑖 has his voting vector (𝑚𝑖,1 ; 𝑚𝑖,2 ; … 𝑚𝑖,𝑗 … ; 𝑚𝑖,𝐶) where 𝑚𝑖,𝑗 =

 0 𝑜𝑟 1 for 𝑗 = {1; 2; … … ; 𝐶}. A rule is followed: 𝑚𝑖,𝑗 = 1 iff the voter 𝑉𝑖

chooses the 𝑗𝑡ℎ candidate.

3. The voting vector is encrypted to (𝐶𝑖 ,1 ; 𝐶𝑖 ,2 ; … 𝐶𝑖,𝑗 … ; 𝐶𝑖,𝐶) using homomorphic

cryptography where 𝑁 = 𝑝𝑞 is the RSA Modulus (Boneh and Franklin, 2001).

ZK Proof:

The prover generates the proving values and challenge for proving that the

encrypted vote 𝐶𝑖 ,𝑗 is in the set of {0, 1} for 𝑗 = {1; 2; … … ; 𝐶} that shall be sent to

the verifier. A security parameter 𝐿 is used and is chosen to be 40 according to Fiat-

Shamir heuristic (Peng et al., 2009). Since Fiat-Shamir is run for L = 20 to 40 executions,

the probability for an adversary to fool the verifier for all executions of L is very small and

does not exceed 2−𝐿.

1. The prover randomly selects the following proving values for 𝑗 = {1; 2; … … ; 𝐶}

where:

- 17 -

 𝑡𝑗 ,0 ∈ { 0,1, … , 2𝐿 − 1}
(9)

 𝑡𝑗 ,1 ∈ { 0,1, … , 2𝐿 − 1}
(10)

 𝑐ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒 𝑣 ∈ { 0,1, … , 2𝐿 − 1}
(11)

 𝑣𝑗 ,1 _𝑚𝑖,𝑗 ∈ { 0,1, … , 2𝐿 − 1}
(12)

 𝑟 ∈ 𝑍𝑁
∗

(13)

2. The prover generates another proving value for 𝑗 = {1; 2; … … ; 𝐶} where:

𝑣𝑗 ,𝑚𝑖,𝑗 = 𝑣 − 𝑣𝑗 ,1−𝑚𝑖,𝑗
 𝑚𝑜𝑑 2𝐿

3. The prover generates the commitments that shall be sent to the verifier

𝑎 = 𝑟𝑁 ∏ (𝑐𝑖,𝑗 𝑔𝑚𝑖,𝑗−1)
𝐶

𝑗=1

𝑡𝑗,1−𝑚𝑖,𝑗
 𝑣𝑗,1_𝑚𝑖,𝑗

 𝑚𝑜𝑑 𝑁2
(14)

𝑢 = 𝑟 ∏ 𝑆𝑖,𝑗

𝑡𝑗,𝑚𝑖,𝑗
𝑣𝑗,𝑚𝑖,𝑗 𝑚𝑜𝑑 𝑁2

𝐶

𝑗=1

(15)

Public Verification:

The verifier calculates the commitments, checks the response, and returns true

when they are matched in probability of 1 − 2−40 (Peng and Bao, 2009).

𝑢𝑁 = 𝑎 ∏ 𝐶𝑖,𝑗
𝑡𝑗,0 𝑣𝑗,0

𝐶

𝑗=1
 (

𝐶𝑖,𝑗

𝑔
)

𝑡𝑗,1 𝑣𝑗,1

𝑚𝑜𝑑 𝑁2
(16)

 𝑣 = 𝑣𝑗 ,0+ 𝑣𝑗 ,1 𝑚𝑜𝑑 2𝐿 𝑓𝑜𝑟 𝑗 = {1; 2; … … ; 𝐶}
(17)

The Thep, 2011 Paillier java project developed the ZK proofs according to

Paillier cryptosystem (𝑁 𝑎𝑛𝑑 𝐺). The project has updated the algorithm such that 𝑆 can

be any integer value and not limited by {0, 1}.

- 18 -

3.2 Parallel Implementation Theoretical Framework

There are several aspects that must be considered when developing a parallel

program. Mainly, designing the parallel algorithm for a given application problem,

implementing the proposed design using parallel programing languages, and evaluating

the developed program.

3.2.1 Parallel Algorithm Design and Implementation

Designing a parallel algorithm follows three main steps in spite of the

environment or system are used: decomposition, scheduling, and mapping (Sutter and

Larus 2005).

Decomposition divides the application computations and data into parts which

can be concurrently processed on parallel processors. Defining the partitions in an

appropriate way is one of the intellectual tasks of developing a parallel program. There

are many possibilities for partitioning the same problem. Fortunately, there are some

typical kinds of decomposition such as task, data, recursive, and pipelined (Sottile et al.,

2010) (Andrews, 2000) (Mattson, 2005). The programmers most commonly focus on

the computation associated with the problem and the data on which this computation

operates to select the appropriate decomposition.

In data decomposition, programmers decompose the data associated with a

problem by dividing it into small pieces with approximately equal sizes. They associate

the computation with the data portion (Barney, 2012). As a result, each processor

performs the same task on different pieces of partitioned data. Data decomposition is

also known as domain decomposition.

Contrary to data decomposition, task decomposition initially focuses on the

computation to be performed and then dealing with the data. Accordingly, each

- 19 -

processor executes different process on the same or different data but communication

usually takes place. The processed data may require passing from one computation unit

to the next one as part of a workflow to avoid replication of data (Rauber and Runger,

2010). This scheme is also known as function or control decomposition.

The selected decompositions are coded in a parallel programing language and

are typically assigned to threads to be mapped to physical computation units for

execution (Rauber and Runger, 2010). Such languages often provide special parallel

programing constructs and statements that allow sharing variables and parallel code

sections (threads) to be declared. Threads contain regular high-level code sequences that

will be assigned later to individual computing unit to be run in parallel. Finally, the

compiler is responsible for producing the final executable code.

Scheduling is the assignment of problem partitions to processes or threads. It

fixes the order in which the partitions are executed. This can be done statically at the

compile time or dynamically at the runtime. Mapping is the assignment of threads onto

physical computing units (cores) and is usually done by the runtime environment, but

sometimes can be influenced by the programmer (Lewis and Berg, 1999) (Rauber and

Runger, 2010).

Threads can run independently, but may also depend on each other resulting in

data or control dependencies of threads. The concurrency in parallel programs

introduces several classes of potential software bugs of which the race condition are the

most commonly known problems. These dependencies are scheduling constrains and

may require a specific execution order of the parallel tasks. In this case, synchronization

and communication must be put in place. For example; any thread that needs data

produced by another one, should only be started after the first thread has actually

produced this data (Jacobsen et al., 2010) (Chapman et al., 2007).

- 20 -

3.2.2 Parallel Algorithm Performance Measures

The parallel computing execution time for an application is the time elapsed

between the start of the application on the first processor and the end of its execution

on all used processors. It should be smaller than the sequential execution time on one

processor (Barney, 2012). Generally, smaller parallel execution times are obtained

when the workload is equally distributed among the cores, which is called load

balancing. In addition, smaller overhead of information exchange, synchronization, and

idle times reduces the parallel execution time. Consequently, finding an appropriate

scheduling and mapping strategy leads to a good load balance and small overhead but

this is often difficult to achieve due to the multiple interactions.

Cost measures like speedup and efficiency are quantitative evaluations of the

parallel application performance. The relative speedup factor SR measures the increase

in speed using multiprocessing and is defined by the ratio of the sequential execution

time 𝑡𝑠 to the parallel time 𝑡𝑝.

𝑆𝑅 =

𝑡𝑠

𝑡𝑝

(18)

The relative efficiency 𝐸𝑅 is a measure of how efficient is the parallel

implementation in using the given parallel resources and is defined by the ratio of

relative speedup 𝑆𝑅 to the number of processors/cores 𝑃.

𝐸𝑅 =

𝑆𝑅

𝑃
 (19)

The relative cost of parallel computation is proportional to the number of

processors used and the parallel execution time and is also defined by the ratio of

- 21 -

sequential execution time ts to the relative efficiency of the parallel implementation

 𝐸𝑅 (Wilkinson and Allen 2004).

𝐶𝑜𝑠𝑡𝑅 = 𝑃 × 𝑡𝑝 =

𝑡𝑠

𝐸𝑅

(20)

The isoefficiency scalability metric of the parallel system establishes a

relationship between the workload (W) to be accomplished and the number of cores or

processers such that 𝐸𝑅 remains constant as P increases (Grama et al., 1993). This

metric dictates the rate of W growth required to keep the efficiency fixed as 𝑃 is

increased.

As a result, there is a continual interplay between parallel algorithms, languages,

architecture, and performance evaluation.

http://what-when-how.com/Tutorial/Multithreaded-Programming-with-JAVA/Multithreaded-Programming-with-JAVA-00179.html
http://what-when-how.com/Tutorial/Multithreaded-Programming-with-JAVA/Multithreaded-Programming-with-JAVA-00179.html

- 22 -

4. Implementation Details

This research attempts to reduce the votes’ verification process time of S-Vote

model. First, the voting, verification and tallying processes are implemented in a manner

that meets the S-Vote technical and procedural levels of assurance. This

implementation applies the system’s regulations and determinants that keep the notion

of system’s trust and transparency valuable properties. It employs the technologies

necessary for its secure implementation. Then java multithreading capabilities are used

to reduce the verification time. At the end, all running procedures and alternatives are

tested and evaluated.

As a consequence, we develop the projvoting java project using java 1.7

development kit for building the processes and alternative running procedures. The

developed java project uses standard java libraries and the software components from

homomorphic thep encryption project (thep, 2011). These components implement

Paillier cryptosystem in java along with its homomorphic operations, key generation,

and zero knowledge proof where the BigInteger is the underlying class.

4.1 Initialization Routine

At first, the initialization routine prepares the eligible voters list. The

Projvoting.NIDTable() java class generates the eligible voter list that is globally

announced for all system’s components. For illustration, we create an eligible voters list

consists of two million national ID (NID). The list is created once, arranged in hash

table data structure, and read by system components whenever needed.

The idea of hashing is to distribute the list entries (values) across an array of

buckets (slots). The hash table uses a hash function to compute an index within the array

of buckets from which the value shall be correctly stored or found. The hash function

- 23 -

uses a key and run the hash algorithm to compute the index that suggests where the

value can be stored or found. The hash collisions will occur when different keys are

hashed to the same bucket and must be accommodated in some way (Donald, 1998)

(Cormen et al., 2001).

We use the hash table data structure as the average cost for each lookup is

independent of the number of elements stored in the table (Demaine and Lind, 2003).

In many situations, hash tables are more efficient than the tree search or other table

lookup algorithms.

For simplicity, NIDTable()defines a continuous range of two millions NID

entries. We create a hash table of 200,000 slots where each slot is an array of ten

elements. The NID list is stored in the hash table. Each NID is a key for the hash function

to compute the 𝑖𝑛𝑑𝑒𝑥. A prime number 𝑝𝑟𝑖𝑚𝑒 is chosen from the NID list such that the

NIDs will be equally distributed within the hash table. If a hash collision occurs, the

value is stored in the next free index within the slot’s array. For example, consider that

we have A, B, and C values. The indices are 𝐻(𝐴) = 3, 𝐻(𝐵) = 𝑁, and 𝐻(𝐶) = 3. The

values will be stored into the hash table such that: 3[0] = 𝐴 (free collision) , 𝑁[0] =

 𝐵 (free collision), and 3[1] = 𝐶 (collision). Figure 1 illustrates the above procedure.

http://en.wikipedia.org/wiki/Donald_Knuth

- 24 -

Figure 1: Eligible Voter List Hash Table

The final initialization step is for setting the system’s parameters. They are

globally declared across the project’s classes within the

projvoting.GlobalConstants()class. These constants are used by voting,

verification, and tallying processes:

1. Number of candidates 𝐶

2. Number of options 𝑂

3. Number of kiosk packages 𝐾

4. Number of thread 𝑇

5. Number of ballots 𝐵

6. Public voting encryption key 𝐾𝑣
+

To generate public voting encryption key 𝐾𝑣
+, the

projvoting.paillierp.PrivateKey class generates the encryption private key 𝐾𝑣
−,

then it generates the corresponding public key 𝐾𝑣
+ using getPublicKey()method from

projvoting.paillierp.PublicKey class and declares it as a global constant while

keeping the private one for final tallying decryption.

- 25 -

4.2 Voting Process Simulation

The voting process is responsible for vote casting and kiosk packages’

preparation. Figure 2 shows the developed procedure used to simulate the voting

process. The Projvoting.MainVoting() class is responsible for generating the kiosk

packages. It performs the steps of Fig. 2 flowchart for each ballot within the kiosk which

are:

1. Creating voters voting vector: The kioskEntry.ClearKioskTable() method

randomly selects a voter from the eligible voter list, then casts his vote by randomly

selects 𝑂 options out of 𝐶 candidates (𝑂 of ones). Finally, it produces the clear kiosk

voting vectors. Figure 3 describes the clear kiosk voting vectors.

𝑉𝑖 = (𝑉𝑖,1 ; 𝑉𝑖,2 ; … … ; 𝑉𝑖,𝑐), 𝑤ℎ𝑒𝑟𝑒 𝑉𝑖,𝑐

→ 𝑉𝑜𝑡𝑒𝑟𝑖 𝑉𝑜𝑡𝑒 𝑓𝑜𝑟 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑐

(21)

2. Generating encrypted voting vectors and ZK proof (Message): Figure 4 shows these

steps which are started with EncryptingKiosk.GetPublicKey(Vi,j)method. It

generates for each vote 𝑉𝑖,𝑗 an encrypted vote 𝐶𝑖,𝑗 and ZK proof 𝑃𝑖 ,𝑗. This is done by

performing the following:

a) Calling the projvoting.Paillier.EncryptedInteger(Vi,j,K+v) Paillier

encryption class to encrypt the clear vote 𝑉𝑖,𝑗 using the vote encryption public key

𝐾𝑣
+and produce encrypted vote 𝐶𝑖,𝑗.

𝐶𝑖 = 𝐾𝑣
+(𝑉𝑖) = (𝑐𝑖 ,1 ; 𝑐𝑖,2 ; … ; 𝑐𝑖, 𝑐),

 𝑤ℎ𝑒𝑟𝑒 𝑐𝑖,𝑐 → 𝑉𝑜𝑡𝑒𝑟𝑖 𝐸𝑛𝑐𝑦𝑟𝑝𝑡𝑒𝑑 𝑉𝑜𝑡𝑒 𝑓𝑜𝑟 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑐
(22)

- 26 -

Start

MainVoting()

Creating voting vector

kioskEntry()

Generate encrypted voting

vector

Paillier.EncryptedIn

teger

Generate ZK proofs

paillierp.ZKSetMembe

rshipProver

Compute message digest

RsaSign.GetMessageDi

gestPrvKey

Reach

Max. No. of ballots

B?

Store the encrypted ballot,
proofs, & receipt
GenerateTables()

End

Encrypted ballot is

exported in text file

format

Yes

No

Creating RSA key pairs

RSAGenerateKeys()

Sign the encrypted ballot

(vote receipt)

RsaSign.GetDigitalSi

gnRsaEncPrvKey

Figure 2: Simulated Voting Process

- 27 -

Figure 3: Clear Voting Vectors of B Ballots each of C Candidates

b) Calling projvoting.Paillier.ZKSetMembershipProver(K+v,Set,

msgIndex, Ci,j) Paillier ZK prover class to generate a proof 𝑃𝑖 ,𝑗 for each

encrypted vote 𝐶𝑖,𝑗 . This proof claims that the encrypted vote is within the vote

set of {0, 1} in our case.

Thep, (2011) Paillier prover class first generates the commitments 𝑢𝑖 ,𝑗 for

proving that the encrypted vote 𝐶𝑖.𝑗 is in the set of {0, 1}. The commitments

should be sent to the verifier. It then uses the idea behind the Fiat-Shamir

paradigm to generate the challenge 𝑒𝑖,𝑗 from the commitments 𝑢𝑖,𝑗 for a non-

interactive proof. After that, it computes the prover response to the challenge 𝑒𝑖 ,𝑗

from the random number 𝑟𝑖,𝑗. It then uses getVs() and getEs()to send those

𝑉𝑠𝑖,𝑗 and 𝐸𝑠𝑖,𝑗values to the verifier that needed for the last part of the proof. As

a result, the proof 𝑃𝑖 ,𝑗 is a big integer vector of [𝑢𝑖 ,𝑗 , 𝑒𝑖,𝑗 , 𝑉𝑠𝑖,𝑗 , 𝐸𝑠𝑖,𝑗]. Figure 5

describes the above algorithm. For further detail and correctness proofs, kindly

see (Peng and Bao, 2009).

- 28 -

Finally, the EncryptingKiosk.GetKeyPublicBallotStr(Oi)method

generates for each voting vector an encrypted value 𝐶𝑖,𝑂 for the number of options

𝑂𝑖 within the vector 𝑉𝑖. Then, it generates ZK proof 𝑃𝑖 ,𝑂 that the voting vector

has 𝑂 options. Paillier ZK prover class is used where the set is {O} in this case.

NIDiVi
Vi,1 Vi,2 Vi,CVi,j Vi,C-1Clear Voting Vector

NIDiCi
Ci,1 Ci,2 Ci,CCi,j Ci,C-1

Encrypted Voting
Vector

Ci,O

Oi

P
ai

ll
ie

r
E

n
cr

y
p
ti

o
n

NIDiPi
Pi,1 Pi,2 Pi,CPi,j Pi,C-1ZK Proof Vector Pi,O

P
.
Z

K
 P

R
O

V
E

R

NIDi

.

Mi

Ci,1 Ci,2 Ci,CCi,j Ci,C-1Resultant Encrypted
Voting Vector

Ci,O

.Pi,1 Pi,2 Pi,CPi,j Pi,C-1 Pi,O

{0,1} ZK Proof {O} ZK Proof

Paillier Public Key

Figure 4: The Process of Encrypting and Adding ZK Proofs for One Voting Vector

- 29 -

Ci,j

Paillier Public

Key
Encrypted Vote

{0, 1}

The Set

{0,1}

Prover

Generate

Commitments

ui,j

ri,j

Random

Generate Challenge

from

Commitments

ei,j

Compute Response

for verifier

Vsi,j Esi,j

getVs getEs

ui,j ei,j Vsi,j Esi,jPi,j
Resultant Vote Proof

Figure 5: Paillier Zero Knowledge Prover Algorithm

3. Digital Signature: Figure 6 shows that each Message 𝑀𝑖 is digitally signed using

SHA-256 hash function and RSA cryptosystem. The resulting signature 𝑅𝑖 is the

vote Receipt. Referring to the S-Vote system architecture, the voter’s smartcard

signs the ballot. For simulation purposes it is performed by the process of kiosk

package preparation. The digital signature is required to ensure the authenticity

and integrity of the encrypted voting vector and its proof 𝑀𝑖. The following

summarizes this stage :

a) The RSAGenerateKeys.GenerateKeys(NIDi) method generates RSA

cryptosystem key pair for each voter and is used in digital signature. Voteri RSA

- 30 -

private key 𝐾𝑖
− is kept private while the public key 𝐾𝑖

+is available for verification

process.

b) The RsaSign.GetMessageDigestPrvKey(Encrypted Balloti + ZK

Proofsi) method runs the SHA-256 hash function to calculate the message

digest from each of the encrypted voting vector and the associated ZK proof .

c) The RsaSign.GetDigitalSignRsaEncPrvKey(Digesti,NID) method is

responsible for signing the message digest 𝐷𝑖using voteri RSA private key 𝐾𝑖
−.

This is defined by S-Vote system as vote receipt 𝑅𝑖.

 𝑅𝑖 = 𝐾𝑖
−(𝐻(𝐶𝑖 + 𝑃𝑖)) = 𝐾𝑖

−(𝐻(𝑀𝑖))
(23)

NIDi

.

Mi

Ci,1 Ci,2 Ci,CCi,j Ci,C-1Encrypted Voting
Vector

Ci,O

.Pi,1 Pi,2 Pi,CPi,j Pi,C-1 Pi,O

Di

S
H

A
-2

5
6

B
al

lo
t

D
ig

es
t

SHA-
256

Ri

Voter RSA
Private Key R

S
A

S
ig

n
in

g

 Ballot Digest

Reciept

NIDi

.

Mi + Ri

Ci,1 Ci,2 Ci,CCi,j Ci,C-1

Resultant Final
Encrypted Voting Vector Ci,O

.Pi,2 Pi,CPi,j Pi,O

Ri

Signed Encrypted Ballot

Hash

Function

Pi,1 Pi,C-1

Figure 6: Adding Digital Signature to Voting Message

- 31 -

After the termination of the voting stage, the kiosk packages are ready for

verification and tallying processes. Each kiosk package includes the voter IDs, the

encrypted voting vectors, and the voting receipts.

4.3 Verification and Tallying Processes Implementation

Figure 7 shows the implemented vote verification and tallying processes based

on the S-Vote techniques. S-Vote uses several security controls to meet the system’s

security requirements. These controls are effectively integrated within the system

functional and operational requirements. These are implemented into the form of voting

vector validity check (zero knowledge proof), voting vector authenticity and data

integrity check (digital signature), voter eligibility check, and multiple voting check.

The verification process starts with preforming the above checks for each voter

ballot record. Upon finishing the verification stage, the eligible voting vectors move to

tallying process using homomorphic property. Finally, the resultant encrypted tally is

decrypted using Paillier decryption algorithm.

The Projvoting.MainVerfication() class is responsible for the sequential

execution of the verification and tallying processes by calling the following methods for

performing the steps shown in Fig. 7.

4.3.1. Verification Checks

The three main steps in this stage are:

1. Voter Eligibility and Multiple Voting Checks: Figure 8 shows the voter eligibility

and multiple voting checks that are applied on each ballot record. The

Verfication.CheckValidNID(NIDi)method checks that each voter NID is in the

- 32 -

eligible voter list. It looks for this NID in the eligible voter NIDs hash table. The

hash table data structure is used for its good performance.

Start

MainVirfication()

Voter Eligibility and Multiple Voting Checks

Verfication.CheckValidNID()

Ballot Validity Check

Verfication.CheckVerfication()

Verfication.CheckCalcSum()

Ballot Authenticity and Integrity Check

Verfication.CheckValidData()

Reach

Max. No. of

Ballots B?

Result Reporting

Verfication.CheckCalcCol(

 End

Final Election

Results Report

Yes

No

Ballots Tallying

Verfication.CheckCalcCol()

Eligible Ballot List

Figure 7: S-Verification and Tallying Processes

- 33 -

The three possible cases for this check are:

I. Voter ID is found within the voter list: It is marked as a voted voter and the check

passes (see NID3i example in Fig. 8).

II. Voter ID is not found within the Voter List: Eligible voter ID error occurs. The

associated voting vector is not forwarded to the tallying process. The check fails

for this voter ID. It is reported for voter eligibility check failure (see NID60

example in Fig. 8).

III. Vector ID is found within the voter list but with multiple voting error: the

duplicated voting vectors of this Voter ID are excluded from the tallying process.

The check fails. It is reported for voter eligibility check failure (see NID4N

example in Fig. 8).

0NID50 NID40 NID30 NID20 NID10 NID0

1

i

N

Index
Hash

Function

NID3i

.C3i,1 C3i,1 C3i,CC3i,j C3i,C-1 C3i,O

.P3i,1 P3i,1 P3i,CP3i,j P3i,C-1 P3i,O

. . .
. . .

Eligible Voter ID Hash Table

NID51 NID41 NID31 NID21 NID11 NID1

NID5i NID4i NID3i NID2i NID1i NIDi

NID5N NID4N NID3N NID2N NID1N NIDN

NID60

.C60,1 C60,1 C60,CC60,j C60,C-1 C60,O

.P60,1 P60,1 P60,CP60,j P60,C-1 P60,O

NID4N

.C4N,1 C4N,CC4N,j C4N,C-1 C4N,O

.P4N,1 P4N,1 P4N,CP4N,j P4N,C-1 P4N,O

NID4N

.C4N,1 C4N,1 C4N,CC4N,j C4N,C-1 C4N,O

.P4N,1 P4N,2 P4N,CP4N,j P4N,C-1 P4N,O

. . .
. . .

. . .

NID60NID60NID60NID60NID60NID60

NID3iNID3iNID3i

NID4NNID4NNID4NNID4N

×

×

Encrypted Voting Vectors

C4N,1

Figure 8: Voter Eligibility and Multiple Voting Check

2. Ballot validity (zero knowledge proof) check: Figure 9 shows ZK proof check that

is applied to check the validity of each voting vector. The

Verfication.CheckVerfication()method checks that each encrypted vote is

- 34 -

within the set {0, 1}. The Verfication.CheckCalcSum() class checks that the

number of options in the encrypted voting vector is 𝑂. The details are as follows:

a) The projvoting.Paillier.ZKSetMembershipVerifier(K+v, Ci,j, ui,j,

theSet) Paillier zero knowledge vrifier class calculates the proof values 𝑃𝑖 ,𝑗 for

each encrypted vote 𝐶𝑖,𝑗. The verifier class uses the commitments 𝑢𝑖 ,𝑗 generated by

the prover to check that 𝐶𝑖,𝑗 is in the set {0, 1}.

b) The projvoting.Paillier.checkResponseNonInteractive(eVals, vVals,

e) method checks the response from the prover 𝑉𝑠𝑖 ,𝑗, 𝑈𝑠𝑖,𝑗, and the challenge 𝑒𝑖,𝑗

using the Fiat-Shamir heuristic. The response check returns true if it is OK and accept

the prover claim that 𝐶𝑖,𝑗 in the set {0, 1}, otherwise it returns false.

Same class and method are used to check the prover claim that the voting vector has

O options. 𝐶𝑖 ,𝑂 , {𝑂} set, and 𝑃𝑖,𝑂 proof vector are used instead. There are four

possible outcomes and actions for these checks:

I. The ZK verifier accepts the prover claim that all 𝐶𝑖,𝑗 are in {0, 1}: The true

response is reported for each 𝐶𝑖,𝑗 , and the ZK proof check passes.

II. The ZK verifier rejects the prover claim that a 𝐶𝑖,𝑗 j is in {0, 1}: Invalid voting

vector error occurs. False response is reported for 𝐶𝑖,𝑗 . The associated voting

vector is excluded from the tallying process. The ZK proof check fails. It is

reported that the voter‘s 𝑏𝑎𝑙𝑙𝑜𝑡𝑖 is excluded for vote validity check failure.

III. The ZK verifier accepts the prover claim that 𝐶𝑖,𝑂 has 𝑂 options: The true

response is reported for the encrypted vectori and the ZK proof check passes.

IV. The ZK verifier rejects the prover claim that 𝐶𝑖,𝑂 has 𝑂 options: Invalid voting

vector error occurs. False response is reported for the voting 𝑣𝑒𝑐𝑡𝑜𝑟𝑖. It is

excluded from the tallying process. The ZK proof check fails. It is reported that

the voter‘s 𝑏𝑎𝑙𝑙𝑜𝑡𝑖 is excluded for vote validity check failure.

- 35 -

Figure 9: Ballot Validity Check (ZK Proof)

3. Ballot authenticity and integrity (digital signature) check: Figure 10 shows digital

signature check that is applied to check the integrity of each voting vector. The

Verfication.CheckValidData()method is responsible for performing this check.

The detailed procedure is described below:

a) The RsaSign.GetMessageDigestPrvKey(Received Encrypted Balloti + ZK

Proofsi) method runs SHA-256 hash function to calculate the message digest from

each received Message 𝑀𝑖 encrypted voting vector and its associated ZK proofs .

- 36 -

 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝐷𝑖𝑔𝑒𝑠𝑡 = 𝐻(𝐶𝑖 + 𝑃𝑖) (24)

b) The RsaSign.GetDecSignEncrUsePublicKey(Received Ri, NID)method is

responsible for decrypting the receipt 𝑅𝑖 received using voteri RSA public key 𝐾𝑖
+.

 𝑅𝑒𝑐𝑖𝑒𝑣𝑒𝑑 𝐷𝑖𝑔𝑒𝑠𝑡 = 𝐾𝑖
+(𝑅𝑖) (25)

c) The Verfication.CheckValidData()caller method compares the received digest

with the calculated one and considers this check is passed if they match.

 𝐻(𝐶𝑖 + 𝑃𝑖) = 𝐾𝑖
+(𝑅𝑖) (26)

There are two possible outcomes and related actions for this check:

I. The encrypted ballot and its ZK proof 𝑀𝑖 are authentic: The digital signature

check passes for the encrypted voting vector Ci.

II. The encrypted ballot and its ZK proof 𝑀𝑖 are not authentic: The 𝑏𝑎𝑙𝑙𝑜𝑡𝑖 is

excluded from the tallying process. Digital signature check fails. It is reported that

the voter‘s 𝑏𝑎𝑙𝑙𝑜𝑡𝑖 is excluded for ballot authenticity check failure.

- 37 -

Figure 10: Ballot Authenticity Check (Digital Signature)

4.3.2. Tallying Process

The final tallying process goes as follows:

1. Ballot tallying: All encrypted ballots that passed the four checks are considered

eligible voting vectors and are included in the final tallying process. Figure 11 shows

that tallying process. It finds the final encrypted tally for each candidate 𝐶𝑗

according to the Paillier homomorphic property.

a) The Verfication.CheckCalcColum(Cj)method finds the encrypted tally 𝑇𝑗 for

each candidate by calculating the product of all eligible encrypted votes casted for

this candidate.

𝑇𝑗 = ∏ 𝐶𝑖,2

𝑛

𝑖=1
 (27)

- 38 -

2. Result Decryption: The projvoting.paillierp.DecryptedInteger(Tj)class

decrypts the final tally 𝑇𝑗 for each candidate using the voting private key 𝐾𝑣
− . By

this step, the final election results are found, reported in final result report, and the

election process finishes.

𝑅𝑗 = 𝐾𝑣
−(𝑇𝑗) = ∑ 𝑉𝑖,𝑗

𝑛

𝑖=1

 (28)

Tj

.
V1 C1,1 C1,2 C1,CC1,j C1,C-1

E
lig

ib
le

 E
n

cr
yp

te
d

 V
o

ti
n

g
V

e
ct

o
rs

Paillier Private
Key

.C2,1 C2,2 C2,CC2,j C2,C-1

.Ci,1 Ci,2 Ci,CCi,j Ci,C-1

.Cn-1,1 Cn-1,2 Cn-1,CCn-1,j Cn-1,C-1

.Cn,1 Cn,2 Cn,CCn,j Cn,C-1

V2

Vn-1

Vn

Vi

.

Fi
n

al
 E

le
ct

io
n

R

es
u

lt
s

1 2 Cj C-1

.

E
n

cr
y

p
te

d
 V

o
te

s
T

a
ll

y
in

g
T

a
ll

y
in

g
 D

ec
ry

p
ti

o
n

T

R

1 1

111

Figure 11: Tallying Process and Final Tally’s Decryption

- 39 -

4.4 Verification and Tallying Processes Parallel Implementations

Java multithreading programing is used to speed up the verification and tallying

processes. As there are no dependencies among the verification checks, they can be

excuted in parallel. Additionally, each kiosk package can be performed in parallel and

all results can be aggregated together. Consequently, three parallel schemes are

implemented and evaluated: task, master/slave, and data schemes. The following

subsections describers these shames

4.4.1. Task Parallelism Scheme

The ballot verification process has multiple checks (tasks): voter eligibility

check, multiple voting check, ballot authenticity check, and vote validity check. When

you think in parallel execution, you start with dividing the problem into tasks.

Accordingly, the vote verification checks are divided into tasks. Each task is responsible

for one check and runs through a separate thread with the intention that all threads work

on the entire data set, but each thread does a specific task.

This scheme is known as task decomposition. The verification function is divided

into four separated sub functions and the kiosk packages (ballots) are given to all threads

for processing. The final tallying process starts after the finish of the last running thread.

Figure 12 clarifies this scheme, where projvoting.MainRunThread2() class

spawns the following threads:

a) The projvoting.RunThreadCheckValidNID(Voter IDs) thread to perform the

task of voter validity and multiple voting (hash table lookup) checks.

b) The projvoting.RunThreadCheckValidData(Receipts) thread to perform the

task of ballot authenticity (digital signature) check.

- 40 -

c) The projvoting.RunThreadCheckVerfication2(Encrypted Votes, {0,1}

Proofs) thread to perform the task of vote validity ({0,1} ZK proof) check.

d) The projvoting.RunThreadCheckCalcSum(Encrypted Votes Sum, {O}

Proof) thread to perform the task of ballot validity ({O} ZK proof) check.

The projvoting.MainRunThread2Calc(Eligible Encrypted Votes) class starts

at the finish of the last verification thread run. This class calls

projvoting.RunThreadCheckCalcCol(Eligible Encrypted Votes) to perform the

final tallying process. The election process ends at the completion of this task.

NIDn
.Cn,1 Cn,2 Cn,CCn,j Cn,C-1 Cn

.Pn,2 Pn,CPn,j
On

Rn
Pn,1 Pn,C-1

NIDi

.Ci,1 Ci,2 Ci,CCi,j Ci,C-1 Ci

.Pi,2 Pi,CPi,j
OiPi,1 Pi,C-1

N2D2

.C2,2 C2,2 C2,CC2,j C2,C-2 C2

.P2,2 P2,CP2,j O2P2,2 P2,C-2

N1D1

.C1,1 C1,1 C1,CC1,j C1,C-1 C1

.P1,1 P1,CP1,j O1P1,1 P1,C-1

. . .
. . .

Ri

R1

R2

T1

N
ID

 C
he

ck

{
O

}
Z

K
 P

ro
of

 C
h

ec
k

D
S

 C
h

ec
k

T2 T3 T4

{0, 1} ZK Proof Check

Ballot1

Ballot2

Balloti

Ballotn

Four Threads

n
-

B
a
ll

o
ts

Figure 12: Task Parallelism Scheme

- 41 -

4.4.2. Master/Slave Parallelism Scheme

In this Master/Slave parallelism scheme. The projvoting.MainRunThread()

server class spawns one client thread to handle every kiosk package request. This is

some kind of data parallelism in which data is partitioned to a large the number of

threads and each thread handles one kiosk package. Each of the

projvoting.RunThreadCheckVerfication(Kiosk Package) client thread works on the

kiosk package independently, and exists when it is done.

Figure 13 clarifies this scheme where each thread performs all vote verification

checks on a single kiosk package. projvoting.MainRunThreadCalc() class starts at

the finish of the last client thread. This class calls

projvoting.RunThreadCheckCalcCol(Eligible Encrypted Votes) to perform the

final tallying process. The election process ends at the completion of this task.

- 42 -

Figure 31: Master/Slave Parallelism Scheme

- 43 -

4.4.3. Data Parallelism Scheme

When having many kiosk packages (data) to process, we can divide this large set

of data among multiple threads. This concepts is knows as data parallelism in which

each thread does the same work but on its subset of data. Supercomputers have excelled

at for years. In presence of this, the numbers of simultaneously running threads will be

equivalent to the numbers of physical cores to get higher efficiency. Each thread

performs the verification and tallying processes as the way as the sequential

implementation does but on a sub set of data. The kiosk packages (data) will be

dynamically distributed among the different threads in a round robin manner during the

run time.

Figure 14 clarifies this scheme. The

projvoting.MainRunThreadVerification() class spawns

projvoting.RunThreadVerification()threads as many as the

GlobalConstant.NumThread set. Each running thread asks

projvoting.GetKiosPackege() class for an available kiosk package to process.

Accordingly, this class updates the global kiosk counter and gives the requester thread

an available package. The kiosk assignment step is synchronously executed so that only

one thread can be served at a time to keep data consistency.

Java lock() and unlock() method are used to control the access to this shared

resource by the multiple threads. Commonly, lock() grants on thread at a time an

exclusive access to kiosk assignment procedure, and it is released for another thread by

unlock(). Finally, by the end of the last kiosk package processing, the electoral process

ends.

- 44 -

T- Threads

D
y
n

a
m

ic
a
ll

y
 A

ss
ig

n
e
d

 K
io

sk
 P

a
c
k
e
g

e
s

. . .

V
er

if
ic

at
io

n
 a

n
d

 T
al

ly
in

g
T

as
ks

. . .

 K- Kiosk Packeges

. . .

..

..

..

..

..

.
.

..

..

K1

. . .

..

..

..

..

..

.
.

..

..

KT+1

. . .

..

..

..

..

..

.
.

..

..

KK-T+1

. . .

..

..

..

..

..

.
.

..

..

K2

. . .

..

..

..

..

..

.
.

..

..

KT+2

. . .

..

..

..

..

..

.
.

..

..

KK-T+2

. . .

..

..

..

..

..

.
.

..

..

KT

. . .

..

..

..

..

..

.
.

..

..

KT+T

. . .

..

..

..

..

..

.
.

..

..

KK

T1

NID Check

{O} ZK Check

DS Check

{0, 1} ZK Check

Tally

T2

NID Check

{O} ZK Check

DS Check

{0, 1} ZK Check

Tally

TT

NID Check

{O} ZK Check

DS Check

{0, 1} ZK Check

Tally

. . .

. . .

. . .

Figure 14: Data Parallelism Scheme

- 45 -

5. Experimental Evaluation Results and Discussions

This chapter evaluates the three parallelism schemes implemented in the last

chapter. It starts with the experimental setup then continued with the conducted

experiments.

5.1 Experimental Setup

All experiments were done on a host with four Intel Xeon processors E7-8837,

each with eight cores, 2.67 GHz clock rate, and has an access to 256 GB memory. All

implemented cryptography, classes, threads, and methods are coded in the projvoting

java project which is based on JRE 1.7 standard java libraries and Paillier cryptography

thep java project (thep, 2011). This project is compiled using GNU Complier for Java

(GCJ) version 4.8 and runs on an Ubuntu 12.04 virtual machine. The host is windows

server 2012 R2 datacenter edition -x64 bit. The virtual machine monitor is Microsoft

Hyper-v 2012 R2. This host serves only the Ubuntu virtual machine in which the

experiments are run. This virtual machine has access to 160 GB memory. The number

of assigned cores varies from 4 to 32 according to the experiment. The number of ballots

in a kiosk package is 500 ballots. The number of candidates is sixteen unless it is

configured otherwise. The number of options is four unless it is configured otherwise.

The ballot’s storage size is 52 KB. The size of each encrypted vote 𝐶𝑖,𝑗 along with its

ZK proofs values {𝑒, 𝑢𝑣𝑎𝑙𝑠, 𝑒𝑣𝑎𝑙𝑠, & 𝑣𝑙𝑎𝑙𝑠} are 3KB, the encrypted number of options

and its ZK proof values are 3 KB, and the digital signature size is 1 KB. Accordingly,

the storage requirements for each ballot is given by:

 𝐵𝑎𝑙𝑙𝑜𝑡 𝑆𝑖𝑧𝑒 (𝐾𝐵) = 3 𝐶 + 3 + 1 = 3 𝐶 + 4 (29)

- 46 -

Additionally, Runtime.getMemory() java instrumentations are used to estimate

the memory usage for verifying a ballot. 273 KB is occupied to verify a ballot and 308

MB for creating the NID hash table with 2,000,000 entry.

5.2 Sequential Implementation Results

The sequential implementation of the verification and tallying processes is

evaluated in terms of sequential execution time as a function of the number of ballots.

Table 1 summarizes the performance measures of executing the verification and

tallying processes serially. Additionally, it summarizes the distribution of the execution

time among the processes tasks. Figure 15 shows that there is a direct linear relationship

between the execution time and the number of ballots as any homomorphic e-voting

systems

Table 1: Sequential Execution Time Distributed

No. of Ballots
Total Eligibility Validity Authenticity Tallying

ts(hr) ts(hr) ts(hr) ts(hr) ts(hr)

5,000 1.6 6 × 10−4 1.51 0.02 0.05

10,000 3.1 8 × 10−4 2.96 0.02 0.10

15,000 4.6 8 × 10−4 4.49 0.01 0.14

20,000 6.3 11 × 10−4 6.06 0.01 0.20

Figure 15: Overall Sequential Execution Time

1.6

3.1

4.6

6.3

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

5,000 10,000 15,000 20,000

E
x
ec

u
ti

o
n

 T
im

e
(h

r)

Number of Ballots

- 47 -

Additionally, Figure 16 shows that tallying takes negligible time compared to the

verification. Furthermore, it shows that about 95% of time is spent in verifying the vote

validity which involves checking the ZK proofs. This emphasizes the long ZK proof

computations.

 Figure 16: Serial Execution Time Distribution

5.3 Alternative Parallel Implementation Results

The previous sequential implementation evaluation suggests that the verification

time linearly increases with more voters. Therefore, parallel implementation is required

to get the final tally in an acceptable time by exploiting the potentials of parallel

processing computers.

We present here the result of evaluating the three parallel schemes: Task, Data,

and master/slave schemes. We evaluate the cost of each parallel implementation scheme

with respect to the sequential one. Table 2 summarizes the running cost of the three

schemes on a virtual machine with 4 cores and the number of ballots 𝐵 = 20,000.

Table 2: Performance Time Evaluation of the Parallel Schemes with four cores

Scheme tp (hr) Speedup Efficiency Cost

Sequential 6.27 6.27

Task 5.89 1.06 27% 23.55

Data 1.74 3.61 90% 6.95

Client-Server 1.71 3.66 91% 6.85

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

5,000 10,000 15,000 20,000

E
x
ec

u
ti

o
n

 T
im

e

Number of Ballots

Vote Tallying

Vote Authenticity

Check

Voter Eligibilty

Check

Vote Validity Check

- 48 -

Figure 17 show that the task parallelism does not give good speedup in addition

to its expensive cost and poor efficiency. This scheme not able to divide the problem

into equivalent tasks, the load is unbalanced because the ZK proof check still run

sequentially and takes very long time compared to the others. It gives only a slight

speedup. In this scheme, all checks finish much earlier than the ZK proof check.

Figure 17: Parallel Implementation Speedups with Four Cores

On the other hand, the data and master/server schemes give good speedups, high

efficiencies, and low running costs. Although the master/slave scheme has the best

performance for this set of data in addition to its simplicity and directness, it is not a

scalable solution. The cost of thread creation increases as the number of threads

increases and the OS will straggle with large number of threads. The excessive number

of threads leads to performance degradation due to their competition on the limited

number of cores, available memory and other resources. Running this program on a

large set of data will crash the system when it runs out of virtual memory.

1.06

3.61 3.66

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

Task Data Master-Slave

S
p

ee
d

u
p

Parallelism Scheme

- 49 -

Therefore, writing the program with a limit on the number of threads would be

best for handling the problem in order to control the number of threads. As a result, the

proposed data parallelism scheme is the most preferable one. Beside its acceptable

performance, it limits the number of spawned threads, proportionally maps the thread

to physical cores. It dynamically balanced system as the workload is distributed among

the spawned threads in round robin manner.

5.4 Data Parallelism Speedup Evaluation

The data parallelism implementation of the verification and tallying processes is

evaluated according to the number of running cores so the number of threads

respectively. Table 3 summarizes the running cost when the number of threads is

increased. The experiment is performed on a number of ballots 𝐵 = 64,000.

Table 3: Data Parallelism Speedup Evaluation

Cores tp(hr) Speedup Efficiency Cost

Serial 19.50 19.50

4 4.99 3.9 98% 19.95

8 2.66 7.3 91% 21.32

16 1.32 14.8 92% 21.13

32 0.73 27.5 86% 22.68

Table 3 and Figure 18 shows that we can get sub-linear speedup improvement as

we increase the number of cores. The number of threads are increased to match the

number of available cores. Thus, the assigned workload becomes smaller as the number

of threads increased and reduces the overall computation time. Based on this, we can

determine the hardware specifications requirements for serving a number of ballots

within 8 hours.

- 50 -

Figure 18: Data Parallelism Speedup

On the other hand, when the number of threads is increased, the synchronization

delay becomes larger and the contention on the memory and storage increases. In

average, each thread will ask for a kiosk package 𝐾/𝑇 times. The thread waits up to 𝑇

time units till it has an exclusive access to kiosk assignment procedure. Thus, each

thread has 𝐾 overhead time. For this reason, Figure 19 shows a slight degradation in

parallelization efficiency as the number of threads increases due to the synchronization

of kiosk assignment.

Figure 19: Data Parallelism Efficiency

3.9

7.3

14.8

27.5

0.0

5.0

10.0

15.0

20.0

25.0

30.0

4 8 12 16 20 24 28 32

S
p

ee
d

u
p

Number of Cores

98%
91% 92%

86%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

4 8 12 16 20 24 28 32

E
ff

ic
ie

n
cy

Number of Cores

- 51 -

Moreover, a set of experiments are conducted to check the scalability of data

parallelism scheme based on the isoefficiency metric. Figure 20 plots speedup against

number of cores for different values of B up to 32 cores.

Figure 20: Data Parallelism Scheme Isoefficiency Metric

Table 4: Data Parallelism Scheme Isoefficiency

Core → 4 8 16 32

Ballots ↓

8K 86% 72% 68% 34%

16K 89% 87% 81% 69%

32K 94% 89% 85% 77%

64K 98% 91% 92% 86%

Figure 20 and Table 4 illustrate two things. First, for a given problem instance,

the speedup does not keep the linear increase as the number of cores increases beyond

the assigned workload. The speedup curve tends to saturate as in the instance of

processing 8,000 ballots on 32 cores. In other words, the efficiency drops with

increasing the number of cores. Second, a larger number of B yields higher efficiency

for the same number cores.

Given that increasing the number of cores reduces efficiency and increasing the

size of the computation increases efficiency, it should be possible to keep the efficiency

0.0

5.0

10.0

15.0

20.0

25.0

30.0

4 8 12 16 20 24 28 32

S
p

ee
d

u
p

Number of Cores

B = 64K

B = 32K

B = 16K

B = 8K

- 52 -

constant by increasing both the size of the problem and the number of cores

simultaneously to consider that the parallel system is scalable. For instance, in

Table 4, the efficiency of verifying and tallying 8,000 ballots on tallying machine with

four cores is 86%. If the number of cores is increased to eight, the number of ballots is

scaled up to verify and tally 16,000 ballots the efficiency remains in the average of 86%.

Accordingly, the S-Vote with data parallelism is scalable since the efficiency of

data parallel execution maintained at a constant value by simultaneously increasing the

number of cores and the number of ballots being verified.

5.5 Studying the Effect of Number of Candidates and Options

As another point of view, we study the factors that may affect the zero knowledge

proof itself. The next two experiments are performed to study the effects of numbers of

the candidates and options on the ZK proof check.

The experiment is running on 32 cores using the data parallelism scheme, number

of ballots 𝐵 = 64,000, and number of options 𝑂 = 2

Table 5: Number of Candidates Effect on ZK Proof

No. of Candidate Timep (min)

4 17.7

8 27.3

12 37.0

16 44.5

Table 4 and Figure 20 show that the ZK proof has a direct linear relationship with

the number of candidates. The ZK proof is a function of the number of votes per ballot.

This true as the ZK proof is conducted for each encrypted vote within the ballot and its

execution time proportioned to the increase number of votes within the ballots.

- 53 -

Figure 21: Number of Candidates Effect on the ZK Proof Check Time

On the other hand, the number of options per ballot does not affect the ZK proof

as only one proof is required to ensure that there is O option in the ballots for each ballot

regardless what is the value of O is. The experiment is running on 32 cores and number

of ballots 𝐵 = 64,000.

Figure 21 shows that the number of options does not affect the ZK proof time

since it runs once per ballot. Only the {O} set need to be updated to correctly perform

this check.

Figure 22: Number of Options Effect on the ZK Proof

17.7

27.3

37.0

44.5

0.0

10.0

20.0

30.0

40.0

50.0

4 8 12 16

E
x
ec

u
ti

o
n

 T
im

e
(m

in
)

Number of Candidates

0.0

10.0

20.0

30.0

40.0

50.0

1 2 3 4

E
x
ec

u
ti

o
n

 T
im

e
(m

in
)

Number of Options

- 54 -

5.6 Discussion

The cost of ballot verification is clearly dependent on number of ballots. Data

parallelism scheme offers the capability of reducing its cost for an acceptable time. The

parallel processing degree can be determined according to the election process size. For

example; Table 3 results illustrate that the kiosk package can be processed in about 11

minutes. Using data parallelism scheme, a 128 cores machine can verify and tally 2

million ballots with 16 candidates each in a country like Jordan in 5.7 hour

((2,000,000/500)*11)/(128*60)) = 5.7 hours. Larger elections require larger servers.

Faster and larger servers would decrease this time even further.

- 55 -

6. Conclusion and Future Work

In this thesis, we adopted the S-Vote homomorphic e-voting system for its e-

voting requirements satisfaction. S-Vote uses public key cryptography, hashing

techniques, homomorphic cryptography, and zero knowledge proofs for achieving the

e-voting requirements of privacy, authentication, and validation of data integrity. The

implemented vote casting, verification, and tallying processes efficiently permit testing

the corresponding technologies and processes used in S-Vote.

The implemented processes use thep Paillier homomorphic cryptography and ZK

proofs java project for encrypting the casted votes, keeping their privacy, and

decrypting their final encrypted tallies. The homomorphic cryptosystem allows tallying

the ballots without decrypting them, thus preserving the voters’ privacy. A hash table

data structure is used for creating the eligible voters list for its efficient search feature.

Standard SHA-256 hash function and RSA public key cryptography java libraries are

used for authenticating/signing the encrypted ballots and for generating the voting

receipts. These receipts prevent multiple voting and allow voters to verify that their

votes have reached the final tally.

The sequential implementation shows that the verification process has long

execution time and has a linear relationship with the number of voters. This thesis uses

parallel implementation to reduce the ballots verification time. It presents and evaluates

three parallel schemes for ballot verification and tallying: task, master/slave, and data.

It uses java-multithreading techniques to exploit parallelism of the three problem

decomposition schemes. Function decomposition gives inefficient task parallelism

scheme as it unbalances the workload among the verification checks (tasks). Thread

per request decomposition is used in the master/slave scheme. New thread is spawned

to serve each kiosk package. This scheme may crash the system as the number of ballots

- 56 -

increases for the threads competition on the limited hardware resources. Domain

decomposition is used in the data parallelism scheme in which the number of threads

is relative to the number of physical cores and the kiosk packages are dynamically

distributed across the spawned threads.

The three parallelism schemes are evaluated against the sequential one. It shows

that the data parallelism is the winner scheme in speeding up the verification process.

The analysis shows that data parallelism speedup has direct correlation with the number

of physical cores. An increase in the number of cores; number of spawned threads,

results in a decrease in the time required for performing vote verification checks. It

can verify and tally 64,000 ballots in about 44 minutes and with 86% efficiency when

using 32 threads running on the multi-core tallying machine of 32 cores. So that, we

can determine the hardware size required to verify and tally a number of ballots within

an eight hours. For example, we can verify and tally two millions ballots for a country

as big as Jordan in about 5.7 hours using 128 cores. The analysis also shows that the

ZK proof is a function of number of candidates per ballots and is not affected by the

number of options per ballot. As a result, Data parallelism scheme enhances e-voting

systems’ acceptance, reduces the costs of electoral process compared with the paper-

based ones, and complies with e-voting systems requirements.

My directions for future work, is to extend our work to a full implementation of S-

Vote system. Beside of the parallel implementation for vote validity and authenticity

checks, we would like to cover all aspects of the S-Vote proposed components including

the distributed key generation, threshold cryptography, kiosk design, and smartcard

implementations.

- 57 -

References

Abandah, G. Darabkh, K. Ammari, T. and Qunsul, O. (2014), Secure National Electronic

Voting System. Journal of Information Science and Engineering, 30, 1339-1364.

Adida, B. (2006), Advances in Cryptographic Voting Systems. Doctoral Dissertation,

Massachusetts Institute of Technology, Cambridge.

Allansson, M. Baumann, J. Taub, S. Themner, L. and Wallensteen, P. (2012), The first year

of the Arab Spring. SIPRI Yearbook, 45-56.

Andrew Neff, C. (2003), Verifiable mixing (shuffling) of elgamal pairs, retrieved from

http://theory.lcs.mit.edu/rivest/voting/papers/Neff-2004-04-21-ElGamalShuffles.pdf

Andrews G. (2000), Foundations of Multithreaded, Parallel, and Distributed

Programming. Addison Wesley, Reading, MA.

Antonyan, T. Davtyan, S. Kentros, S. Kiayias, A. Michel, L. Nicolaou, N. Russell, A. and

Shvartsman, A. (2007), State-wide elections, optical scan voting systems, and the pursuit of

integrity. IEEE Trans. Information Forensics and Security, (4), 597–610.

Barney, B. (2012). Introduction to parallel computing. Lawrence Livermore National

Laboratory, https://computing.llnl.gov/tutorials/parallel comp/.

Boneh, D. and Franklin, M. (2001), Efficient generation of shared RSA keys. Association

for Computing Machinery ACM) digital library, (4), 702-722.

Baudron, O. Fouque, P. Pointcheval, D. Stern, J. and Poupard, G. (2001), Practical multi

candidate election system. Principles of distributed computing (PODC 01), New York,

USA 1st August, 2001, 274–283.

Benaloh, J. (1987), Verifiable Secret-Ballot Elections, Doctoral Dissertation. Yale

University, New Haven.

Boneh, D. Goh, J. and Nissim, K. (2005), Evaluating 2-DNF formulas on ciphertexts.

Springer Berlin Heidelberg, 3378, 325–342.

Catalano, D. Juels, A.and Jakobsson, M. (2005), Coercion-resistant electronic elections.

Computer and Communications Security, New York, USA 7 November, 2005, 61–70.

Chapman, B. Jost, G. and van der Pas, R. (2007), Using OpenMP: Portable Shared Memory

Parallel Programming. Journal of Computer Science & Technology.

Chida, K. and Yamamoto, G. (2008), Batch processing for proofs of partial knowledge and

its applications. IEICE Trans. Fundamentals E91CA, (1), 150–159.

Clarkson, M. Chong, S. and Myers. A. (2008), Civitas: Toward a secure voting system.

Security and Privacy, Security and Privacy, SP 2008. IEEE, Oakland, CA 18-22 May, 2008,

354 – 368.

http://dl.acm.org/event.cfm?id=RE182&CFID=673745528&CFTOKEN=30198165

- 58 -

Cramer, R. Damgård, I. and Schoenmakers, B. (1994), Proofs of partial knowledge and

simplified design of witness hiding protocols. Springer Berlin Heidelberg, » Lecture Notes

in Computer Science, 839, 174-187.

Cramer, R. Gennaro, R. and Schoenmakers B. (1997), A secure and optimally Efficient Multi-

Authority Election Scheme. Springer-Verlag, Eurocrypt 97, 113 118.

Cormen, T. Leiserson, C. Rivest, R. Stein, C. (2001), Introduction to Algorithms. (2nd ed.).

MIT Press and McGraw-Hill.

Damgaard, I. and Jurik, M. (2001), A Generalization, A Simplification and Some

Applications of Paillier's Probabilistic Public-Key System. Public Key Cryptography PKC,

119-136.

Demaine, E. Lind, J. (2003), Advanced Data Structures. MIT Computer Science and

Artificial Intelligence Laboratory. Spring.

De Santis, A. Di Crescenzo, G. Ostrovsky, R. Persiano, G. and Sahai, A. (2001), Robust Non-

interactive Zero-Knowledge. Springer Berlin Heidelberg, 2139, 566-598.

Diaz, J. Munoz-Caro, C. and Nino, A. (2012), A Survey of Parallel Programming Models and

Tools in the Multi and Many-Core Era. IEEE Trans. Parallel and Distributed Systems,

(23), 1369-1386.

Donald, K. (1998), The Art of Computer Programming. (2nd ed.). Addison-Wesley.

Dongarra, J. Foster, I. Fox, G. Gropp, W. Kennedy, K. Torczon L. and White, A. (2003), The

Sourcebook of Parallel Computing. Morgan Kaufmann Publishers, San Francisco, 491–

541.

Feng, W. and Balaji,P. (2009), Tools and environments for Multicore and Many-core

Architectures. IEEE Computer Society, 26-27.

Fiat A. and Shamir, A. (1987), How to prove yourself: practical solutions to identication and

signature problems. Springer Berlin Heidelberg, Advances in Cryptology, 263,186-194.

Foster, I. (1995), Designing and Building Parallel Programs. Addison Wesley, Reading.

Fouque, P. Poupard, G. and Stern, J. (2001), Sharing decryption in the context of voting or

lotteries, 4th International Conference, FC 2000, Anguilla, British West Indies, 20–24

February, 2000, 90-104.

Goldreich, O. Sahai, A. and Vadhan, S. (1998), Honest-verifier statistical zero-knowledge

equals general statistical zero-knowledge, ACM Theory of computing, New York, USA 23

May, 1998, 399-408.

Grama, A. Gupta, A. and Kumar, V. (1993), Isoefficiency: Measuring the scalability of

parallel algorithms and architectures, IEEE Parallel & Distrib. Technol, (1), 12-21.

Groth, J. (2003), A verifiable secret shuffle of homomorphic encryptions, Desmedt, Y.G. (ed.)

PKC LNCS, Springer, Heidelberg, 145–160.

- 59 -

Groth, J. (2005), Non-interactive zero-knowledge arguments for voting, Ioannidis. Springer,

Heidelberg, Third International Conference, ACNS, New York, USA, 7-10 June, 2005, 467–

482.

Hennessy, J. Patterson, D. and Larus, J. (1999), Computer organization and design: the

hardware/software interface. (2nd, 3rd print. ed.). San Francisco: Kaufmann. ISBN 1-55860-

428-6.

Hirt, M. and Sako, K. (2000), Efficient Receipt-Free Voting Based on Homomorphic

Encryption. International Conference on the Theory and Application of Cryptographic

Techniques, Bruges, Belgium, 14–18 May, 2000, 539-556.

Huszti, A. (2011), A homomorphic encryption-based secure electronic voting scheme. Publ.

Math. Debrecen 79, 479-496.

Hwu, W. Keutzer, K. and Mattson, T. (2008), The concurrency challenge. IEEE Design and

Test of Computers, (4), 312-320.

Jacobsen, D. Thibaulty J. and Senocak, I. (2010), An MPI-CUDA Implementation for

Massively Parallel Incompressible Flow Computations on Multi-GPU Cluster,.48th AIAA

Aerospace Sciences Meeting and Exhibit.

James, M. Adler, Dai W. Richard L. Green, and Neff A. (2000) “Computational Details of

the VoteHere Homomorphic Election System”. Technical Report, VoteHere Inc, Retrieved

from http://www.votehere.net/technicaldocs/hom.pdf.

Joaquim, R., Zúquete, A., and Ferreira, P. (2003), REVS—A robust electronic voting system.

IADIS Int’l Conf. e-Society.

Johnson, K. (2005), An open-secret voting system. Computer, 38, (3), 98-100.

Karro, J. and Wang, J. (1999), Towards a practical, secure, and very large scale online

election. Annual Computer Security Applications Conf, Phoenix, AZ, 06-10 Dec, 1999,

161–169.

Kasim, H. March, V. Zhang R. and See S. (2008), Survey on Parallel Programming Model.

Proc. of the IFIP Int. Conf. on Network and Parallel Computing, 5245, 266-275.

Katz, J. Myers, S. and Ostrovsky, R. (2001), Cryptographic Counters and Applications to

Electronic Voting. Springer, Heidelberg, Advances in Cryptology (01), 78-92.

Kiayias, A. and Yung, M. (2002), Self-tallying Elections and Perfect Ballot Secrecy, Public

Key Cryptography. 5th International Workshop-PKC, Paris, France, 12–14 February, 2002,

141-158.

Kikuchi, H., Hotta, S., Abe, K., and Nakanishi, S. (2000), Distributed auction servers

resolving winner and winning bid without revealing privacy of bids. Parallel and

Distributed Systems: Workshops, Seventh International Conference, Iwate, 4-7 Jul,

2000, 307–312. IEEE.

- 60 -

Kirk, D. and Hwu, D. (2010), Programming Massively Parallel Processors: A Hands-on

Approach. Morgan Kaufmann, San Francisco.

Krste A. and et al. (2006),"The Landscape of Parallel Computing Research: A View from

Berkeley. University of California, Berkeley, Technical Report No. (UCB/EECS-2006-

183).

Lee, B. and Kim, K. (2000), Receipt-free electronic voting through collaboration of voter and

honest verifier. JW-ISC 2000, 101–108.

Lee, B. and Kim, K. (2002), Receipt-free Electronic Voting Scheme with a Tamper- Resistant

Randomizer. Information Security and Cryptology. ICISC 2002 in Lecture Notes in

Computer Science, 2002. Springer-Verlag, 389-406.

Lewis, B. and Berg, D. (1999), Multithreaded Programming with Java Technology. (1st

ed.), Prentice Hall.

Lipmaa, H. Asokan, N. and Niemi, V. (2003), Secure Vickrey auctions without threshold

Trust. Springer Berlin Heidelberg, Financial Cryptography, 2357, 87-101.

Loka,R, Feng, W. and Balaji P. (2010), Serial Computing is not dead,. IEE Computer, 8.

Mattson, T. Sanders B. and Massingill, B. (2005), Patterns for Parallel Programming.

Addison-Wesley Professional.

Nishide, T. and Sakurai, K. (2011), Distributed Paillier cryptosystem without trusted Dealer.

Springer Berlin Heidelberg, Information Security Applications, 6513, 44-60.

Paillier, P. (1999), Public key cryptosystem based on composite degree residuosity classes.

Springer, Heidelberg, 1592, 223-238.

Patterson, A. and Hennessy, J. (1996), Computer Architecture: A Quantitative Approach,

(2nd ed). Morgan Kaufmann.

Peng, K. (2005), Efficient Proof of Vote Validity Without Honest Verifier Assumption in

Homomorphic E-Voting. KIPS (Journal of Infrmation Processing System).

Peng, K. and Bao. B, (2009), Efficient vote validity check in homomorphic electronic voting.

Information Security and Cryptology, ICISC in Lecture Notes in Computer Science

LNCS, Springer-Verlag, 202-217

Peng, K. and Bao, F. (2010), Efficient Proof of Validity of Votes in Homomorphic E-Voting.

NSS (International Conference on Network and System Security), 17-23.

Peng, K. and Dawson, E. (2007), Efficient bid validity check in elgamal-based sealed-bid

Eauction. ISPEC 2007. LNCS.

Peng, k. Boyd, C. and Dawson, E. (2006), Batch verification of validity of bids in

homomorphic e-auction. Computer Communications, vol. 29, (15): 2798-2805.

- 61 -

Peng, K., Boyd, C. Dawson, E. and Lee, B.(2004), Multiplicative homomorphic e-voting.

Springer, Heidelberg, INDOCRYPT. LNCS, 61–72.

Peng, K., Boyd, C., and Dawson, E. (2007), Batch verification of validity of bids in

homomorphic e-auction, Springer Heidelberg, 209–224.

Pusukuri, K. Gupta, R. and Bhuyan, L. (2011), Thread reinforcer: Dynamically determining

number of threads via OS level monitoring Workload Characterization (IISWC). IEEE

International Symposium, 116 –125.

Rauber T. and Runger, G. (2010), Parallel programming for multicore and cluster

systems. Springer Conferrence, Berlin.

Sarath, D. and Ainapurkar, M. (2014), An improved parallel interactive Feige-Fiat-Shamir

identification scheme with almost zero soundness error and complete zero-knowledge.

IEEE, Networks & Soft Computing (ICNSC) International Conference, Guntur, 252 – 257.

Schneier, B. (2007), Applied Cryptography: Protocols, Algorithms, and Source Code in

C. John Wiley & Sons.

Schryen, G., and Rich, E. (2009), Security in large-scale internet elections: A retrospective

analysis of elections in Estonia. The Netherlands, and Switzerland, IEEE Trans. Information

Forensics and Security, 729–744.

Silverman, R. (2002), Has the RSA algorithm been compromised as a result of Bernsteins

paper?. RSA Laboratories, vol. 8.

Sottile, M. Mattson, T. and Rasmussen C. (2010), Introduction to Concurrency in

Programming Languages. CRC Press.

Stern, J. (ed.) EUROCRYPT. LNCS, 223–238.. Participants of the Dagstuhl Conference

(2007), Dagstuhl Conference in Frontiers of E-Voting.Dagstuhl ccord. Retrieved from

http://www.dagstuhlaccord.org/, 2007.

Sutter, H. and Larus, J. (2005), Software and the Concurrency Revolution, ACM Queue, vol.

3, (7): 54-62.

Sutter, H. and Larus, J. (2005), Software and the concurrency revolution. ACM Queue,

3(7): 54–62.

Thep (2011), The Homomorphic Encryption Project - Computation on Encrypted Data for

the Masses..http://code.google.com/p/thep/

Wilkinson B. and Allen, M. (2004), Parallel Programming: Techniques and Applications

Using Networked Workstations and Parallel Computers. (2nd ed.), Prentice Hall.

Yasinsac A. and Bishop, M. (2008), of paper trails and voter receipts. 41st Annual Hawaii

Int'l Conf. on System Sciences, Waikoloa, HI, 7-10 Jan, 2008, 487-487.

http://code.google.com/p/thep/

- 62 -

نية كترويجاد طرق فاعلة لعمليتي الفرز والتأكد من صحة الأصوات الإإالتحقيق في
 توازيةباستخدام التقنيات والبرمجيات الم

 إعداد

 إسراء أحمد حسن سعادة

 المشرف

 الدكتور غيث عبندة

 ملخــــــــص

تتناول هذه الرسالة موضوع استخدام أنظمة التصويت الإلكتروني لخدمة الانتخابات
ليات الدقة والكفاءة في العمبأنواعها عوضاً عن استخدام الأنظمة الورقية. توفر الأنظمة الإلكترونية

بحيث لا يتمكن أي شخص أو جهة من العبث يةمتطلبات الأمنفضلاً عن تحقيقها لل الانتخابية
 ه الأنظمة.بعمليات أو معلومات أو نتائج هذ

(لتلبيته للمتطلبات S-Voteتبنت هذه الرسالة نظام التصويت الاكتروني الوطني الآمن)
تصويت الحديثة التي تجعل ال الواجب توفرها في أنظمة التصويت الإكترونية، واستخدامه التقنيات

الإلكتروني حلاً ممكناً وآمناً، واتباع عملياته لاجراءات آمنة، وتحليه بالحفاظ على الخصوصية
 التي تضمن عدم إمكانية كشف أي صوت لأي ناخب وذلك لتلافي شراء الأصوات.

 لى فكعلى تقنية تشفير تمكنه من فرز الأصوات دون الحاجة إ S-Voteيعتمد نظام الـ

تشفير أي منها للحفاظ على الخصوصية. إن استخدامه لهذه التقنية يستوجب اعتماده على فحص
zero knowledge (ZK) proof الذي يقوم بدوره بالتأكد من صحة أصوات الناخبين دون

الحاجة إلى الكشف عن أي منها وضمان وصول الأصوات الصحيحة فقط لعملية العد النهائية.
بالحفاظ على الدقة والخصوصية إلا أن تعقيد وطول العمليات ZKفعالية فحص بالرغم من

الحسابية التي يمر بها يحد من استخدام أنظمة التصويت الإلكترونية لعمليات انتخابية كبيرة
 كالانتخابات القومية أو النيابية واقتصارها على انتخابات صغيرة مثل الانتخابات البلدية والطلابية.

ذه الرسالة إلى استخدام تقنيات الحاسوب المتوازية لإجراء كل من عملية التحقق سعت ه

من صحة أصوات الناخبين وعملية فرز الأصوات الصحيحة وذلك للتقليل من الوقت المستغرق
(. تقوم عملية التحقق من الأصوات ZK proofفي اجراء فحص التأكد من صحة الأصوات)

ص التأكد من هوية الناخب وأنه ممن يحق لهم التصويت وأنه قام على اجراء ثلاثة فحوصات: فح
(، وفحص ZK proofبالتصويت لمرة واحدة فقط، فحص التأكد من صحة تصويت الناخب)

 التأكد من صحة التوقيع الإلكتروني للناخب.

قدمت الرسالة ثلاث طرق مختلفة لتنفيذ عمليتي فحص وفرز الأصوات باستخدام التنفيذ
(والاستفادة من وحدات Java Multithreadingعدد للخيوط الخاصة بلغة البرمجة جافا)المت

(لتنفيذ الخيوط أو سلاسل Multicore Computersالمعالجة المركزية المتعددة النوى)

- 63 -

حيث يتم Task Parallelism Schemeالتعليمات بشكل متزامن. تعرف الطريقة الأولى بـ
وظائف منفصلة تقوم كل منها بإجراء إحدى الفحوصات وتنفذ بإنشاء تقسيم عملية الفحص إلى

 Master/Slaveخاصة بها. الطريقة الثانية تعرف بـ (threadمسار أو سلسلة تعليمات)

Parallel Scheme حيث يتم انشاء مسار خاص بفحص وفرز أصوات كل مركز اقتراع على
وتقوم بتوليد عدد من سلاسل Data Parallelism Schemeحدا. الطريقة الأخيرة تعرف بـ

التعليمات مساوٍ لعدد نوى وحدات المعالجة المركزية بحيث تكون كل منها مسؤولة عن فحص
 وفرز مجموعة من الأصوات التي تقاسمتها فيما بينها بشكل دينامكي ومتوازن.

 وفرزتم تمثيل عملية الاقتراع بإنشاء حزم من الأصوات وإخضاعها لعمليتي فحص

، من ثم تم تطبيق كل من طرق التنفيذ المتوازي S-Voteالأصوات وفقاً لإجراءات ومحددات نظام
 Data Parallelismوتقييمها مقارنة بالتنفيذ المتسلسل لعمليتي الفحص والفرز. أتت النتائج بتفوق

Scheme ذه الطريقة هعن نظيراتها بتحقيقها لنسب تحسين وكفاءة عالية وبأقل التكاليف. تمكنت
دقيقة وبنسبة كفاءة 44مرشحاً خلال 31صوتاً يحوي كل منها على 64,000من فحص وفرز

 نواة. 13عند استخدامها لحاسوب يحتوي على %61بلغت

 ZK من تقليل الوقت المستغرق بتنفيذ فحص Data Parallelism Schemeتمكنت

proof مع عدد نوايا جهاز الحاسوب الخاص وكانت نسبة التسريع والتحسين بعلاقة طردية
 S-Voteبفحص الأصوات وفرزها. يمكن باستخدام هذه الطريقة توسيع نطاق استخدام نظام

سبيل المثال، . علىتقليل كلفة الامتلاك والتشغيلإلى جانب استعماله في مختلف أنواع الانتخابات و
ي الفحص والفرز لدولة بحجم نواة تقليص وقت انجاز عمليت 336يمكن باستخدام خادم يحوي

 ساعة. 55,يوماً إلى 3,54الأردن من

