

INVESTIGATING SYNTHESIS OF EFFICENT HANDWRITTEN

ARABIC WORD RECOGNITION ENGINES ON FPGAs

By

Ashraf Emad Suyyagh

Supervisor

Dr. Gheith A. Abandah, Associate Prof.

This Thesis was Submitted in Partial Fulfillment of the Requirements for the

Master’s Degree of Science in Computer Engineering

Faculty of Graduate Studies

The University of Jordan

August, 2011

[ii]

 الجامعة الأردنية

 نموذج التفويض

 بتزويد نسخ من رسالتي /أطروحتي للمكتبات أوأنا أشرف الصياغ، أفوض الجامعة الأردنية

 الأشخاص عند طلبھم حسب التعليمات النافذة في الجامعة. المؤسسات أو الھيئات أو

 التوقيع:

 التاريخ:

The University of Jordan

Authorization Form

I, Ashraf Suyyagh, authorize the University of Jordan to supply copies of my

Thesis/ Dissertation to libraries or establishments or individuals on request,

according to the University of Jordan regulations.

Signature:

Date:

[iii]

COMMITTEE DECISION

This Thesis/Dissertation (Investigating Synthesis of Efficient Handwritten Arabic Word
Recognition Engines on FPGAs) was Successfully Defended and Approved on --------------------

Examination Committee Signature

Dr. Gheith A. Abandah, (Supervisor) ------------------------------

Assoc. Prof. of Computer Engineering

Dr. Mohammad Zaki Khader (Member) -------------------------------

Prof. of Electrical Engineering

Dr. Ali H. El-Mousa (Member) --------------------------------

Assoc. Prof. of Computer Engineering

Dr. Ali al-Haj (Member) ---------------------------------

Assoc. Prof. of Computer Engineering

Princess Sumaya University for Technology

[iv]

Dedication

I would like to dedicate this work to my loving family for their continuous love, support

and encouragement.

A special dedication goes to my friend Enas for standing by my side for the past years.

[v]

Acknowledgment

I would like to thank my supervisor Dr. Gheith Abandah for his patience, time and

endurance throughout the duration of this research, and for his remarks, insights and

understanding, without which I wouldn’t have made this contribution.

I am very grateful to Dr. Khalid Darabkeh, the head of the Computer Engineering

department for the time he has given me to freely focus on doing this research.

Special thanks go to Eng. Shatha Awawdeh and Eng. Enas Jaara for their cooperation and

patience in allowing me to use the labs to carry out my simulations on all labs PCs for

weeks!

Many thanks are also due to all the engineers and staff in the Department of Computer

Engineering in the University of Jordan for their cooperation, help and understanding

throughout my Master studies.

I would like also to thank Eng. Fuad Jamour for his help and hints in regard to the Arabic

OCR research.

Special thanks are due to all those unknown people who offered their help, time and

experience throughout the internet forums for they helped me overcome many of the design

issues in short times.

[vi]

TABLE OF CONTENTS

PageSubject

iii
iv
v

vi
viii

ix
xii

xiii
1
4
5
6
8
9

13
14
15
17
18
22
23

24
25
26
29

32
32

33
36
37
40
42

Committee Decision …………………………………………………….…
Dedication (if available) …………………………………….…….…....….
Acknowledgement ………………………………………...…..…..……….
List of Contents……………………………………………………......…...
List of Tables ……………….………………………………………..….…
List of Figures ………….………………………………………………….
List of Abbreviations ………………………………………………………
Abstract ……………..……………………………………………………..
Chapter 1 - Introduction ……………………………………………….…..

1.1. Motivation …………………………………………….
1.2. Objectives ……………………………………………..
1.3. Approach ……………………………………………...
1.4. Outline ………………………………………………...

Chapter 2 - Background and Literature Review……….……..……..……..
2.1. Overview of OCR (Arabic) Stages ……………………….

 2.1.1. Preprocessing …………………………………...
 2.1.2. Feature Extraction ………………………………
 2.1.3. Classification and Recognition Engines ………..

2.1.3.1 Neural Networks ………………………
2.2. IFN/ENIT Database ………………………………………
2.3. Field Programmable Gate Array Devices (FPGAs) ……...

2.3.1. FPGAs as Accelerators in Image, Audio and Video
 Processing ………………………………………..
2.3.2. Neural Networks on FPGAs ………………………
2.3.3. OCR on FPGAs: a Review ………………………..
2.3.4. Development Environment and Target Board …….

Chapter 3 - Algorithmic Analysis of Suggested Feature Extraction
 Techniques…………………………………………….….……

3.1. Suggested Algorithms ……………………………………
3.1.1. Two Dimensional Forward Discrete Cosine
 Transform (2D-DCT) ……………………………..
3.1.2. Density Features …………………………………..
3.1.3. Gradient Masks ……………………………………
3.1.4. Hu Moments ………………………………………

3.2. Algorithm Speed …………………………………………
3.3. Recognition Rate Sensitivity Analysis using Neural

[vii]

43
49

50
53
54
55

59
63
63

67
67
69
72
76
83
83
88
81
92
96
97

 Networks …………………………………………………
3.4. Algorithm Resource Usage Analysis and Estimation ……

3.4.1. Discrete Cosine Transform Hardware Cost
 Estimation …………………………………………
3.4.2. Density Hardware Cost Estimation ……………….
3.4.3. Gradient Masks Technique Cost Estimation ……...
3.4.4. Hu Moments Hardware Cost Estimation ………….

3.5. Efficiency Analysis and Implementation
 Recommendations ………………………………………..

Chapter 4 - Hardware Implementation …………..……………….….…….
4.1. Hardware Design Framework ……………………………
4.2. NIOS II Processor Based System and Custom-Module

 Communication …………………………………………..
4.2.1. Standard Peripherals……………………………….
4.2.2. Custom Peripherals ………………………………..

4.3. Feature Extraction Module Implementation ……………...
4.4. Neural Network Recognition Module Implementation

Chapter 5 - Results and Discussion ………………..…………….…….…..
5.1. Speed up Gains …………………………………………...
5.2. Hardware Resources Cost ………………………………..
5.3. Recognition Accuracy ……………………………………

Conclusions and Recommendations………………..…………...…….……
Appendix A ………………………………………………………………..
References…………………………………………………………………

[viii]

LIST OF TABLES

PAGE TABLE CAPTION NUMBER

30 Altera EP2C70 FPGA Features 1

49

The Cost of Arithmetic modules when implemented using

the Altera’s Megafunction IP cores on Cyclone II device

(using balanced mode)

2

52
Estimated Total Cost of the DCT Parallel Implementation for

a 64×256 image
3

57
Hardware Cost Estimation of Extracting the General

Moments
4

89
Wasted memory bytes due to memory alignment – values in

bytes
5

[ix]

LIST OF FIGURES

NUMBER FIGURE CAPTION PAGE

1 The Various shapes of Arabic Letters 11

2 Major Steps in an OCR System. 13

3 General Neuron Structure. 21

4 General Neural Network Architecture. 22

5 Typical Modern FPGA Architecture. 24

6 Altera DE2-70 Development Board Layout

31

7
DCT transfers the image from the spatial domain into

frequency domain
35

8 The Two ZigZag DCT feature extraction methods. 36

9
The four feature sets used when coarse windowing is used

in the density algorithm.
37

10
The set of four Gradient Mask used to decompose the

image.
38

11
The Four Extracted Images after Applying the Gradient

Masks on the word Tal Al-Ghuzlan
39

12 Proposed algorithms extraction regions 40

13 Average execution time per algorithm 43

14
Total Number of Input Features (Neuron) in the Neural

Network for the four propsed algorithms .
45

15
Recognition Rate vs Number of Hidden Layer Neurons for

Density Features using different Training Functions.
45

16
Recognition Rate vs Number of Hidden Layer Neurons for

Gradient Masks Features using different Training Functions.
46

[x]

17
Recognition Rate vs Number of Hidden Layer Neurons for

DCT Features using different Training Functions.
46

18
Recognition Rate vs Number of Hidden Layer Neurons for

Hu Moments as Features using different Training Functions.
47

19
Recognition Rates of Different Feature Extraction

Techniques for selected Number of Hidden Neurons.
48

20
Highest Recognition Rates Reported for the Proposed

Feature Extraction Techniques.
48

21
Proposed parallel hardware implementation for calculating

generic moments.
56

22
Estimated Number of Logic Elements of the Cyclone II

FPGA.
59

23 Estimated Internal FPGA Memory Resources in KB 60

24
Hardware Utilization Cost Factor for all proposed feature

extraction techniques normalized to the Density Technique.
61

25 Accuracy / Cost Efficiency Bars. 62

26 Overview of system components. 64

27 General System Flow Diagram. 66

28 System design in SOPC builder window. 68

29 System Intercommunication Graph 71

30 Typical Avalon MM signals. 72

31 Feature Extraction Module Flow Diagram. 74

32
Feature Extraction Phase Wave Diagram – Reading Image

and Extracting Features
75

33
Feature Extraction Phase Wave Diagram - Reading Image

Rows – A Closer Look
75

[xi]

34 Feature Extraction Phase Wave Diagram = Saving Features 75

35 Neural Network based recognition module flow diagram. 81

36
Recognition Phase Wave Diagram - Features and Hidden

Layer
82

37 Recognition Phase Wave Diagram - LUT and Output Layer 86

38 Execution Time of the feature extraction stage. 84

39 Execution Time of the recognition stage. 86

40
Total system execution time (Feature Extraction,

Normalization and Recognition).
87

41 Total System Cost (Logic Resources) – 88

42 Total System Cost (On- Chip Memory Resources) 89

43
Recognition rates for software implementations vs hardware

based systems.
90

[xii]

LIST OF ABBREVIATIONS

ASIC Application Specific Integrated Circuit
DCT Discrete Cosine Transform
DFT Discrete Fourier Transform
DMA Direct Memory Access
DSP Digital Signal Processor
FAT File Allocation Table
FIR Finite Impulse Response
FPGA Field Programmable Gate Array
FPU Floating Point Unit
HAL Hardware Abstraction Layer
HDL Hardware Descriptive Language
HMM Hidden Markov Models
ICDAR International Conference on Document Analysis and Recognition
IP Intellectual Property
JTAG Joint Test Action Group
LE Logic Element
LKT Loeve-Karhunen Transform
LUT Look Up Table
NCM Normalized Central Moments
NN Neural Network
OCR Optical Character Recognition
PE Processing Elements
PIO Programmed Input Output
PWL Piece-Wise Linear Approximation
RCD Row Column Decomposition
SVM Support Vector Machines
SOPC System on Programmable Chip
UART Universal Asynchronous Receiver Transmitter

[xiii]

INVESTIGATING SYNTHESIS OF HANDWRITTEN ARABIC WORD
RECOGNITION ENGINES ON FPGAS

By

Ashraf Suyyagh

Supervisor
Dr. Gheith Abandah

ABSTRACT

Arabic OCR has been an active field of research for years now and still has a lot of room
for improvement especially for handwritten Arabic. However, in contrast to other
languages, Arabic OCR has limited application domains constrained to few commercial
application packages whereas OCR of other languages has been in use in assistive
technology devices, office automation and portable applications. Due to the cursive nature
and peculiarities of the Arabic script, complex algorithms have been developed; however,
this has downgraded the performance in terms of speed affecting application domains.
Programmable hardware devices like FPGAs have successfully been employed in
accelerating image and video processing applications; they offer the possibility of parallel
implementations for many of the image processing and OCR algorithms, thus providing
faster applications and low power embedded solutions. In this research, we investigate
implementing the feature extraction and word recognition stages of the OCR system into
FPGAs; these stages are based on algorithms which will make use of the flexibility and
parallelism offered by the hardware platform. We analyze some of the most common
feature extraction techniques and report their accuracy rates over a lexicon of 50 words of
the IFN/ENIT database, estimate the hardware costs of their suggested parallel
implementation, and finally implement the best candidate as well as a neural network based
recognition engine. A final total system speed up of 200X is reported over MATLAB
implementation without sacrificing accuracy rates and using less than quarter of the logic
resources. Future work could utilize the free capacity by developing multiple feature
extraction techniques; majority voting could be applied on their classification outputs to
further increase overall recognition accuracy.

[1]

Chapter 1 - Introduction

Optical Character Recognition (OCR) is the electronic translation of printed or handwritten

text into machine encoded electronic format which can be edited, searched within and

stored more compactly. OCR research for different languages reached different stages of

development and maturity, many researchers reported near perfect accuracy results which

led to their application in many consumer products and digitization projects. Nevertheless,

actual large scale OCR based projects such as library digitization have reported practical

accuracy results ranging from 71% to 98% for printed Latin scripts as an example, this is in

contrast to the high recognition rates claimed by the commercial products, and additionally

such systems had low speeds. (Holley, 2009).

The case for Arabic character and word recognition is no different, research has been active

for few decades now, yet few applications have found their way into common use except

for very few commercial software applications. These packages are limited to only

handling printed Arabic text, Sakhr OCR (http://www.sakhr.com), OmniPage (http://www.

http://www.nuance.com) and ReadIris (http://www.irislink.com) are such examples. Though

these commercial systems claim near perfect recognition accuracy rates of 99.8% to 96%

for high-print and low-print quality respectively, these claims were refuted in the most

recent and only comparison study (Kanungo et al, 1999). It was shown that such rates are

rarely achieved with recognition rates degraded by more than 20% for non-perfect non-

clean input. Despite this result, printed Arabic recognition is not an active topic of research.

On the other hand, the case of handwritten Arabic words or text is quite different, it is still

an active and important research topic of today where new research results are

continuously reported, and since 2005 the performance of systems is compared in a bi-

http://www.sakhr.com/
http://www.irislink.com/

[2]

annualy held competition at the International Conference on Document Analysis and

Recognition (ICDAR). However, due to no complete and highly accurate open vocabulary

OCR solution for handwritten Arabic text, no commercial applications have been

introduced still (Cheriet, 2008). Recent research results are proclaiming accuracy in the

65% to 99% on limited vocabulary sets. (Margner and El Abed, 2009).

Moreover, research on Arabic OCR has mostly reported recognition accuracy and rarely

has it shown system performance metrics such as speed until recently; in the ICDAR 2009

competition, different systems competed against each other in terms of accuracy and

average word recognition speed. It was shown that the average time for recognizing a

single handwritten Arabic word ranged from ~0.115 seconds to ~17.854 seconds, most

systems reporting average times around ~2.5 seconds per word (Margner and El Abed,

2009). No information regarding the platform on which the tests were carried out was

disclosed, neither was the implementation language for the competing systems; however,

some systems utilized the C-based HTK tool or a modified variant for recognition purposes

(Al-Hajj et al, 2009) and (Graves and Schmidhuber, 2009).

As for assessing printed text recognition speed performance, no studies have been

conducted; however, (Abdullah and Marsidi, 2008) discuss actual experience and

challenges of digitizing the Arabic content of the International Islamic University Malaysia

in which Arabic content comprised 30% of library content, using Sakhr OCR and modern

Intel Xeon 2.4 GHz processors, they abandoned the content digitization project in favor of

only digitizing the title page, abstract and the content pages of Arabic texts, this is due to

the lengthy periods it took with low recognition rates which required immense human

review.

http://www.icdar2011.org/
http://www.icdar2011.org/

[3]

Unlike Arabic OCR limited application domains, their non-Arabic counterparts,

specifically Latin, have found themselves into new application areas such as assistive

technology; for example, driven by recent statistics on learning disabilities, blindness and

low vision in the U.S.A, it was shown that almost three million school children have a

learning disability, 85% of whom having reading difficulties (U.S. Department of

Education, 2007) and almost five million people in the US alone are blind or visually

impaired (Resnikoff et al, 2004), to this end, in 2010, Intel has recently introduced an

assistive solution called the Intel Reader which addresses the needs of this segment of

people (http://www.intel.com/pressroom/kits/healthcare/reader/), this Intel-Atom based

camera-equipped handheld device allows for the transform of printed English text to the

spoken word.

Similar assistive devices could possibly serve the needs of millions of people in the Arab

world and other countries where the Arabic script is used. This postulation is based on

similar statistics to those of the USA; approximately 16 million people suffer from low

vision and blindness in the Middle East Region
*
 (Resnikoff et al, 2004), and it is

extrapolated that millions suffer from reading disabilities in the Arab world (Elbeheri et al,

2009). For example, studies in Jordan show that ~1% of Jordanian students have a learning

disability related to reading and this is amongst the lowest in the Arab world (Ministry of

Education, 2010).

Beg et al (2010) suggest that hardware-based implementations of OCR can be up to 100

times faster than software-only methods. It was further suggested that algorithms which

can be efficiently and cost-effectively realized in hardware is needed; this can be achieved

by either optimizing the current software algorithms or by developing from the ground up

http://www.intel.com/pressroom/kits/healthcare/reader/

[4]

new ones suited for hardware. Unfortunately, researchers direct their efforts on devising

and optimizing algorithms which can run efficiently on standard processors, and they

neglect approaches which are feasible for hardware implementation due to algorithmic

computational complexity (McCready, 2000). Srinivasan et al (2010) have shown that

using FPGAs to accelerate preprocessing stage hotpots had a speedup of 9X over optimized

multi-threaded software algorithms running on Intel reader with the added advantage of

reduced power consumption; work on following OCR stages was suggested to be addressed

as future work.

1.1.Motivation

Rice et al, (1996) showed that high word/character recognition rates require complex

algorithms which often run at lower speeds, and we have shown in the previous section that

the practical application of commercial Arabic OCR solutions did not fulfill their job in

large scale digitization projects, this is due to their low processing speeds coupled with

their practical low recognition results. Additionally the average word recognition time of

Arabic words as of 2009 (~2.5 seconds) does not meet the timing requirements for its use

in assistive technology devices which would help millions of people; to elaborate, the

normal rate for intelligible speech is around 155 words per minute (Jones et al, 2007), that

is on average, a single word takes 0.387 seconds, such devices are required to recognize,

analyze and synthesize text in real time, yet the low recognition speed of software based

Arabic OCR systems hinders the introduction of such solutions, for the average word

recognition time alone exceeds the timing requirement to deliver synthesized speech at a

natural level.

[5]

Moreover, no portable Arabic OCR solutions for use in banking operations, postal service

automation or office automations are present in contrast to their Latin counterparts

(www.wizcom.com) and (www.irislink.com). Consequently, more complex algorithms are

still needed to improve practical recognition accuracy and at the same time perform well in

terms of speed. Also due to the accuracy/speed tradeoff, an accelerating platform could

offer the speed boost without compromising accuracy, hardware could be such a platform.

Field Programmable Gate Arrays (FPGAs) are configurable logic devices which have

successfully been deployed in real time image and video processing offering orders of

magnitude acceleration and lower power consumption (Draper et al, 2003). Since OCR and

image processing share many algorithms, and that FPGAs allow for the acceleration of

many image processing stages, this has given the motivation to explore the feasibility of

migrating some of the OCR phases into programmable hardware. Our motivation is further

driven by the fact that many of the OCR stages from preprocessing, feature extraction and

recognition are parallel in nature, and could be accelerated by using hardware

implementations. Moreover, Intel‟s recent introduction of the Atom E600C processor

series, the world‟s first Atom processor with Altera Integrated FPGAs at low price range of

61$ to 106$ allows for hybrid platforms, in such many of the OCR hotspots can be

offloaded to hardware accelerators for better real time processing bringing portable, cost-

effective, low-power OCR solutions into reality.

1.2. Objectives

In this thesis we investigate the feasibility of programmable hardware as a platform for

Arabic handwritten OCR; the main aim is to analyze some of the most commonly used

feature extraction techniques, and to determine which is more efficient in order to

http://www.wizcom.com/
http://www.irislink.com/

[6]

implement on hardware; efficiency is measured in terms of recognition accuracy and

hardware resources cost. Moreover, we aim for an implementation which would deliver

speed up factors of 20X or higher in the final system implementation. In our analysis, we

concentrate on the feature extraction stage for it is the core of the OCR problem, and is one

of the most complex stages; feature extraction has received the attention of most Arabic

Handwritten research due to the fact that finding a set of features which could sufficiently

describe and recognize a word is no easy task. (Abandah and Anssari, 2009).

1.3.Approach

A small set of 50 words is to be chosen from the IFN/ENIT database, the set size is chosen

to serve as a proof of concept, it is further constrained by the hardware resources available

in the target configurable hardware platform; initial hardware resource estimates and neural

network analysis showed that the target FPGA will only fit for a neural network classifier

with 50 output nodes. Given a higher-end FPGA device, lexicon size could be increased

though. Moreover, our application target domain is a portable solution where vocabulary

size is limited, such as banking checks, or postal services. In addition, we are addressing

the problem using a holistic approach, which works best with small lexicon size. The

rationales behind using a holistic approach over a segmentation based one are summarized

from (Madhvanath and Govindaraju, 2001):

 Segmentation based approaches add further algorithmic complexity due to

segmentation ambiguity, that is deciding where to segment the word image, and

also due to the variability of segment shape; determining the identity of each

segment.

[7]

 In general holistic approaches have an intrinsic advantage circumventing

segmentation issues and treating each word as a class unto itself, therefore holistic

approaches have the potential to model effects that are unique to the class.

 Additionally, holistic features provide information about the word that is clearly

orthogonal to the knowledge of characters in it. It stands to reason that the

introduction of this knowledge should improve recognition even if the writing is

poor.

Handwritten Arabic is chosen for it is the currently active research topic and is the more

general case. We then suggest four feature extraction techniques commonly used in

literature and implement their associated MATLAB algorithms using optimized built-in

functions whenever possible. The rationale behind our choice of algorithms is discussed in

section 3.1. All the images in the set are thinned and scaled to a fixed size of 64×256

pixels. Then, for each algorithm, the features will be extracted for all the image samples in

the set, these features will be fed into the neural network framework of MATLAB.

Sensitivity analysis is conducted by varying the number of hidden nodes of the neural

network, and it will be used to determine best topology for each algorithm based on highest

recognition rates. Next we estimate FPGA resource and memory costs of a parallel

implementation of the chosen algorithms, such estimation is based on approaches proposed

in literature with slight modifications. The efficiency of the algorithms is to be calculated,

based on which, we recommend the best candidate for hardware implementation. Both the

winning feature extraction algorithm as well as the neural network classifier will be

implemented on FPGA. An implementation in which the neural network recognition

engine would fit and adapt to the limited hardware resources of the FPGA is considered.

[8]

Different variants of the hardware and design decisions are to be implemented and

compared to each other.

1.4. Outline

This thesis begins by introducing the necessary background and current literature regarding

OCR on FPGAs in Chapter 2. Chapter 3 presents the suggested feature extraction

algorithms, their sensitivity analysis, cost estimations and efficiency analysis. System

design and implementation is discussed in Chapter 4. Results analysis follows in Chapter

5. The thesis concludes with recommendations and future work.

[9]

Chapter 2 – Background and Literature Review

Optical Character Recognition (OCR) is the electronic translation of printed or handwritten

text into machine encoded electronic format which can be edited, searched within and

stored more compactly, it allows for text reuse and easy access of material. OCR is of

significant benefit in human machine interaction as well as office automation. (Lorigo and

Govindaraju, 2006). It has been the scope of wide research for many world languages and

Arabic is no exclusion, for not only is the Arabic script the official orthography of the Arab

world but is also used in many other languages as well, Persian, Kurdish, Malay and Urdu

are such examples; thus the target of population is in hundreds of millions. (Khorsheed,

2002).

Decades ago, research began on finding methods best suited for printed Arabic numerals,

isolated alphabets and words, this research culminated in introducing commercial software

packages to address market needs with claims of near-perfect accuracy, though these

figures are most likely unattainable in practice (Kanungo et al, 1999) unless these OCRs

are specifically trained to the shapes of the words in the target documents (Saleh et al,

2005), little active research is being done in this domain (Margner and El-Abed, 2009).

Research shifted to address the more complicated general Arabic handwritten word and

text recognition which is still of great interest due to the room for further improvement.

Handwritten recognition is classified based on how the words are presented to the system

into two categories: online and offline (Khorsheed, 2002). In online recognition, the user

interacts with handheld devices by writing into an electronic screen by using special stylus,

text is recognized as being written in a real time manner, the process of writing is traced

[10]

and in every stroke the strength and sequential order of each segment is recorded (Sabaani

and El-Sana, 2009) and (Biadsy et al, 2006). On the other hand, offline recognition is based

on feeding pre-scanned documents to the system, it is the current research drive due to the

nature of Arabic handwriting which further complicates the recognition systems.

Of such complications which offline recognizers must handle and overcome is the cursive

nature of the Arabic text, the use of external objects such as diatrics, other shapes such as

“Hamza” and “Maddah”, and dots (16 of the 28 Arabic characters have dots which could

be positioned either above or below the baseline, dots count vary between one to three),

similarities in between character shapes, overlapping of characters and interconnection of

neighboring characters. In contrast to Latin characters, Arabic has no upper or lower case

categories but instead, Arabic characters have different shapes depending on their position

in the word whether at the beginning, middle, final, or standalone, for the shape of the

character is dependent on the previous one in the word (Articulation effect.) Figure 1

shows the various shapes Arabic characters can take.

Aside from the specifics above related to Arabic script, the offline recognizers must also

cope with the variety of character sizes, the unlimited variations of human handwriting, the

variety of writing instruments which affects line thickness, color, and/or stroke quality;

thick strokes might cause characters to touch or holes in letters be partially or be

completely filled, whereas thin strokes may result in broken characters. Moreover,

handwritten recognizers must deal with different slant letters as well as translation

problems; for different writers or the same writer might slant their letters differently, or not

write the letters in the same position relative to the enclosing borders of the scanned words.

(Haraty and Ghaddar, 2004). Therefore, the peculiarities and characteristics of the Arabic

[11]

font in particular and handwritten text in general make recognition quite a difficult job and

thus various approaches were considered as solutions with varying degrees of success.

The OCR problem has been traditionally categorized into two main categories, the

segmentation approach and segmentation-free (holistic) approach (Khorsheed, 2002). The

Figure 1 -The Various shapes of Arabic Letters (Khorsheed, 2002)

[12]

former adds a preprocessing stage of further dividing the word into its constituent letters,

extracting the features from each and individually recognizing the characters, the word is

then reconstructed from the identified letters. Segmentation can also refer to dividing the

word/subword into primitives or symbols which could be a character or fractions of

character (Abdelazim and Hashish, 1988). However, these approaches require the further

task of determining character boundaries which is no easy one, yet it simplifies the

recognition stage afterwards for the cursivness issue is not present anymore. (Khorsheed,

2002)

On the other hand, the segmentation free approach - also known as the holistic or global

approach - is based on the identification of the word as a whole unit without the

deconstruction and reconstruction to the constituent letters. This approach was inspired by

results in cognitive psychology which indicate that humans largely recognize words

holistically when reading text. Such approaches gained in popularity as an attractive and

more straightforward approach for it avoids the difficulty of character segmentation. It is

noteworthy to clarify that even though holistic approaches are known as segmentation-free,

the context herein is that no segmentation to the character level is considered, that is no

separate characters are recognized and combined, in fact various holistic approaches divide

the word into several grids for extracting features within.

These contrasting approaches have different applications, holistic approaches are mostly

used when the lexicon size is small as they fail to provide satisfactory results when large

lexicon is involved (Burrow, 2004), however they prove themselves useful in many

application domains where the number of words is limited, bank checks verification, city

names and zip code identification for postal services automation to list a few. Segmentation

[13]

based approaches lend themselves useful when unconstrained number of words is used and

thus can be used for general applications.

2.1. Overview of OCR (Arabic) Stages

Despite the different paradigms and approaches to the OCR problem, most follow the same

processing flow, all word images are preprocessed, and then features are extracted and

finally used in the classification and recognition stage. The following subsections further

elaborate each of these stages. Figure 2 illustrates the general steps in an OCR system.

Image acquisition

Preprocessing

(Binarization, Smoothing, Baseline Estimation, Skew/Slant Correction,

Thinning)

(Segmentation)

Feature Extraction

Classification &

Recognition

Figure 2 - Major Steps in an OCR System

[14]

2.1.1. Preprocessing

The aim of the preprocessing stage is to improve the quality of the images before further

processing; this is to compensate for either poor quality originals or poor quality scanning.

Scanned images might suffer from the presence of lines, non-character objects, and noise

which would introduce errors in subsequent steps and thus need be removed. Moreover, not

only is preprocessing concerned with removing spurious segments in the input image, but

also ensures consistency of the data presented to the next stages; that is image

normalization.

Words vary in sizes, line thickness, quality and slants; depending on the approach, many

normalization techniques tend to erode line thickness to one pixel thick representation,

known as thinning or skeletonization and different approaches were devised (Jang and

Chin, 1992), (Yu and Tsai, 1990), (Larmagnac, 1998) and (Ran et al, 1998), others find the

contour of the word, they have the added advantage over skeletonization in that no shape

information is lost for thinning algorithms have their ambiguities and might mislocalize

features (Lorigo and Govindaraju, 2006), other pre-processing steps include smoothing the

image with the intent of noise reduction, and normalizing the slant and skew in handwriting

(Khorsheed, 2002). Skew (slope) correction is based on estimating the baseline of the

image and its angle of rotation, the baseline is usually determined on the basis of the

horizontal histogram projection where the line with the maximum value in the histogram

estimates the baseline position, another slightly better baseline estimation is based on using

the Hough space (Pechwitz and Maergner, 2003), but the implementation of the projection

histogram is far simpler and straightforward and is often used. (Margner and Al-Abed,

2007) Slant correction is used with handwritten scripts or italic printed text, many

[15]

algorithms which extract the vertical or near vertical lines have been proposed (Kim and

Govindaraju, 1996). Another normalization procedure is binarization, where the grey level

of the image is binarized at a certain selected threshold.

2.1.2. Feature Extraction

Feature extraction is defined as the process of acquiring useful information from binarized

images in order to be used for classification purposes. The features to be extracted should

ideally capture the main characteristics of the character or the word which would make any

two different from each other. Consequently handwritten recognition performance largely

depends on the feature extraction approach (Haraty and Ghaddar, 2004). The most

preferable features are those which are invariant to distortions and variations, and which

have the reconstruct-ability property, that is the ability to reconstruct characters and words

from their features. Such features are sought in many applications where efficiency and

high recognition rates are required (Abandah and Anssari, 2009). In practice, selection of

the best features which will give the highest accuracies is a challenging task.

Many features have been proposed in literature for feature extraction, and they are divided

into two categories: structural and statistical. Structural features describe the geometric and

topological characteristics: local shapes such as edges, crossing points, branching points,

curvatures, end points, perceptual features such as loops, ascenders, descenders, directional

and topological contour description. Structural methods explicitly and directly capture dot

information required to differentiate between letters and thus might be the reason for the

common use of structural features in Arabic script (Lorigo and Govindaraju, 2006). They

tolerate distortion and variations in writings; they are not quite easy to extract though

(Khorsheed, 2002)

[16]

Statistical features are extracted from the statistical distribution of the image pixels and

describe characteristics of the input image based on certain measurements; this category

includes geometric moment invariants, Hu moments, Zernike moments, wavelet

descriptors, Discrete Cosine Transforms (DCT), Discrete Fourier Transforms (DFT), cell

intensities (number of pixels representing the word), derivatives of intensity, local slope

within a cell and correlation across a window of two cells. (Khorsheed, 2002)

Those features have been widely used in research for Arabic handwritten OCR, and many

researchers use a combination of such features for their final feature vector. Pechwitz and

Maergner (2003) used a three pixel wide column sliding window in respect to the direction

of Arabic handwriting from right to left to capture pixel intensities as features, they used

the Loeve-Karhunen Transformation (LKT) on each frame to reduce the vast number of

features. Lavrenko et al. (2004) used image properties such as height, width, aspect ratio as

well as an estimate of the descenders in the word coupled with discrete Fourier transform

as features to use in word recognition in historical documents. Density features were used

in (Farah et al, 2005) to identify a lexicon set of 47 Arabic words, the image was divided

into 57 variable size grids in which the number of black pixel was summed. El-Hajj et al

(2005) used density and concavity features extracted from vertical overlapping frames with

a constant width and variable heights. In (Märgner and El-Abed, 2007), a vertical frame

split into equal height zones was applied on the word skeleton graph, in each zone frame,

lengths of all lines were measured in four directions to form a 20 dimensional normalized

feature vector. Rajput and Anita (2010) used DCT along with wavelet transforms in

recognizing Indian handwritten script at block level for multi-script identification; they

used the features to identify seven types of Indian scripts as well as English text with

[17]

accuracy up to 99%. Al-Khateeb et al. (2008) used two dimensional DCT to classify words

in a lexicon of 500 Handwritten Arabic words of the IFN/ENIT database. A similar

approach was used in (Aburas and Rehiel, 2008) for Arabic letters. Abandah and Anssari

(2009) used three sets of 52 Normalized Central Moments (NCM) of orders up to nine and

49 Zernike moments of orders up to 12 to classify Arabic characters, the three sets

corresponded to features extracted from the whole letter‟s image, from the main body and

from the secondary components. Zernike moments were further used in (El-Fegh et al,

2009) and (Noaparast and Broumandnia, 2009). Central, Hu and Zernike moments were

further investigated in (El-Rube et al, 2010) using different window sizes for printed

Arabic sub-word recognition. (Ebrahimpour et al, 2011) used invariant gradient masks to

split the thinned word image into four image sets each preserving the vertical, horizontal,

left and right diagonals strokes of the word, then density features where extracted from

zones around the image center. A similar approach was used in (Su et al, 2009) for Chinese

handwritten script.

2.1.3. Classification and Recognition Engines

Classification is defined as the assignment of a certain object or event to one of many

predetermined classes, and in OCR context to assign the unknown word to its correct

match. Many classifiers have been used in Arabic OCR research for different approaches,

Hidden Markov Models (HMMs) are statistical models based on a finite set of states each

associated with a probability distribution, and the transition in between states is governed

by a set of probabilities, in OCR applications, it is assumed that different classes and the

feature vector have underlying joint probability. Support Vector Machines (SVM) uses

kernels to construct linear classification boundaries in high dimension spaces by selecting a

[18]

small number of samples of each class to build a linear discriminant function (Abandah and

Anssari, 2009). Decision Trees divide the feature space into unique regions, and the

algorithm need not test every class to find a solution making them effective when large sets

are in use, here classification follow a two-step process, initially the input vector is

assigned to one of the main groups according to some rules then the input vector is further

matched to one of the group members. In Minimum Distance classifiers distinct words are

characterized by a certain feature vector template and the role of the classifier is to assign

the input vector to one of these classes, this assignment is based on using a minimum

distance function between the input feature vector and the template, Hamming distance,

Euclidian distance and the K-mean are such minimum distance functions. Neural Networks

(NN) are nonlinear systems which are characterized by a network topology which is

decided by the characteristic of the neurons and the learning methodology. (Hamza, 2008)

The reader is referred to (Lorigo and Govindaraju, 2006) and (Korsheed, 2002) for more

elaborate discussion of each of the classifiers and their application in various Arabic OCR

research, in the subsequent subsection, we will thoroughly elaborate on the classifier in use

in this research, neural networks.

2.1.3.1 Neural Networks

An artificial neural network is a nonlinear system which can “learn” to solve complex

algorithms from training data sets, the training set consists of a set of pairs of inputs and

desired outputs, known as targets (Sarhan and Helalat, 2007), the learning procedure

utilizes examples, generalization, associative memory, and fault tolerance; Generalization

means that an NN classifies the input data to a desired value, even though input data has

not been encountered before. Associative memory creates output even when confronting

[19]

unfamiliar or incomplete data. Fault tolerance allows work to continue even when a part of

a neuron is faulty or disconnected. (Lee, 2007)

NNs have been applied successfully in many fields including speech recognition, image

processing, and adaptive control and is one of the most successful applications that has

been proposed for neural networks, this is due to their faster development times, their

ability to account of peculiarities of different handwritten styles as well as their parallel

architecture, however, they fail to classify newly introduced shapes unless the network is

retrained or even its architecture changed. (Korsheed, 2002)

NNs consist of Processing Elements (PEs) called neurons which are interconnected to carry

the network function of classification, the neurons are grouped in layers, the input layer,

one or more hidden layers and an output layer; the input layer assumes the role of

distributing the input feature vector to every node in the first hidden layer, the output layer

is the output classes of the network with each neuron corresponding to an output (in our

case a word), and the hidden layer determines the mapping ability of the network. One

layer of hidden nodes was found to be sufficient for most Arabic OCR applications (Al-

Khateeb. 2008) and (Khorsheed, 2002), still, the number of the hidden layers constituent

nodes is to be investigated for each problem as it varies depending on the input feature

dimensionality and the variance of the samples to be correctly recognized (desired outputs).

Increasing the hidden neurons number might reduce the generalization of the network; that

is the inability of the network to classify new patterns which are beyond those used in the

learning stage; this problem is referred to as over-fitting. (Haraty and Ghaddar, 2004).

[20]

Network training is the process by which the parameters of the network, that is the weights,

get optimal values with minimum classification errors, one of such methods is called back

propagation in which the input data is propagated forward through the network to compute

the system output, then the error between the desired and actual output is computed and

finally, this error is propagated backward through the network modifying weights on each

layer until the first layer is reached. Due to this, these networks are also called

“"Recurrent” as they contain feedback connections. This learning ability is the basic feature

of intelligence of the neural network as it learns by example, and changes its behavior in

response to the environment, and as iterations go by it modifies its weights continuously to

match the input set to the desired output. (Hamzah, 2008) Though backpropagation is slow

to converge and might get caught in local minima (i.e. not finding the optimal set of

weights), it is still simple, straightforward and easy to implement. (Haraty and Ghaddar,

2004).

For every neuron, IN and WN represent the N
th

 input and associated N
th

 weight of the M
th

neuron in the network, is an independent bias of the M
th

neuron. A single neuron

assumes the function of producing a weighted linear combination of its inputs, this is done

when each of the neuron inputs (IN) is multiplied by its associated weight (WN) and all the

results are summed, a bias () independent of the inputs could be added, the results are

further applied to a scaling function, more commonly known as a transfer function.

The output of the neuron is defined as

 ∑

And the scaled output as:

[21]

Many types of transfer (scaling) functions are used, they could be linear:

Or logarithmic:

Or sigmoid:

Or hard-limiter:

 {

The best transfer function to use for a problem is to be investigated empirically.

Figure 3 shows the general structure of a neuron while Figure 4 shows the general

architecture of three layered network built from the same neuron.

 ∑

I1

I2

IN

w1

w2

wN

b

Y(x)

Figure 3 - General Neuron Structure

Threshold

Output Layer only

[22]

2.2. IFN/ENIT Database

The IFN/ENIT-database is a freely available database of Arabic words for non-commercial

research. It was developed to advance the research and development of Arabic handwritten

word recognition systems and was first introduced at the CIFED02. It was the first attempt

to overcome the problem of that large databases are not available to the public, or that

researcher often used their own specific datasets which made it quite difficult to compare

research results. (Pechwitz and Maergner, 2003)

The database is in version 2.0 patch level 1e (v2.0p1e) and consists of 32492 Arabic words

handwritten by more than 1000 writers most of them selected from the narrower range of

the Ecole Nationale d‟Ingnieurs de Tunis (ENIT). The words set are those of 937 Tunisian

∑

I1

w11

W1N

B11

Y(x)

∑

W12

I2

W21

W22

B12

Y(x)

∑ IN

W2N

WN1

WN2

WNN

B1N

Y(x)

 ∑

B21

Y(x

)

 ∑

B2N

Y(x

)

w11

w12

w1N

W21

W21

W2N

Input Weights Layer Weights

Hidden Layer

Transfer

Function

Output Layer

Transfer

Function

Figure 4- General Neural Network Architecture

Threshold

Threshold

[23]

town/village names. Each writer filled one to five forms with preselected town/village

names and the corresponding post code. Ground truth was added to the image data

automatically and verified manually. In the IFN/ENIT database, words are separated and

cropped out during the development stage; they were further de-noised and binarized

saving some preprocessing steps. The database is organized in four disjoint sets for the

purpose of training and testing. It has been used by more than 30 groups and is the

reference database in the ICDAR competition (Margner and El Abed, 2009).

2.3. Field Programmable Gate Array Devices (FPGAs)

An FPGA is a grid of configurable logic fabric that can be used to design and implement

digital circuits. FPGA configuration is usually done by means of Hardware Descriptive

Languages (HDL) such as VHDL or Verilog. The main advantage of FPGAs over the

similar Application Specific Integrated Circuits (ASICs) is the ability to reconfigure the

design offering flexibility and non-recurring engineering costs. This advantage offers rapid

prototyping capabilities in favor of faster time to market, for designs can be tested and

verified in hardware without the need to go through the long fabrication of custom ASIC

design, incremental changes and modifications can be implemented in short design cycles,

moreover, the availability of high level software tools coupled with intellectual property

(IP) cores decreases the learning curve. In addition, FPGAs exceed the computing power of

Digital Signal Processors (DSP) through their hardware parallelism achieving higher

throughput.(Mirzaei, 2010) For this, FPGAs have become the most popular of

Programmable Logic Devices (PLDs) today (Mcready, 2000)

[24]

Today‟s FPGAs not only offer Configurable Logic Blocks (CLB) which include the

reprogrammable logic and the mesh of reconfigurable interconnects, but also contain on-

chip memories, DSP blocks (i.e. high speed integer multipliers), and some even embedded

processors and transceivers offering complete System on a Programmable Chip solutions.

(Altera website) Figure 5 shows a typical high level FPGA architecture, that of the Altera

Cyclone II is shown.

2.3.1. FPGAs as Accelerators in Image, Audio and Video Processing

Since FPGAs offer high computational density, a potential for a high level of parallelism,

and a pipelined and fine grained nature, they have been the target for image, audio and

video processing applications as many require specialized datapaths which can be

implemented on FPGAs for real-time applications. They have been employed in object

detection problems (Zhao et al, 2009), Face detection (Cho et al, 2009) and (Gao and Lu,

2008), Face recognition (Farugia et al, 2009) and (Timeo et al, 2010), image compression

(Agrawal, 2010) and (Jyotheswar and Mahapatra, 2007), video processing (Bhandari et al,

2010), as well as speech recognition (Fujinaga et al, 2009).

Figure 5 – Typical Modern FPGA Architecture

[25]

Unfortunately, the complex nature of the algorithms in the image and video processing

domain is even exacerbated when implemented in circuit design languages; this has

discouraged many researchers from exploiting FPGAs, while the intrepid few who do are

repeatedly frustrated by the laborious process of modifying or combining FPGA circuits

(Draper et al, 2000). Even though C-to-HDL tools have been introduced to simplify

hardware design, they fail to provide results that are close to the hand coded designs. The

space constraint is one new challenging limit that is imposed on a C-based tools,

furthermore, simple fine grained changes are not easily communicated to the compiler such

as adding input or output registers, finally it is extremely difficult to efficiently implement

control logic in the pipeline using high level languages. (Mirzaei, 2010)

2.3.2. Neural Networks on FPGAs

FPGAs are suitable hardware platform to implement NN in contrast to ASICs or DSPs in

that they preserve the parallel architecture of the network/neuron with flexibility of

configuration and modularity, whereas DSPs offer no advantages in their serial execution

nor does the hardwired ASIC allow for network topology changes. (Muthuramalingam et

al. 2008). However, the multiplication-rich NN algorithm poses quite a challenge for it is

quite expensive to implement and thereof a resource / speed tradeoff is a required design

choice.

Additionally, since FPGAs are linear devices, it is expensive to realize the non-linear

transfer functions of the neuron directly and designers often revert to approximation

methods, two practical approaches are used as presented in (Zhu and Sutton, 1999)

Piecewise Linear Approximation (PWL) of the nonlinear sigmoid or logsig functions is

[26]

often used where lines of the form y = ax+b are used to approximate the nonlinear function

with the additional cost of logic resources, yet, should the coefficients a and b be powers of

two, this will reduce the computation to shifts and adds. Look up tables (LUT) are another

alternative where samples of the function are taken around its centre and stored in the look

up table, usually in on-chip memory. The appropriate number of linear pieces to

approximate the nonlinearity of the function and the best number of entries in the LUT

(samples) have been explored in (Tommiska, 2003) and (Saichand et al. 2008).

Another issue in regard to NN implementation on FPGAs is data resolution, in his thesis

(Lee, 2007) has analyzed the effect of using different floating point units (FPU) on the

output of a small neural network, floating point numbers of sizes 32, 24, 20, 16, 14 and 12

were analyzed. It was shown that though a 16 bit FPU saved around 50% or resources, the

network will work with 5.91% error rate in comparison with employing FPU32 units, and it

was suggested that at least 18-bit FPU be used as a compromise between area and

accuracy. In the same work, it was shown that using a fixed point unit of the same bit width

as that of the FPU is better than the FPU in terms of accuracy – though not necessarily

performance - if the fixed point precision is smaller than the required precision, and only if

the range of values is known in advance to account for overflow and underflow problems,

this might be difficult if the network is in the learning mode though.

2.3.3. OCR on FPGAs: a Review

Only recently have OCR implementations emerged on hardware platforms, this might have

been delayed due to the same reasons presented in section 2.3.1. These hardware

implementations have been modest to say the least targeting some preprocessing steps only

or full systems at the character recognition level. None of the surveyed systems reported

[27]

hardware costs or speed up gains however and were only concerned with reporting recognition

rates. (Beg et al, 2008) presented a Verilog model of an artificial neural network for Arabic

character recognition, five versions of the 28-character were manually created with slight

variations in an 8x8 pixel grid to keep the system within reasonable size, the pixel grid was

used as 64 boolean input to the network, and thus no feature extraction stage was used, the

network used 28 output neurons, and eight neurons were found to satisfy the accuracy

requirement of 95% as reported in software, the system thus had 64 weights per neuron in

the hidden layer, all weights were approximated by multiplying the resulting weights from

the training stage by 100 and discarding the fractional part, since the inputs were boolean,

no multipliers were used but rather tri-state buffers for the weights were controlled by the

input pixel values. The hyperbolic tangent transfer function was approximated by means of

three linear pieces. Simulation results showed a total accuracy of 80.3%.

Moradi et al. (2010) implemented a system to recognize Farsi handwritten digits, features

were extracted from the 40x40 normalized input digit images based on two combined

methods which were implemented in parallel, first statistical information about pixel

distribution in the upper, lower, right and left halves was used as a feature, the other feature

set is based on the number of intersections certain crossing rays have; initially a central

horizontal ray is used and the number of intersections it had with the digit is stored,

furthermore, the image is divided into eight blocks using three horizontal and three vertical

rays and the intersections of each ray is counted, the total number of features of both

feature extraction methods is 11 and is used in an 11/16/10 neural network topology with

logsig transfer functions, a total accuracy rate of 96% was reported.

[28]

Toosizadeh and Eshghi (2005) designed a simple system to recognize single sized font of

Persian digits, the digits were written in Microsoft Word, printed, scanned in 300dpi

resolution, resulting digits were scaled and windowed into a 10x7 bitmap matrix. The

digits are preprocessed in hardware by removing non-connected pixels after which the

system extracted four features: the maximum number of pixels in the horizontal projection,

the maximum number of pixels in the vertical projection, the total number of digit pixels of

the image and the total number of digit pixels in the top left quarter of the image. A

predefined database for the fonts with all features is previously computed and saved. The

resulting features are compared to the database; a 0% error rate is claimed.

Razak et al (2007) designed a system for line segmentation for Jawi script (a variant of

Arabic). Line segmentation is a preprocessing step which attempts to separate lines from

each other in a document before subsequent steps could start. In the authors‟ proposal, the

system loads data into a temporary input memory, followed by a histogram calculation

process. If the histogram calculation detects drastic changes in the histogram, it will enable

a false minimum elimination function. Elimination process is done until it reaches the point

of separation or segmentation point. Following its completion, it will activate a temporary

input to accept the segmentation address. Then, it will start to transfer data into the

temporary output for line segmentation. Line segmentation of 97% accuracy was reported.

Razak et al. (2009) further continued their work and proposed an algorithm for character

segmentation. Histogram normalization and sliding windows are used for hardware

implementation of real-time off-line handwritten Jawi script character segmentation with

character segmentation accuracy of 98%.

[29]

Ahmadi et al (2005) designed an FPGA based system to recognize the printed 26 letters of

the English language, the system had a noise removal block by means of using a Finite

Impluse Response (FIR), the characters are segmented from the scanned words and

normalized into 16x16 windows, scaling is done using a bilinear interpolation algorithm.

Character classification is carried out by a nearest distance search algorithm applying the

associative memory; the normalized segmented character is matched as a 256 bit vector to

a number of reference patters using the Manhatthen distance measure and the reference

pattern with the minimum distance is consider the winner class. 99.5% recognition rate is

reported.

Another FPGA based system for printed English alphabet was presented in (Dang‟ana,

2008), the system reads a 24 bit image containing characters to be translated, mapping out

the locations of the characters, applying binarization, reading the character pixels,

classification is done based on template matching and finally the pixel block is converted

into an ASCII equivalent

2.4. Development Environment and Target Board

To carry out the investigation in this research, many software programs and utilities were

used. The batch resize tool in ACDsee Pro version 4 was used for scaling the image set to

the fixed size of 64×256 pixels. The batch rename in the same program was used for

renaming the image set into sequential numbers to facilitate image access and processing.

The 32-bit version of MATLAB R2009a (ver. 7.8.0.347) was the main software platform

for algorithm implementation; neural network code was generated using the neural network

pattern recognition tool “nprtool”, this tool is available from the neural network toolbox in

MATLAB. All software was installed on a fresh installation of a 64-bit Windows 7

[30]

Ultimate version running on a system equipped with an Intel core T6600 processor at

2.2GHz, 2MB L2 cache and a 800MHz bus, and a system memory capacity of 4GB DDR2

with 800MHz bus. Fixed point arithmetic simulation was performed using MATLAB‟s

fixed point tool, further simulations were performed using C code complied using gcc

version 4.4.3 on a fresh installation of Ubuntu 10.04 LTS. Ubuntu was installed as a guest

in a virtual environment using VMWare Workstation ver. 7.1.2.

The target hardware platform is an Altera Cyclone II EP2C70F896C6 FPGA device in the

Altera DE2-70 development and education board. The EP2C70 FPGA is a low cost, high-

volume, high performance FPGA for cost-sensitive applications. Table 1 below lists the

main features of the EP2C70 FPGA.

Table 1 – Altera EP2C70 FPGA Features

Feature Count

Logic Elements (LEs) 68,416

M4K RAM Blocks (4 kbits + 512 Parity Bits) 250

Embedded Memory (Kbits) 1,125

18-Bit × 18-Bit Embedded Multipliers 150

PLLs 4

Maximum User I/O 622

Differential Channels 262

All user hardware modules were developed in theVerilog language using behavioural

modeling on the Altera Quartus II 9.1 Web edition IDE. Waveform analysis and system

debugging was carried using SignalTap II logic analyzer which is bundled with the IDE.

Memory debugging, and run-time loading and memory reading was carried through the

Quartus In-System Content Memory Editor. The overall system was designed using Altera

SOPC Builder 9.1. Processor control code was develped using NIOS II IDE 9.1 SP1 using

[31]

the C language . Figure 6 shows the DE2-70 target board with main components

highlighted.

Figure 6 - Altera DE2-70 Development Board Layout

[32]

Chapter 3 – Algorithmic Analysis of Suggested Feature Extraction

Techniques

In this chapter, we suggest four feature extraction algorithms for possible development on

programmable hardware devices, namely, Density, 2D Forward Discrete Cosine

Transform, Gradient Masks and Hu moments algorithms. We will briefly introduce each

algorithm, the MATLAB simulation and sensitivity analysis results for each in regard to

recognition rate accuracy and number of hidden layer nodes required (network

architecture) as well as algorithm speed, we then propose for each a parallel hardware

implementation, a thorough analysis and estimation of the hardware cost follows, finally,

based upon algorithmic efficiency analysis, we conclude with suggesting the most feasible

algorithm for implementation on hardware.

3.1. Suggested Algorithms

The main rationale behind choosing the following algorithms for feature extraction in our

analysis was to find those algorithms which combine simplicity, good recognition

accuracy, and room for parallelization. The latter was to satisfy our requirement of

reducing recognition speed per word. Furthermore, we preferred those algorithms whose

computational core has been used one way or another in other application domains on

FPGAs. Consequently, our choice settled on four algorithms, DCT, Density, Gradient

Masks and Hu moments. The other feature extraction algorithms which we excluded from

our investigation are based on structural features; loops, concavities, ascenders, descenders,

intersections and word length. Even though these features are quite popular in offline

handwriting recognition, they were abandoned for the detection of such perpetual features

is often unreliable on account of wide variation in handwriting style, thus making their

[33]

accurate detection quite a challenge (Madhvanath and Govindaraj, 2001). In addition, such

algorithms further need a baseline estimation step which adds to the complexity of the

system (Noaparast and Broumandnia, 2009). Aside from the complexity of their extraction,

more than one structural feature is to be combined in one feature vector to enhance

recognition accuracy (Khorsheed, 2002). On the other hand, DCT as an example gives

good recognition results when used alone (Al-Khateeb et al, 2008). Furthermore, the

suggested algorithms are not restricted to holistic approaches but also used in

segmentation-based methods at the character level, thus making our analysis more general

(Khorsheed, 2002). The following subsections will introduce and discuss the

implementation of these algorithms.

3.1.1. Two Dimensional Forward Discrete Cosine Transform (2D-DCT)

The discrete cosine transform expresses a signal, image or a function in terms of a sum

of sinusoids with different frequencies and amplitudes, and is similar to the Fourier

transform in that it transforms the signal or image from the spatial domain to the frequency

domain. It helps separate the image into spectral sub-bands of differing importance. The

DCT reduces redundancy and focuses the energy of the image in a very limited frequency

range yielding a small number of features.

To elaborate, for an image A with width W and height H (in pixels), the corresponding

output DCT is stored in image B with the same width and height. A(x, y) represents the

pixel value at row x and column y, where A(x, y) ϵ 0, 1 which represent the pixel intensity

based on the image format. B(p, q) represents the corresponding DCT value at row p and

column q, where B(p, q) ϵ R (the set of real values). The energy of DCT image is defined

by:

[34]

 ∑ ∑

Most of the energy is focused in the DC component of the image that is B (0, 0).

For an H × W image, 2D-DCT can be expressed as:

 ∑ ∑

 (

) (

)

{

√

 √

{

√

 √

Another way of calculating 2D-DCT is the Row Column Decomposition (RCD) in which

one dimensional DCT is applied on each row of the image, and then reapplied on each of

the resulting columns. This method is widely used in many hardware IP cores, like those of

CAST, VISENGI and BARCO-SILEX. The unitary DCT for a row „a‟ of width W is

expressed as:

 ∑ (

)

{

√

√

Where b(q) is the DCT value at location q in the output row „b‟

[35]

The main feature of the DCT is that it reduces redundancy by concentrating the image

energy in the upper left corner, Figure 7 illustrates the resultant DCT of the Arabic word

Raas Al-Thra‟a (رأص انذراع), notice the energy (white dots) concentration.

Figure 7 - DCT transfers the image from the spatial domain into frequency domain. (a) Original image in spatial

domain (b) Image after DCT in frequency domain. Energy concentrates in the upper left corner (white dots)

Even though the DCT coefficients are computed for every pixel in the image with a total of

64x256 coefficients, it has been shown that the first 20 features preserve 99% of the image

energy, and that selecting more features than 35 yields no improvement in recognition

accuracy (Al-Khateeb et al, 2008). Based on this, a feature set of 36 DCT coefficients have

been chosen in our tests, which considerably reduces the number of inputs to the neural

network, and thus reducing the number of required multiplications in each neuron allowing

for a feasible implementation. DCT features extraction is based on zigzag ordering, two

orderings are usually used; Figure 8 illustrates the two methods, the technique in (a) was

adopted.

(a)

(b)

[36]

Figure 8 - The Two ZigZag DCT feature extraction methods

3.1.2. Density Features

The density technique is based on dividing the input word image into several m × n grids

(windows or zones) in which the number of black pixels is summed and used as a feature.

Different zoning or windowing strategies exist, some use fine windowing while others

coarser windowing; in fine windowing, the size of the window is small, say 8x8 or 16x16,

and thus yields a larger number of features. Coarse windowing uses larger window sizes

and thus fewer features. Windows could be square, rectangular or any shape. Moreover, the

chosen windows could interleave, or larger windows could be formed form a subset of

smaller used ones.

In our tests, we have investigated three windowing strategies for the results of the possible

window sizes and combinations are large. Yet we were mostly concerned that the window

sizes be a multiple of 8 such that it would reduce system complexity in regard to memory

alignment if this method was to be implemented on hardware. Initially 8x16 rectangular

windowing scheme was chosen resulting in 128 feature vector, then a 16x16 windowing

approach was investigated. Neither technique surpassed a 29% recognition rate using a

neural network classifier for a range of hidden nodes from 6 - 100. The variety of Arabic

handwriting styles could account for these poor results for it is highly unlikely that the

[37]

Arabic letters would fall in the same small zones for all writers. Therefore, a coarser

windowing scheme was investigated, with four different-size window blocks, 32x32,

16x64, 32x64, and 32x128 resulting in a 44 feature vector. Figure 9 displays the density

regions used and their order. This specific ordering is due to the use of the block processing

function in Matlab “blkproc”. Since many blocks are subsets of larger blocks, the density

of larger blocks can be calculated from smaller ones saving time.

3.1.3. Gradient Masks

This feature extraction technique is adapted from the work of (Ebrahimpour et al, 2011) yet

it was slightly modified such that it is simpler to implement in hardware. This technique is

based on applying four scale invariant gradient masks to the image; these masks are shown

in Figure 10 and correspond to scanning the image in vertical, horizontal and left and right

diagonals using 3x3 masks, this would result in decomposing the input image word into

four separate images where each only preserves pixels which match the mask.

Figure 9 - The four feature sets used when coarse windowing is used in the density algorithm.

[38]

Figure 10 - The set of four gradient masks used to decompose the image

For each gradient mask, a same size zeroed image array is initialized, then as the mask

scans the input image from left to right and from up to bottom by pixel width shifts, if a

matching pattern occurs, the mask is copied into the new image at the corresponding scan

locations.

To elaborate further, consider A and B as the input and output images respectively with

same width and height, A(x,y) and B(x,y) ϵ 0, 1 correspond to the pixel value at row x and

column y for both the input and output images, where x ,y are the row, column indices and

M is the 3x3 mask. An example masking procedure for a vertical mask is thus expressed as:

If (A(x,y)==M(1,2)) && (A(x+1,j)==(M(2,2)) && (A(x+2,y)==M(3,2))

then

{

 B(x , y) == A(x , y)

B(x+1, y) == A(x+1, y)

B(x+2, y) == A(x+2, y)

}

The if statement condition could be rewritten as

If (A(x,y) && A(x+1,y) && A(x+2,y)) == 1

where “1” is assumed to be the pixel value representing the colour black. This will reduce

the number of arithmetic and logical operations from five to three.

[39]

The same procedure can be expanded above for all the remaining three masks by changing

the indices to account for the mask shape. Figure 11 illustrates the results of applying all

the four masks on the Arabic Word Tal Al-Ghuzlan (تم انغشلان):

In the original technique, each of the extracted images was originally divided into eight

regions around the image center as shown in Figure 12, and the number of black pixels in

each region was counted and normalized to the total density of the word image, this

provided eight features for each image producing a final feature vector of length 32. We

have slightly modified the original image partitioning scheme which uses a triangular block

around a centralized point of origin, and instead used a similar windowing scheme as

described in section 3.1.2 above where the image was divided into eight 64x32 blocks. This

would simplify the hardware implementation and reduce resources, this is largely because

the number of image pixels needed to be stored at one time for each region is less, this

would make it much more feasible to calculate features for the m × n regions from smaller

regions similar to the approach adopted in the density algorithm. It is worth noting that no

Figure 11 - Four Extracted Images after Applying the Gradient Masks on the word Tal Al-Ghuzlan تل الغزلان

[40]

normalization was considered contrary to the original algorithm. Recognition rates

however, were quite close to the original algorithms despite our modifications.

Figure 12 - Proposed density extraction regions by Ebrahimpour et all (Left). Our proposed Regions for feature

Extraction (Right)

3.1.4. Hu Moments

Moments are image descriptors which can compactly represent certain properties of an

image, for example, the first through forth order geometric moments can be interpreted as

the area, variance, skewness and kurtosis of an image, thus providing a powerful statistical

feature set for the identification and classification of images. Different moment types have

been used in research for word and character recognition, centralized, Hu and Zernike

moments are such examples. Hu moments, which are seven in total, are in fact derived

from centralized moments up to order three, and they are invariant towards rotation,

translation and scaling. Centralized moments are themselves derived from geometric

moments. Hu moments are superior to centralized moments in that they are invariant to

rotation and scaling whereas centralized moments are only invariant to translation.

The geometric moments Mij for an H × W image are calculated as:

 ∑ ∑

Whereas centralized moments µij are derived from the following equation:

[41]

 ∑ ∑

Where

Another formula to calculate centralized moments up to order three is by using the

following set of equations:

 ̅ ̅

 ̅

 ̅

 ̅ ̅ ̅

 ̅ ̅ ̅

 ̅ ̅

 ̅ ̅ (12)

Hu moments are derived from scale invariant moments ηij, which themselves are derived

from centralized moments following this equation:

 (13)

The set of Hu moments can be expressed as follows:

 (

)(

) (

 (

)

]

 (

)(

)

[42]

 (

) (

]

 (

)

 (

]

 (

)(

)

 (

]

In this experiment, the image has been divided into eight rectangular regions of size 64×32

resulting in a total of eight bands, Hu moments were applied to each and the resulting

feature vector of size 56 was used to train the neural network.

3.2. Algorithm Speed

All the proposed feature extraction algorithms have been coded in MATLAB, all but DCT

were user coded and based on MATLAB‟s optimized built-in functions whenever possible.

The 2D forward DCT was entirely based on MATLAB built-in function. Every algorithm

was run over 100 times for a set of 8699 different images with total iterations of 869900.

MATLAB‟s built-in “tic-toc” functions were used for time measurements. The time spent

in reading the image and feature calculations was recorded and that spent for overhead as

well, the net time spent executing the algorithm was averaged over all iterations and the

results recorded as shown in Figure 13 below.

[43]

Figure 13 - Average execution time per algorithm based on extracting features from 64x256 pixels image over

869900 iterations.

3.3. Recognition Rate Sensitivity Analysis using Neural Networks

Since a lexicon size of 50 words was chosen for the reasons presented in section 1.3, we

chose to select the images with the highest mode, for the more the samples, the better the

training of the neural network will be. The images were chosen from sets A, B, and C from

the IFN/ENIT database. It was found that if we set the mode of the images count to be at

least 75, we will exactly have a set of 50 different images; the final set had a total of 8699

input images. For a complete listing of the words in the image set, the reader is referred to

Appendix A. The set was used for tuning the neural network classifier and testing

recognition rates. Default MATLAB neural network toolbox parameters were used to

divide the set into 70% of samples for training, 15% for validation and 15% for testing. The

indices of the test set was saved in order to retrieve the same test set for testing the

hardware system. Every image was preprocessed by applying thinning and pre-scaling to a

size 64×256 pixels. Initially, ACDSee batch image resize tool was used to scale the images

7.2

4.9

3.6

2.5

0

1

2

3

4

5

6

7

8

Hu Moments Gradient Masks Density DCT

A
ve

ra
ge

 E
xe

cu
ti

o
n

 T
im

e
 (

m
s)

[44]

into the target size using the “Lanczos” filter, and then MATLAB‟s “bwmorph” function

was used for thinning. The desired feature extraction method was applied to the image set

and the resulting feature vectors were used as the inputs for the neural network for training,

testing and validation.

The neural network is a feed forward back propagation neural network with three layers,

input, hidden and output. One hidden layer node was only used for it is enough for the

needs of pattern classification (Al-Khateeb, 2008). The output layer has 50 output nodes

with each corresponding to an image word of the chosen data set. The number of hidden

layer nodes varied from 6 to 100 in steps of two and recognition accuracy results were

recorded for each architecture change. The “tansig” sigmoid function was used as the

activation function for the hidden layer whereas the linear function “purelin” was

considered for the output layer. Moreover, three network training functions were

investigated, “trainscg (scaled conjugate gradient method)”, “traingdx (gradient descent

momentum and an adaptive learning rate.)” and “traingda (gradient descent with adaptive

learning rate)”. All training functions were used with their default settings. The simulations ran

for a maximum of 50,000 epochs with early stopping techniques through validation sets to

avoid overfitting. The total number of features used as input to the first layer of the neural

network is shown in Figure 14.

[45]

Figure 14 - Total Number of Input Features (Neurons) in the Neural Network for the four propsed algorithms

Figures 15 through Figure 18 illustrate the results obtained for all investigated methods. It

is obvious that best results were obtained when the “trainscg” training function was used.

Figure 15 - Recognition Rate vs Number of Hidden Layer Neurons for Density Features using different Training

Functions

56

32

44

36

0

10

20

30

40

50

60

Hu Moments Gradient Masks Density DCT

N
o

. o
f

In
p

u
t

Fe
at

u
re

s

[46]

Figure 16 - Recognition Rate vs Number of Hidden Layer Neurons for Gradient Masks Features using different

Training Functions

Figure 17 - Recognition Rate vs Number of Hidden Layer Neurons for DCT Features using different Training

Functions

[47]

Figure 18 - Recognition Rate vs Number of Hidden Layer Neurons for Hu Moments as Features using different

Training Functions

Figure 19 illustrates a comparison graph of the accuracy of all proposed feature extraction

methods for a neural network structure with various number of hidden layer nodes. It is

obvious that all techniques offer no improvement in recognition beyond 80 nodes in the

hidden layer; DCT offers the highest rates yet in close proximity to Density and Gradient

Masks. Hu moments fail to be of considerable value.

[48]

Figure 19 - Recognition Rates of Different Feature Extraction Techniques for selected Number of Hidden Neurons

Figure 20 shows the maximum absolute recognition accuracy for each of the techniques

regardless of the number of the hidden neurons.

Figure 20 - Highest Recognition Rates Reported for the Proposed Feature Extraction Techniques

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

50 60 70 80 90 100

R
e

co
gn

it
io

n
 R

at
e

No. of Hidden Layer Neurons

Hu Moments

Gradient Masks

Density

DCT

40.9%

78.1%
82.5%

88.6%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Hu Moments Gradient Masks Density DCT

R
e

co
gn

it
io

n
 R

at
e

[49]

3.4. Algorithm Resource Usage Analysis and Estimation

In this section we attempt to estimate the hardware resources for each of the feature

extraction techniques described in the previous sections. These estimations are based on the

number of Logic Elements (LEs) used by each function as listed in Table 2. The figures in

the table are exact and are obtained by building each function through the use of the

Megafunction IP cores wizard in the Quartus II IDE. These costs are fixed for all the

algorithms investigated.

Table 2 – The cost of arithmetic modules when implemented using the Altera’s

Megafunction IP cores on Cyclone II device (using balanced mode)

Function IP Core Name
Cost in Logic

Elements (LEs)

16x16 2D – DCT (CAST)
2D Forward/Inverse

DCT-CAST
1240

16x16 multiply accumulate unit (Altera) ALTMULT_ACUM 400

16x16 Integer multiplier (Altera) LPMMULT 336

32x32 integer multiplier (Altera) LPMMULT 624

M-bit Accumulator (Altera) ALTACCUMULATE M

M-bit integer adder/subtractor (No

overflow) (Altera)

LPM_ADD_SUB
M

32x32 floating point multiplier (Altera) ALTFP_MUL 962

*All above IP cores are free except for the CAST 2D DCT

All Altera arithmetic IP cores are instantiated through the MegaWizard Plug-In Manager in

the Quartus II IDE, all follow nearly the same parameterization steps. The designer has the

option to select the input data bus widths, while the output data bus width can be either

automatically determined or manually set. The designer has the option to choose if some of

the inputs are constant, or whether a multiplication function is a squaring function. One can

[50]

choose either signed or unsigned operations. Furthermore, the designer can choose whether

the desired function be implemented using the logic resources or embedded hardware

components/DSP blocks (i.e. embedded multipliers) if available. Finally, an optimization

method could be selected, that is, whether the IP core will be compiled for area or speed

optimization; a balanced optimization can also be chosen as in our case. For further details

regarding the abovementioned IP cores, the reader is referred to (CAST 2D DCT Product

Sheet, 2010) and (Altera Library of Parameterized Functions, Altera‟s website).

Furthermore, these estimations are only concerned with the computational core only and

are directly derived from the actual algorithm, that is, no mathematical algorithmic

optimization or modification has been proposed for this is out of the scope of this thesis.

However, the proposed implementation is designed such that it runs in parallel on hardware

to achieve speed advantages. In addition, all implementations are based on 16-bit fixed

point arithmetic unless otherwise noted; this is due to the cost of the floating point units

which is higher than their integer counterparts as shown in Table 2. It is assumed that the

memory interface cost for every algorithm is the same, and it is further assumed that each

module controller cost is far less than the computational core cost; therefore no cost

estimation for controller and module interfacing is carried out.

3.4.1. Discrete Cosine Transform Hardware Cost Estimation

2D-DCT implementations and optimizations in either software or hardware have been

targeting 8×8 and 16×16 block transforms with the former being the most prevalent; for

8x8 DCT is in extensive use in image processing and compression techniques. (Huang et

al, 2009), (Tell et al, 2003) and (Shan, 2008). Consequently, rarely has larger size blocks

been addressed in research, and due to this, no actual implementation exists for large size

[51]

2D-DCT to the knowledge of the author at the time of writing, thus no reference

implementation or optimization concerning large H×W DCT transforms can be used.

Nonetheless, it is worth noting that IP cores such as that offered by CAST for an up to

16×16 2D forward DCT take up about 1240 LEs with 9 embedded multipliers on our target

device: the Cyclone II FPGA, it is highly expected that due to that our proposed DCT

algorithm runs on the whole image of size 64×256, that the cost will be significantly larger.

On the other hand, since our input image is in binary format, the DCT problem will be

quite simpler to implement yet still resource exhaustive.

We will estimate the resource usage of the 64×256 DCT based loosely upon direct

algorithm implementation and extending and modifying the design presented by

(Rosenthal, 2006) for an 8×8 DCT. Though the base design applies the 2D-DCT equation

directly, the approach we propose herein is based on Row Column Decomposition (RCD),

that is to perform 1D DCT on the rows, then apply it again on the decomposed rows on a

column basis. Moreover, all cosine values are pre-computed and stored in memory (ROM)

such that the only unknown value is the binary pixel value; this will reduce the complexity

of the computational core reducing the LE utilization on expense of higher memory usage

for the cosine look up tables. We opted for applying the 1D DCT transform in two stages

rather than direct 2D-DCT for FPGA implementation because it reduces the amount of

space the cosine multiplication lookup table occupies in memory, extending the technique

in (Rosenthal, 2006) requires 256×256×64×64×2 bytes (512 MBytes) accounting for all

multiplication possibilities whereas using 1D transform reduces the look up table size to

(256×256 + 64×64) × 2 = 136 Kbytes, a 3 order magnitude reduction factor! Yet still, a 136

Kbytes closely fills the target development board internal memory.

[52]

Given that the input image has binary input pixel values, the 1D row DCT simply reduces

to summing the cosine values whenever the input pixel has the value of one and the final

value of the summation is multiplied by a constant.

To achieve higher performance, parallel computation is considered at the row level, that is,

referring to equation 9, b(q) for all q = 1 … 256 are computed in parallel. For each b(q), a

16 bit accumulator is proposed and the final summation value is multiplied by the constant

 16-bit accumulator is used for all the summed values are in 16 bit fixed point format

with one sign bit and 9 fraction bits and it has been empirically shown that no intermediate

or final summation values exceed the designated integer span of -64 to 64. The cost of a 16

bit accumulator as shown in Table 1 is 16 LEs while a 16x16 integer multiplier costs 336

LEs entailing a total cost of 256×16 + 336 = 4432 LEs per row.

In column DCT however, the new input values for b(q) are fixed point instead of binary,

consequently the accumulator will be replaced by a multiply-accumulate unit which costs

400 LEs per unit followed again by a 16 bit integer multiplier . Therefore for 64 bit long

column, and parallel computation for each bit, a total of 64×400 + 336 = 25936 LEs is

required. Therefore, the final estimated cost of the computation core is 30368 LEs. Table 3

summarizes the costs for the proposed implementation.

Table 3 – Estimated Total Cost of the DCT Parallel Implementation for a 64×256 image

 Type of Unit Cost of Unit Number of Units Needed Total Cost

Row DCT 16-bit Accumulator 16 256 4096

Row DCT 16×16 Multiplier 336 1 336

Column DCT 16×16 Accumulator

Multiplier

400 64 25600

Column DCT 16×Multiplier 336 1 336

Total Cost 30368

[53]

If maximum throughput is to be considered, all rows then columns need be computed in

parallel. Extending our discussion above to account for all rows and columns being

computed in parallel, a total cost of 6,923,264 LEs will be required. This figure surpasses

the total number of LEs of today‟s state of the art high density FPGAs which only provide

up to 1.19 million LEs (Altera, 2011). Therefore, the amount of parallelism and DCT

acceleration and performance needed is limited by the high integration costs. Eventually,

the optimum number of rows and columns to which DCT is applied in parallel is a design

parameter which need be analyzed. This is out of the scope of this thesis.

3.4.2. Density Hardware Cost Estimation

Estimating the cost of the Density technique is by far the easiest and simplest, we start by

estimating the cost of adding the elements in the 32×32 block which is the chosen basic

block, it has been found that the cost of adding 32 single bit elements in a single cycle

requires 64 LEs (no accumulator used), and to take advantage of row independence in each

block, 32 rows are processed in parallel for a total estimated cost of 2048 LEs, the total

cost of summing all resulting row summations together takes 274 LEs. Actually, to follow

the proposed algorithm in section 3.1.2, the total sum in the 32×32 block is carried out by

adding two intermediate summations, those of the upper and lower 16×32 blocks of the

32×32 block, this would make it easier to derive the second set of features whose block

size is 16×64 for the intermediate sums of the upper group block is retained for next

features set calculation. To illustrate, and referring to Figure 8, feature No. 17 of size

16×64 will be obtained by adding the intermediate upper half sums of blocks 1 and 3, and

feature 18 will be the result of subtracting the upper half sums of the two square blocks 1

and 3 from feature 17.

[54]

Assuming the worst case that the maximum sum is 1024 for a block – which is in reality

hard due to preprocessing, specifically thinning – the cost of 10 bit addition/subtraction is

10 LEs. That is for subsequent feature derivation 10 LEs are used when adding two

subfeatures, and 20 LEs if a further subtraction operation is needed.

Consequently, the total cost of obtaining the second feature group is 10×8 + 20×8 = 240,

while obtaining the third group requires only 80 LEs, Finally, the last feature group costs

40×4 = 160 LEs. All the previous feature set extractions are computed in parallel.

Thus, the total estimated cost is 2048 + 274 + 240 + 80 + 160 = 2802 LEs

3.4.3. Gradient Masks Technique Cost Estimation

It will be assumed that this technique will be implemented as follows, the original image

will be loaded into a 3 line × 256 bit internal register buffer which is being updated by

feeding it the new line of the input image, the size of three is chosen to match that of the

mask size, each mask comparison consumes 1 LE, to fully parallelize the operation, the

mask comparison will be done all in parallel requiring a total of 256 LEs per mask. The 4

masks will be all calculated in parallel such that the original image will only be loaded

once into the buffer. Consequently, a total of 1024 LEs is estimated for all masks. The

buffer itself is implemented in the M4K memory blocks internal to the FPGA not utilizing

any logic resources.

After the images are extracted, an implementation is similar to that of the density is

suggested, that is compute parallel rows in blocks and derive other larger blocks from

smaller ones, assuming features are extracted from each new image in sequence, the

expected resource usage here will be 2048 + 274 + 80 = 2402 LEs assuming the 64×32 are

[55]

to be computed from smaller 32×32 blocks (2048 for row calculation, 274 for block rows

summation and 80 for summing two 32×32 block), if the 64×32 block is considered to be a

whole unit instead of two consequent 32×32 blocks, then the resources will be

approximately double that figure. Assuming the former, the total estimated number of

logic resources is 2402 + 1024 = 3426 LEs and 4 × 256×64 + 3×256 = 66304 bits (~8KB)

of memory for holding the 4 images and the buffer.

3.4.4. Hu Moments Hardware Cost Estimation

Moments in general are remarkably known for their high computational complexity, yet

this complexity can be drastically reduced given that the input images have binary pixel

values. Given the general equation:

 ∑ ∑

And since the values of are binary, and that x and y are the pixel coordinates which

are previously known, the moment calculation problem can be reduced to a simple

conditional summation one. (Paschalakis et al, 2003) proposed a system for parallel

geometric moment computation on FPGAs based on parallel accumulator architecture, we

will base our implementation on a similar idea for the implementation of the former was

not fully disclosed. For all pixels in the 64×32 block, one can save the costs of the

multipliers and raising powers by pre-computing the x
i
 y

j
 for all values of x and y for all

required moments and store them in FPGA memory. For each row in the 64×32 block, the

associated pre-computed values can be retrieved and the values summed using

accumulators if the A(x,y) == 1, where “1” is assumed to be the pixel value of black in the

[56]

image format. For each moment, and for each row, all accumulators work in parallel.

Figure 21 below illustrates the proposed system implementation.

Estimating memory cost is straightforward: in a block we have 64×32 = 2048 values to be

pre-computed for each moment- that is the values of x
i
× y

j
 - for a total of 2048 × 6 = 12288

values for all six moments (M00 need no tables for x
i
 × y

j
always equals 1). Since the

largest input value size is attained when calculating M30 for all bits of the last row of a

block, which is equal to 63
3
 = 250047, each value will take 4 bytes in size for a total

memory size of 48 Kbytes (a size of 4 bytes was clearly chosen for memory alignment

constraints).

We show below in our worst case analysis, that 4 bytes is enough for all intermediate

values in consequent operations. The worst case analysis assumes the impossible input

where there is no word image but pure black background, that is for all values of A(x, y)

are the same and equal 1.

M00

Acc

.

M01

Acc

M10

Acc

M03

Acc

Memory

(Look up

tables)

Row Pixels (32 bits)

Figure 21 - Proposed parallel hardware implementation for calculating generic moments

[57]

 In Table 4 below, we estimate the cost for each accumulator shown in Figure 21 for the

seven required moments.

Following is a brief description of the notations found in the table:

 Maximum Sum in a Row: the maximum possible summation to be ever calculated in

any row in the block, derived from the last row of the block for it always has the

largest sum due to its high indices order. Used to estimate maximum accumulator

width.

e.g. For M00, max sum is that of last row where x
i
 × y

j
= 63 + 63 + 63 + …. 63 (32

times)

Similarly, for M21, 63
2
 × 0 + 63

2
 × 1 + 63

2
 × 2 + .. + 63

2
× 31

 Accumulator cost (LE) per Row: it has been shown in Table 1 that an accumulator

of bit width M requires M logic elements. The cost is thus based on the number of

bits needed to encode the maximum sum value retrieved in the Maximum Sum in a

Row

Table 4 – Hardware Cost Estimation of Extracting the General Moments

Mij

Maximum

Sum in a

Row

Accumulator

cost (LE) per

Row

Total

Accumulator

Cost (LE)

for all Rows

Max

Summation

in a Block

Block

Accumulator

Cost (LE)

Total

Est. Cost

per

Moment

(LE)

M00 31 5 320 1023 10 330

M10 2016 11 704 64512 16 720

M01 496 9 576 31744 15 591

M20 127008 17 1088 2731008 22 1110

M02 10416 14 896 666624 20 916

M30 8001504 23 1472 130056192 27 1499

M03 246016 18 1152 15745024 24 1176

M21 1968624 21 1344 42330624 23 1367

M12 656208 20 1280 20998656 22 1302

Total 9011

[58]

 Total Accumulator Cost (LE) for all Rows, to simplify estimation, we assume that

for all rows, same size accumulators of that of the one used in the row of maximum

sum are used. Consequently, the total accumulator cost for block = Maximum Row

Accumulator size × No. of rows (64)

 Max Summation in a Block: assuming A(x,y) is one for all the block indices, all

 are to be summed, this is used to estimate the width of the accumulator used to

sum all the resulting summations of all rows in the block.

 Block Accumulator Cost (LE): similar to Accumulator cost (LE) per Row field, the

number of bits to encode the largest block sum is used as the total width of the final

accumulator.

 Total Est. Cost per Moment (LE) equals the summation of Total Accumulator Cost

(LE) for all Rows and Block Accumulator Cost (LE) fields

In order to calculate , two dividers are needed each costing 265 LEs each. The

result is 16 bits wide based on M00, M10 and M01 sizes.

Equation set (12) is to be used in calculating the central moments, we assume now that the

inputs are in 32 fixed point formats, converting the input values to this format is ignored in

the estimation. Now, a 32×32 multiplier costs 624 LEs and a 32-bit subtractor or adder

costs 32 LEs. Based on these figures, fully parallelizing the calculation of the central, scale

invariant moments η and Hu moments is quite resource demanding and doesn‟t fit in the

target FPGA. Thus, we will use 5 multipliers and 3 adder/subtractor to obtain the µ

moments, and that these components will be reused for the Hu moments extraction

suggesting a total cost of 3216 LEs. As for the real powers in η calculation, we will assume

an implementation where the values are rounded to their nearest integer, (Bhowmik et al,

[59]

2006) have experimentally observed that this estimation produced good results for the

purpose of moment calculation in hardware.

In the end, based on the suggested parallel implementation above and the simplifying

assumption made, the total estimated cost for the moments extractor is 9011 + 265 + 265 +

3216 = 12757 LEs

3.5. Efficiency Analysis and Implementation Recommendations

In previous sections, recognition rates, speeds of serial MATLAB implementation as well

as estimated hardware costs for the four suggested feature algorithms have been discussed

and analyzed. In this section, we summarize the previous results, analyze them and suggest

which algorithm is best suitable for implementation in hardware. Figure 22 summarizes

the estimated costs for the algorithms in terms of Logic Element resources, while Figure 23

presents a similar cost analysis but based on the total memory space consumed.

Figure 22 - Estimated Number of Logic Elements of the Cyclone II FPGA to be used in implementing the

Computational Core of the proposed algorithms based on the analytical analysis of chosen hardware

implementation.

[60]

Figure 23 - Estimated Internal FPGA Memory Resources in KB to be used in implementing the Computational

Core of the proposed algorithms based on the analytical analysis of chosen hardware implementation. The 2KB

image size is included in the figures.

To simplify analysis, we will normalize and combine the figures above. Unfortunately no

reliable reference was found to properly dimension the memory cost to the logic elements

cost for Altera has discontinued the practice of announcing equivalent gate measures

(Altera website, 2006), therefore, no precise and accurate information on the number of

transistors each has or the area they occupy in the Cyclone II FPGA to properly scale and

compare total cost. However, according to Leventis et al (2005), in the Cyclone EP1C20

device, the logic element fabric had five times as much area as that of the memory block

area where the device has around 20,060 LEs and 294,912 bits of memory. Given that

Cyclone and Cyclone II devices have nearly similar LE architecture (Altera Cyclone and

Cyclone II handbooks), and since our device has 68,416 LEs and 1,152,000 bits of

memory, and drawing on the LE to memory area ration in the Cyclone EP1C20, the

assumption undertaken herein was that the LE area cost is ~5 times higher as that of

memory. Figure 24 illustrates the normalized estimated hardware costs for all proposed

[61]

feature extraction methods in terms of logic and memory resources, the total normalized

estimated hardware cost after adjusting the memory resource cost is also illustrated.

Figure 25 illustrates the efficiency of the proposed techniques for feasible migration onto

FPGA hardware. The efficiency was derived by dividing the maximum recognition rate of

the proposed technique over the normalized total cost. It is clear that the density is superior

to the other techniques and therefore our FPGA implementation for the OCR system will

be based on extracting density features.

Figure 24 - Hardware Utilization Cost Factor for all proposed feature extraction techniques normalized to

the Density Technique. Memory cost is adjusted by a factor of 1/5 to in order to properly estimate the total

hardware cost.

[62]

Figure 25 - Accuracy / Cost Efficiency Bars

[63]

Chapter 4 - Hardware Implementation

In this chapter we present the general hardware design framework where we introduce the

main system components, system interconnections, and module communication. We

further elaborate on the flow of operations of the general system. Finally the design of the

OCR system modules is discussed with detailed flow of operations presented for both of

the feature extraction as well as the neural network recognition based engine. Design

options and justifications are introduced whenever necessary. The overall system

architecture was designed using Altera‟s SOPC builder while the OCR modules were

implemented in Verilog using behavioral modeling.

4.1. Hardware Design Framework

In this design we sought an implementation in which the role of the PC is minimum aside

from device programming. It is only restricted to displaying intermediate and final stage

results for debugging purposes on the IDE terminal window, all required operations from

acquiring the images in the test set, loading them into the FPGA, the two phases of the

OCR system, as well calculating overall recognition rate is implemented on FPGA.

A software hardware co-design approach was considered in our implementation to meet the

timing constraints of the thesis and simplify design options; a NIOS II processor core was

considered which is responsible for managing image transfer, reading back the outputs of

the neural network, and calculating the final recognition rate of the test set. Its role was

extended to be the main controller of the system, that is issue start signals for the next

phases and monitor their phase end signals for appropriate system management.

[64]

A design in which the test image set is stored on an external SD-CARD was preferred over

transferring them through serial communication from the PC. This is because the SD-

CARD drivers are readily available from Terasic (the DE2-70 Board manufacturer) and

that Altera offers the option to access files on the PC in debug mode only which is not a

convenient solution (Altera, 2011 “Developing Programs Using the Hardware Abstraction

Layer”). A system timer module is required for system drivers operation and thus included

in the design. Figure 26 outlines the main system components.

The JTAG UART is used to configure the FPGA for the requested system design above,

download the compiled C user codes and libraries of the NIOS II processor to the SDRAM,

as well as serve as the communication interface between the hardware design and the IDE

Figure 26 -Overview of system components

NIOS II Processor

Feature Extraction Module Recognition Module SD CARD controller

Module

2KB

Memory

Image

Storage

Features and

Weights Memory

32MB SDRAM
Program and Data Memory

JTAG
UART

Tansig Look

Up Table

Memory

System

Timer

[65]

terminal for monitoring and debugging purposes at all levels of the design. The system

starts by searching for and mounting the SD CARD, reading the FAT tables and loading

the first image to the internal memory blocks, since the images are all binary, a total of

2Kbytes of data are transferred for fixed image sizes of 64×256 bits. The NIOS II processor

signals the feature extraction module to start by setting the start bit inside the module

control register, this register is internally checked at every clock cycle and reset by the

module when the system finishes the task at hand. The resulting feature vector is stored in

the “Features and Weights” memory. When the start bit of the feature extraction module is

polled as zero, which means that the module has finished its designated task, the NIOS II

processor enables the recognition module; the final output vector of the recognition module

is internally stored in the module and is read by the NIOS II processor. The database

documentation demands that recognition is done by returning the associated zip code of the

Tunisian city/town name rather than the word itself (http://www.ifnenit.com/); therefore the

neural network output vector is used to look-up a zip code. The retrieved zip code is

compared against the actual zip code of the image – to simplify the process; the four initial

characters of the image name correspond to the actual zip code. Records are kept for the

total number of words read and those correctly recognized from which recognition

accuracy is obtained. Figure 27 describes the abstract high level operation flow of the

system except for the feature extraction and recognition modules which are outlined

separately in subsequent sections.

[66]

 Figure 27 - General system Flow
Diagram

Start

Initialization

Is SD-Card

Mounted?

Read FAT16

Is SD-Card

empty?

Read

Image

Save Image into

FPGA on-chip

Memory

Feature

Extraction Stage

Classification

and Recognition

Stage

Is last image

file loaded

Compute

Accuracy

End

Y

Y

N

N

N

[67]

4.2. NIOS II Processor Based System and Custom-Module Communication

A NIOS II processor system is equivalent to a microcontroller or “computer on a chip” that

includes a configurable soft-core processor, a combination of peripherals and memory

(either on-chip memory or interfaces to off chip memory) on a single chip. The NIOS II

processor comes in three versions, fast (NIOS II/f), standard (NIOS II/s), and economical

(NIOS II/e); the former is the fastest with up to 218 Dhrystone MIPS when it runs at a

maximum frequency of 185MHz. It further adds advanced features like dynamic branch

prediction, hardware divide and multiply operations, as well as instruction and data caches.

Despite consuming more logic resources (around ~2.5X higher than the economical

version), it was adopted in our design for faster image loading and overall operation. In our

design, the processor runs at a clock frequency of 100MHz. The economical version is the

only free version of the NIOS II family though.

4.2.1. Standard Peripherals

Altera provides a set of peripherals commonly used in microcontrollers, such as timers,

serial communication interfaces, general-purpose I/O, SDRAM controllers, and other

memory interfaces for immediate use in system designs. These peripherals can be readily

instantiated in the System on Programmable Chip (SOPC) builder tool. Each of these

peripherals has a set of control registers through which the NIOS II system manages the

operation of the peripheral, Hardware Abstraction Layer (HAL) drivers are provided to

facilitate reading and writing to these registers by hiding complexity and implementation

details. Figure 28 shows the Arabic OCR NIOS II based system with all component

interfaces, base addresses and interrupts.

[68]

Figure 28 – System design in SOPC builder window. System modules, interfaces, clock sources, base address(es)

and interrupt vectors are shown. The base address(es) represent(s) the address which serves as the reference point

to read/write the internal registers in slave modules, or memory locations in a memory block.

This system is based on a NIOS II/f processor as the system‟s core, the processor was

configured with default settings of 4Kbytes instruction cache, 2Kbytes data cache with

32Bytes data cache lines. JTAG level 1 debugging was used. SDRAM is the main system

memory, the processor reset and exception vectors are changed such that they point to

addresses in SDRAM at their designated default offsets. The default SDRAM profile and

timing is used as provided by the SOPC builder. A phased looked loop is used to feed

system components with their different clocks, the NIOS II processor, system peripherals

and the feature extraction module run on 100MHz (sysCLK), the SDRAM clock is at the

same system frequency albeit having a lag of -3ns as required in Altera‟s datasheets. The

[69]

recognition clock is set at FMAX of 45MHz, the maximum achieved for the recognition

module. A JTAG UART module is automatically added to allow for system

interconnection with the PC for program download and debugging purposes. A timer is

also added to the system as required by system drivers, timer settings are kept at their

default values: a 32 bit timer with a period of 1 second and custom preset where all register

options are enabled. Interface to the SD-CARD is implemented through four I/O lines: a

clock, control and two data lines. All modules memory blocks are internal to the FPGA and

are implemented using M4K blocks. Finally, to measure the time spent by software

functions, a performance counter is used; however, this timer works in conjunction with the

system timer module, and it requires changing its settings such that the timer now has a

period of 1μs with a Full Featured register set.

4.2.2. Custom Peripherals

User-built modules integrated into the NIOS II based processor systems are called custom

peripherals, they can be used to implement a certain function in hardware as means of

hardware acceleration modules. They can take benefit of parallel implementation the

hardware can offer for performance-critical scenarios. Moreover, they allow for the added

advantage that the NIOS II processor is free to perform other functions in parallel while the

custom peripheral operates on data. In our design, the Feature Extraction module and

Recognition module are such examples of peripheral modules. Similar to standard

peripherals, these modules can have certain control registers to which the processor could

read and write to manage their operation.

[70]

The OCR peripherals need extensive access to the memory modules, for they need to read

the image data, features and weights. One possible implementation is to use the

Programmed Input Output (PIO) mode where the NIOS II processor accesses the memory

address space on behalf of the modules and performs data transfers to or from the custom

peripheral through interface registers, this approach, however, is slow and requires module

dependency on the existence of such a processor. Instead, we opted for a design in which

the OCR modules could directly access memory on their own; this is accomplished through

the Avalon Bus System Interface.

In fact, all standard peripherals are interconnected with each other and the processor

through the Avalon Interface, which is a set of defined interfaces for use in both high-speed

streaming and memory-mapped applications. There are six different interface types, of

which we used the Avalon Memory Mapped Interface (Avalon-MM) which is an address-

based read/write interface typical of master–slave connections. For other types of interfaces

the reader is referred to (Altera, 2010, Avalon Bus Specifications). Since the Feature

Extraction and Recognition Modules need access memory directly, the two have been

designed to have an Avalon master interface, and since both need be accessed for

debugging purposes as well as internal control and status registers access by the NIOS II

processor, both have been designed to have their own Avalon slave interface with their

own internal address space. By having both Avalon master and slave interfaces, the feature

extraction and recognition modules could communicate directly with each other or through

memory. Figure 29 shows the system interconnection fabric and the Avalon interface

architecture.

[71]

Moreover, the Avalon bus system facilitates system design by handling multiple master

accesses through arbitration. Even though a DMA controller could provide the similar

functionality, its application has been abandoned in favor of providing the custom modules

with their own master interfaces, for usually the DMA is controlled by the system

processor through the processor‟s own Avalon master interface, thus is due to our

preference to design fully independent OCR modules to serve as IP cores on their own

without the need to rely on external modules and/or processors. Moreover, since the OCR

stages need work on different data sets at specific instances, extra communication overhead

between the modules and the processor is required to coordinate memory access through

DMA to provide the modules with the required data, suggesting more complexity. In

addition, the DMA controller can only accommodate quadwords (128 bits) widths transfers

System Interconnect Fabric

Nios II

Processor

Avalon MM

- Master

Feature Extraction Module

Avalon MM -

Master

Avalon MM -

Slave

Recognition Module

Avalon MM -

Master

Avalon MM -

Slave

Off Chip

Memory

Controller

 Avalon

MM - Slave

UART

 Avalon

MM - Slave

On Chip

Memory

Avalon

MM - Slave

Timer

 Avalon

MM - Slave

Figure 29 - System intercommunication Graph. Avalon-MM Master interfaces allows for the communication with

Avalon-MM slave interfaces. The straight black line represents the modules the NIOS II processor communicates

with. The dashed line represents the modules which the OCR modules communicate with.

[72]

(Altera, 2009, Altera Quartus II 9.1 Handbook) while the Avalon interface can

accommodate up to 1024 bits, this last feature was used in one of the several recognition

module implementations, in which the memory interface of the internal on-chip weights

memory was set to this maximum and consequently up to 64 16-bit features were read in

one cycle offering the highest speedup. Figure 30 shows the typical signals used in Avalon

MM interface.

4.3. Feature Extraction Module Implementation

As concluded in the preceding chapter, the density algorithm was the most suitable for our

proposed OCR system implementation, and thereof this subsection will present its

hardware implementation as described in section 3.4.2.

Once the image transfer is through, the NIOS II processor writes the internal control

register of the feature extraction module, this being checked at every clocked cycle serves

as the enable signal for the module. The image is divided into 16 blocks with fixed size of

Avalon MM – Master /
Slave interface signals

clk
reset,
avs_s0_address,
avs_s0_read,
avs_s0_readdata,
avs_s0_write,
avs_s0_writedata,
avs_s0_readdatavalid,
avs_s0_waitrequest,

*avm_m0 for master

Figure 30 - Typical Avalon MM signals

[73]

32x32 bits. The starting addresses of the blocks are internally stored inside the module, the

module starts by acquiring the rows of the first block through its memory interface, the

initial block address is set, memory transfer signals are adjusted and the value is transferred

and saved, the address is adjusted by increments of 32 bytes. After the end of the block

rows transfer, the bits of all rows are summed up in two parallel stages, rows 0 -15, and

rows 16-31, the features stored are those of the total sum and the upper block half sum. The

procedure is repeated for all the remaining blocks, with change of the block address to

account for the feature order. All remaining features from feature sets two to four as shown

in Figure 8 are computed in parallel in one cycle from the feature set obtained thus far and

of the intermediate sums saved. Finally, all features are orderly and sequentially saved in

the feature and weights memory block. The control register is reset to flag operation end.

Since the module was coded in Verilog behavioral modeling, it is easier to describe

implementation and workflow details in a flowchart format; Figure 31 illustrates the

simplified workings of the feature extraction module while Figure 32 through Figure 34

show multiple wave diagrams illustrating the functionality of the module.

[74]

Start of Cycle

Is module operation

enabled?

Is read module

registers signal

enabled?

Is write module

registers signal

enabled?

Initialize

module

variables

Is read block

mode enabled?

Is extract

features mode

enabled?

Is save features

mode enabled?

Update to next

block address

Disable read

block mode

Enable feature

extract mode

Extract feature

from block

All 16 base block

features extracted?

Extract

remaining 28

features from

base features

Disable extract

features mode

Enable save

features mode

Disable save

features mode

Clear Module

enable signal

Write all

features

into

memory

Read all

rows in

the block

Read

required

register

Write

required

Register

Y Y Y

Y Y Y

Y

Figure 31 - Feature Extraction module flow diagram

[75]

Figure 34 – Feature Extraction Phase Wave Diagram - Saving Features (1) The save feature signal is asserted by

the controller. (2) in the next clock cycle, the system asserts the memory write signal . (3) the features are written

to the Avalon master datawrite lines. (4) The corresponding write address, the features are sequentially saved.

Figure 30 - Feature Extraction Module Flow Diagram

1 4

2

Figure 32 - Feature Extraction Phase Wave Diagram – Reading Image and Extracting Features as seen on the

Signal Tap Logic analyzer. (1) As long as the read signal is set, the image is being read row by row in every block,

when the signal is reset, a feature is being computed. (2) The module extracts features for the base 16 blocks. (3)

All remaining 28 features are extracted in parallel in one cycle time from base features (4) The saveFeatures signal

is asserted after all features have been computed, features are stored in on-chip memory.

Figure 33 - Feature Extraction Phase Wave Diagram - Reading Image Rows – A Closer Look. For each row the

corresponding address is set, notice that for the first block, addresses are 0x20 wide apart, for we are transferring

non sequential rows (all rows are on top of each other), and since the image is 256 bits wide, block rows are 32

bytes apart, thus addresses are adjusted by increments of 0x20.

1 2

3

4

3

[76]

4.4. Neural Network Recognition Module Implementation

Due to the multiplication-intensive nature of the neural network and the limited logic

resources, we adopt an implementation where all the functionality of the network is based

on one neuron. Based on our analysis in Chapter 3, we are to use architecture with 44 input

neurons, 80 hidden layer neurons and 50 output neurons corresponding to the word set in

hand. The total number of multiplications required is thus 44 × 80 + 80 × 50 = 7520, since

all our numbers are represented in 16 bit fixed point format, and the cost of 16x16 signed

integer multiplier is 624 LEs, clearly a fully parallel implementation for all neural network

nodes is infeasible. Moreover, even if one neuron is considered, parallelizing the

multiplication process is quite logic consuming with an estimated 49920 LEs for an

implementation of one output neuron occupying around ~73% of chip logic resources.

Consequently, we have considered using the embedded multipliers (a specialized fast 9x9

or 18x18 multipliers built in many Altera FPGAs with their own area and resources

excluded from those available to the designer in the logic fabric), the Cyclone II EP2C70

FPGA provides 300 embedded 9×9 multipliers, or the same multipliers can be reused as

18x18 blocks offering 150 multipliers. Such multipliers are quite fast for they can provide

results in one cycle time. For our 16×16 operations, a total of 44 + 80 multipliers are

needed. Therefore, the hardware architecture we adopt herein is to design a serial neural

network yet with all arithmetic operations within the neuron done in parallel.

Initially, the first stage of the neural network is to acquire the 44 features stored in the

features and weights on chip memory, all inputs of the neural network are to be normalized

to the range of -1 and 1 as required in order for the network to work correctly. This will be

[77]

done in the same cycle as the features are being acquired saving time. The equation for

normalization which is the used in MATLAB in the neural network is the one used in the

“mapminmax” function:

 ×

 – 1 (16)

Where = 1, = -1

The normalization parameters Xmax and Xmin vary for each feature. Yet it has been found

that for the image set used in this research that Xmin = 0 for all features and Xmax remains as

the only unknown. This reduces the formula to

 -1 which can be rewritten as X×P -1

where P =

. However, this formula needs readjusting to account for the fixed point

format used; a similar formula which directly results in 16-bit signed fixed point value is:

 × Round(

 –

) – 2
N

 (17)

where N is the number of the fixed point fractions, and rounding is to the nearest integer,

since our implementation uses 9 bit fractions, the above equation changes to:

 × Round(

) – 512 (18)

However, to reduce the error of rounding, the equation is adjusted to

 ((

)) M – 512 (19)

[78]

The maximum value of M was found to be 14 given that the maximum size of

multiplication inputs is 18 constrained by the width of the embedded multiplier, and by the

minimum value between all values of Xmax of all features, so the final normalization

equation used is:

 ((

)) >>14 – 512 (20)

All the values of (

) are pre-computed in advance and stored

internally inside the module. Normalization is applied in the same cycle the value is

retrieved from memory requiring no extra overhead.

So for every neuron in the hidden layer, all the associated 44 weights are retrieved from

memory, normalized and multiplied by the input features using the embedded multipliers in

parallel, the results are adjusted to account for the fact that we are using 16 bit fixed point

multiplication by discarding the least significant 9 bits and only retaining bits 9 through 24,

the results of all multiplications are summed.

The hidden layer uses the tansig transfer function, many implementations have been

considered to approximate its nonlinearity as described in section 2.3.2, mainly piecewise

linear approximation (PWL) and look up tables (LUT). We have chosen to approximate the

tansig function using LUT to save on logic resources for the internal memory resources are

plentiful in comparison. Moreover, one could make use of the odd symmetry of the

function to cut the table size to half. Our investigation has shown that the values from 0 to

3.875 captures all the nonlinearity of the function while larger values than 3.875 map to 1.

The negative values have the exact dynamic range of the tansig function but in negative.

[79]

Due to function saturation, we were only concerned to use a table which captures the input

range of -3.875 to + 3.875, with a 16 bit signed fixed point representation with 9 bits

fraction, and thus number increments by 1/512, a table size of 3970 elements (7940 bytes)

is implemented. Moreover, when the input value falls beyond the specified range, that is

larger than 3.875 or less than -3.875, the appropriate tansig result is returned.

All this can be easily achieved based on the sign bit value; the sign of the resultant

summations for all hidden layer neurons is saved, and the sums which are negative are 2‟s

complemented. The now positive results are added to the LUT base address to retrieve the

approximated tansig value.

Now, all retrieved values are either retained as is or 2‟s complemented to account for the

original sign of the summed result of the neuron. These new values are the inputs to the

output layer neurons, which in the same manner retrieves each neuron associated weights,

now numbered 80, multiplied with the layer inputs, adjusted as before and summed. Since

the output layer transfer function is linear with y = x, the resultant sums for every neuron is

the final outputs of the recognition phase. Figure 34 illustrates the flow of operation in the

neural network based recognition module.

Six different implementations for this module have been analyzed, where the Avalon MM

– Master interface width was varied from16, 32 (Default) to 64, 128, 256, 512 and 1024

bits, and adjusted the feature and weights memory bus width to match accordingly. This

will allow us to retrieve 4, 8, 16, 32 and 64 feature / weights in one cycle respectively.

However, the number of embedded multipliers for normalization purposes will increase

accordingly. Only implementations with 64, 128, 256 and 512 bus width aside from the

[80]

default one were implemented for the 1024 requires additional 64 embedded multiplier

exceeding device capacity, yet its performance was projected mathematically extending the

results from the other implementations. Figure 35 illustrates the simplified workings of the

recognition module while Figure 36 and Figure 37 show multiple wave diagrams

illustrating the functionality of the module.

[81]

Figure 35 - Neural Network based recognition module flow diagram – Read Weight2 and multiply2 modes are exactly
the same as read weights1 and multiply1 albeit the multiply2 step terminates by disabling the module

Start of Cycle

Is module operation

enabled?

Is read module

registers signal

enabled?

Is write module

registers signal

enabled?

Initialize

module

variables

Is read features

mode?
Is read Weight1

mode?

Is multiply1

mode?

Normalize

Features

Disable read

features mode

Enable read

Weights1 mode

Update Weight

block address

Disable read

weights1 mode

Enable

multiply1 mode

Multiply features by

weights and sum results

Read all

features

Read

required

register

Write

required

Register

Y Y Y

Y Y Y

Store sign of

sum value for

neuron

2's complement

if negative

Processed last

neuron in

hidden layer?

Enable read

weights1 mode

Enable Look Up

table mode

Y

Disable multiply1

mode

Is Look up table?

Read Table

values

Adjust sign

Disable Look up

mode

Enable Read

Weights2 mode

Read

Weights

Y

Y

[82]

Figure 34 - Neural Network based recognition module flow diagram

Figure 37 - Recognition Phase Wave Diagram - LUT and Output Layer (1) Once all the hidden layer weights have

been multiplied by the features and summed, the “tansig” transfer function is applied through the use of a look up

table (2) The values of the LUT, the output of the hidden layer nodes are now inputs to the output layer, they are

multiplied by their associated weights in each neuron and summed.

2

1

1

2

Figure 36 - Recognition Phase Wave Diagram - Features and Hidden Layer (1) Once the control signal for the

recognition module is set, it starts reading the features from the features memory, every features is normalized in the

same cycle as it is fetched (2) The features are the inputs to every hidden layer neuron where they are now multiplied

with their associated weights and summed. The sign of each sum is retained and negative sums and two’s

complemented before all sums are used to access the “Tansig” look up table.

[83]

Chapter 5 – Results and Discussion

In the previous chapter, the hardware implementation of the FPGA based OCR system was

introduced. This chapter discusses the results of this implementation and its variants where

we show the speed up gains, total FPGA resources cost as well accuracy results due to

hardware design choices and approximations. MATLAB execution speed is reported based

on a system equipped with an Intel core T6600 processor at 2.2GHz, 2MB L2 cache and a

800MHz bus, system memory is 4GB DDR2 with 800MHz bus, on a fresh installation of

64-bit Windows 7 Ultimate version. Simulation was conducted over 100 times for a set of

8699 image for the speed test; averaged results are shown for MATLAB while exact

figures are reported for the hardware implementation. Hardware system timing is measured

using the SignalTap II logic analyzer IP core, the total number of cycles from the setting of

the module‟s start bit until it is reset is fixed for every image; then the total number of

cycles is multiplied by the reciprocal of FMAX to get the total execution time, the time is

rounded to the nearest integer and displayed in μs. Accuracy results are based on a test set

of 1304 word images (15% of the total image set), this set was not used in the training step.

5.1. Speed up Gains

Figure 38 illustrates the total execution time for the feature extraction stage; FPGA

execution time is calculated when feature extraction module run at Fmax = 100 MHz. It is

clearly obvious that the FPGA is faster than the MATLAB implementation.

[84]

The recognition module was implemented in three variants each differing in the Avalon

MM data bus width and the corresponding features and weights memory width, a system

bus width of 16 bits was used, it was expanded to 256 and 512 bits, the maximum choice of

1024 was not tested for the total number of required multipliers for normalization exceeded

device capacity. Though 256 and 512 bus widths allow for the transfer of 16 and 32

features/weights in one cycle, we used two implementations of 16 and default 32 bit bus for

single data transfer. It was found that maximum system frequency is 45MHz. Moreover, it

is found that the recognition system speed can be easily calculated by:

Recognition cycles = ceil (16

 + 1) + ceil (16

 + 1) × HN + (2 × HN + 1) + ceil

(16

 + 1) × ON + ON (21)

Where IN is the number of input features, and equals the number of associated

features in hidden layer

Figure 38 - Execution Time of the feature extraction stage

[85]

HN is the number of hidden layer nodes

ON is the number of output layer nodes,

B is the bus width,

And the constant 16 is the size of the fixed point representation of the values.

The first term refers to the total number of cycles needed to read the features, the second

term to the number of cycles needed to transfer all hidden layer weights, the third to the

number of cycles to access the look up table and perform parallel multiplication, the fourth

term to the number of cycles to acquire all the features of the output layer and the final

term to the number of cycles need to multiply and sum all output layer neuron inputs and

produce a results.

For our architecture where IN = 44, HN = 80 and ON = 50, this equation is expressed as:

Recognition cycles = ceil (

 + 1) + ceil (

 + 1) × 80 + 161 + ceil (

 +

1) × 50 + 50 (22)

Execution time is expressed as:

Recognition time = Recognition cycles ×

 (23)

[86]

Figure 39 shows the execution times of the neural network implementations in MATLAB

as well as that of FPGA, the values obtained for the MATLAB implementation are based

on the neural network toolbox implementation. Different FPGA implementations with

various bus widths are shown. Opposed to the other FPGA implementations, the results for

FPGA1024 are numerically computed based on equation 22.

It is clearly obvious that implementation in which the values are independently acquired

offer no speed up advantages over the software approaches, only when the bus size and

interface to the features and weights memory is expanded that speed up gains are noticed.

Using bus width of size 256 bits offer around 9X increase in performance over one with

effective 16 bit data transfers (implementation of default bus of 32, used to carry 16 bit

data). Doubling the bus size increases gain by ~30%.

Figure 39 - Execution Time of the recognition stage. FPGAxxxx is an implementation in

which xx refers to the bus width in bits.

[87]

Figure 40 show the total system execution time. It is obvious that though MATLAB‟s

neural network was quite fast, yet its total execution time is dominated by the totally slow

feature extraction stage even though its implementation was based on MATLAB optimized

built in functions.

Final speed tests show that our hardware implementation can be up to ~200 times faster

than that of MATLAB. Moreover, when features/weights are loaded into the recognition

module in chunks of 64 values, total speed ups of ~9X are recorded over that where one

value is acquired in each cycle. In addition, doubling the data bus width in the recognition

module from 256 to 512 to 1024, improves total system speed up by a factor of ~20% in

each transition.

Figure 40 - Total System Execution Time (time (Feature Extraction, Normalization and

Recognition)

[88]

5.2. Hardware Resources Cost

Figure 41 shows the total system costs. Of the 68416 logic elements, our OCR system

occupied 16971 logic elements, around 24.8% of the available logic fabric. The

recognition, feature extraction and NIOS II occupy most of the system resources while

other supporting modules and interface modules constitute the rest.

Total system memory usage is nearly quarter that of the total available on chip memory as

illustrated in Figure 42, these values are based on using a memory with 16-bit memory

width, for when an Avalon MM bus width is increased, and the memory word length is

adjusted accordingly, some memory space is wasted due to alignment issues.

Figure 41 - Total System Cost (Logic Resources) – figures might not sum up to 100% due to rounding

[89]

To elaborate further, for both the features and the hidden layer weights per neuron, the total

number of values to be stored is 44. For a memory width of 256, three memory locations

are required to save these features, however, these three locations can withhold 48 values,

and the last 4 words are unused due to memory alignment. The same discussion can be

extended to the locations needed to save the output layer weights and to account for the

other memory location widths. Total wasted memory space due to memory alignment for

the different implementations is reported in Table 5.

Table 5 – Wasted memory bytes due to memory alignment – values in bytes

Total

memory

Features

space

waste

Hidden

Layer

Weights

waste

Output

Layer

Weights

waste

Total wasted

memory

space

Percentage

waste

FPGA256
*
 15776 4×2 4×80×2 0 648 4.11%

FPGA512 19968 20×2 20×80×2 16×50×2 4840 24.24%

FPGA1024 23168 20×2 20×80×2 48×50×2 8040 34.7%

*FPGA64 and FPGA128 have the same figures as FPGA256

Figure 42 - Total System Cost (On-Chip Memory Resources) – figures might not sum up to 100% due to rounding

Image Buffer
6.15%

NIOS II cache
24.1%

UART Buffer
0.38%

Tansig Look Up Table
16.4%

Features / Weights
memory
45.48%

Free Device
Memory

76.9%

Other
23.1%

[90]

5.3. Recognition Accuracy

In our previous discussion, we have shown that the density algorithm recognition rate was

82.5%; this result was obtained using MATLAB simulations with floating point notation

on a test set of 1304 word images (15% of the total image set). On the other hand, our

hardware implementation was based on 16-bit signed fixed point format with 9 bit fraction

size, and due to this, our representation is less precise with a precision of 1/512. Moreover,

we have further had some approximations in the normalization process. Figure 43 shows

the recognition results of our system on the same test set above, to analyze the effects of

our approximations on accuracy, we had two different implementations for the neural

network input normalization stage; the first was implemented in C code and executed by

the NIOS II/f processor, the software implementation used equation 16 which is the exact

one used in MATLAB, this allowed us to measure the effects of using a fixed point based

algorithm over one with a floating point, which resulted in a drop by 1.3% in overall

accuracy. In the other implementation, the normalization stage was done in hardware, it

Figure 33 - Recognition rates for software implementations vs hardware based systems

[91]

used the approximation in equation 19; the total drop of overall accuracy is 2.8%, which

suggests that

approximating the normalization process itself has an effect of reducing the accuracy by

1.5%.

Though having the approximation process in software results in slightly higher recognition

accuracy, it was not used for it is much slower, on a 100MHz NIOS II/f processor, the total

speed of the normalization step alone was about ~1.7ms which would lower the speed of

our systems by a 2 orders of magnitude!

Unfortunately, we were unable to compare our results to any of those reported in literature

due to the following reasons; initially we have used a subset of the IFN/ENIT database

constrained by the topology of the neural network to be implemented and device capacity,

most research however reports results over the whole set. Secondly, there exist few modest

implementations of OCR on programmable devices for interest has gained momentum only

recently and most of these implementations either target the preprocessing steps or are

limited to the digit/characters level. Finally, this work is the first of its kind to ever

approach the problem of recognizing whole words of the Arabic language using FPGAs

based on a holistic paradigm and thus no reference exists for comparison purposes.

[92]

Conclusions and Recommendations

The primary goal of this research was to investigate the feasibility of programmable

hardware devices, namely FPGAs to serve as a platform for Arabic handwritten OCR

system offering the advantage of speeding up some of the OCR algorithms by 20X factor

or higher, this goal was sought by selecting a subset of the common feature extraction

methods used in handwritten Arabic OCR research, namely DCT, Density, Gradient Masks

and Hu moments. Sensitivity analysis was conducted for all algorithms of choice to

determine the highest accuracy rates as well as the neural network topology. The analysis

was based on recognizing a subset of 50 words of the IFN/ENIT database. Moreover,

algorithmic speed analysis based on a MATLAB implementation with results averaged

over hundreds of thousands of iterations was conducted. It has been found that DCT had

the highest recognition rates at about 88.6% and the fastest speed, closely followed by

density (2
nd

 highest speed) and gradient masks while Hu moments fell far behind either in

accuracy or speed. The former three algorithms had no further improvement when the

number of hidden neuron exceeded 80.

Hardware cost estimates in terms of logic resources and on-chip memory blocks consumed

based on parallel implementations of the algorithms, it was found that DCT was the most

resource intensive, followed by Hu moments. Density on the other hand was shown to be

the most resource friendly. Efficiency of the algorithms was defined in terms of recognition

accuracy and hardware costs, the high accuracy of the DCT algorithm was amortized by its

high implementation costs leaving the Density algorithm as the best candidate to be

implemented on the reconfigurable fabric. A fully parallel DCT implementation for large

H×W images could fit or exceed the capacity of modern FPGAs.

[93]

The hardware implementation was based on a NIOS II system in which a soft processor

assumed the function of the main system controller as well as the responsibility of image

transfer into the on-chip memory from the storage source. The feature extraction and the

recognition stages were implemented as separate modules with their own interfaces to

memory for faster access and module independency. The feature extraction stage was

responsible to fully extract the density features from all the 44 defined regions and store

them in their respective memory space. The recognition module, a neural network with a

44/80/50 topology was implemented, due to the limited resources of the logic fabric, a

sequential network was built instead where a single neuron assumes the role of all the

neurons in the network. However, all arithmetic computations within the neuron were

performed in parallel; that is all the multiplication operations in between neuron inputs and

weights were carried out in parallel.

All neural network inputs are normalized to the range of -1 and 1 as the features were

acquired from memory, furthermore, all values were to be in the 16-bit signed fixed point

format (S/I/F = 1/6/9) for this will allow us to use the embedded integer multipliers (DSP

Blocks) without any further logic costs. Four variations of the recognition module were

implemented were each had the ability to transfer features / weights in different chunk

sizes. It has been found that the FPGA‟s feature extraction module had over 600X speed up

factor over the MATLAB algorithm; whereas a modest speed up of ~1.67X over MATLAB

was obtained in the recognition module and only when the data was collectively

transferred. However, total system speed up was ~200X. Though recognition rate accuracy

was 82.5% for MATLAB‟s implementation, the effect of all hardware approximations was

not that significant, and the sacrifice of some accuracy was minimal in favor of the speed

[94]

up gains, accuracy slightly dropped to 81.2% due to the fixed point approximation and

further to 79.9% when an approximated normalization equation was used. The total system

consumed less than quarter of the Cyclone II EP1C70 device. Based on these results the

initial objectives of the research are satisfied.

The main contributions are that this research serves as the first of its kind to have

implemented an OCR system for the recognition of Arabic handwritten words based on a

holistic approach on FPGAs. We showed speed up gains over the same algorithms when

executed in software on a Core 2 Duo processor running at 2.2GHz. This is encouraging

for higher speed ups are expected should such a system be implemented in assistive

technology or handheld devices where low cost processors such as Intel Atom or ARM are

used.

Future Work

This work could be expanded further by analyzing different feature extraction techniques

as well as use combined features of different algorithms for higher classification accuracy.

Different sets of classifiers could also be investigated or even multi-classifier approaches.

This research assumed preprocessed images as the input to the system; several

preprocessing techniques could be investigated, such as baseline estimation, thinning or

scaling. We were only concerned with the simple holistic approach; the more general

segmentation-based model would serve as logical upgrade to the system for the use with

unconstrained vocabulary. Moreover, one could make use of the free remaining space by

adding extra modules; one such addition is a speech synthesis core, this could serve as a

prototype for future assistive technology devices for the Arabic language. We can further

[95]

utilize this space to implement other feature extraction techniques and use majority voting

techniques on their classification results to achieve higher recognition rates.

[96]

Appendix A – Word Listing in the used Image Set

No. City Name Zip Code Mode No. City Name Zip Code Mode

 152 3097 ربايغ طيسي ظاٌز 26 142 1000 تووض انقباضت الأطهيت 1

9انمىشي 2 ووفمبز 7تطاويه 27 255 1013 3263 254

 77 4021 انقهؼت انظّغزى 28 124 1064 حي الإوطلاقت 3

 261 4022 أكّوزة 29 79 1089 تووض انشابي 4

مارص 02انمزواقيتّ 5 118 4061 طوطت إبه ذهسون 30 261 1116

 263 4134 شمّاخ 31 87 1134 شوّاط 6

 102 4159 انشوامد 32 124 1140 انفحض 7

 85 4174 حاطّي انجزبي 33 101 1251 انشزايغ 8

 258 4283 وقتّ 34 269 1273 طيسي ابزاٌيم انشٌاّر 9

 140 5120 أولاز انشّامد 35 105 1293 قزػت انىاّظور 10

81انمحارسة 36 128 1294 انفكّت 11 5154 217

 245 6051 وحّال 37 108 2064 جبم انزّطاص 12

6انمىشي 13 89 6060 انحامّت انجىوبيتّ 38 242 2091

 257 6080 مارث 39 144 2112 طيسي أحمس سرّوق 14

 264 6122 انسذّاويت 40 122 2114 طيسي بو بكّز 15

 103 6130 حي انظلاح 41 252 2116 سووّش 16

 101 7060 أوتيك 42 85 2169 انزقوّبت 17

 143 7063 أوتيك انجسيسة 43 80 2214 حامّت انجزيس 18

 108 7064 بو سرّاػت 44 232 2239 شتاوة طحزاوي 19

 136 7072 مىشل بورقيبت انىجّاح 45 269 2241 رأص انذراع 20

 260 7141 انهواتت 46 242 2261 طبؼت آبار 21

 269 8061 طيسي انظّاٌز 47 88 3013 مزكش قظّاص 22

 261 9112 انفايض 48 285 3024 شؼّال 23

 286 9174 انزضّاع 49 262 3063 انرهيج 24

 83 9180 أولاز حفوّر 50 81 3077 زوّار انهوّاتً 25

	Thesis cover - tables - abstract
	Thesis

