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ABSTRACT 

 

 
Nowadays, Arabic documents are often found undiacritized in schools, universities, 

workplaces, books, and the media. This style is common to cut the typing costs. As a 

consequence, many words become ambiguous because they could have many diacritization 

variants with same word consonants.   Native speakers can generally infer the correct 

pronunciation and the intended meaning of a word from their intuitive knowledge of the 

language and from the context. But non-native speakers, children, and Arabic software 

applications such as Automatic Speech Recognition (ASR), and Text-to-speech (TTS) 

systems need full diacritized texts. 

 

This problem has been tackled by many researchers who tried to restore the missing 

diacritics automatically using rule-based, statistical, and hybrid approaches. Each of the 

first two approaches has its own advantages that when combined together could give better 

performance.  

 

In this thesis, we are investigating a novel approach of utilizing recurrent neural 

networks (RNN) to restore diacritics using a sequence transcription network of deep 

bidirectional LSTM (long short-term memory). This statistical approach has reduced the 

error rates over the best published results. We have also implemented three other hybrid 

schemes where in each one; we add linguistic information to the input sequences to help 

RNN transcription learning. Several correction techniques are also applied to the RNN 

results which contributed in enhancing the diacritization accuracy rates even better. 

 

The linguistic supplement to the RNN leads to a state-of-the-art hybrid 

diacritization model. Using LDC’s Arabic Treebank Part 3 corpus, we achieve a diacritic 

error rate of 2.74%, and a word error rate of 9.66%. When ignoring the diacritization error 

in the last letter of each word, we obtain a diacritic error rate of 1.24%, and a word error 

rate of 3.95%. 
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 CHAPTER I 

Introduction 

In this preliminary chapter; the importance of automatic text diacritization is 

discussed along with potential applications, a necessary demonstration of diacritization 

types is presented next, research objectives and contributions are then manifested, and 

the rest of the thesis is finally outlined. 

1.1 Importance of Arabic Text Diacritization  

The modern written language (Modern Standard Arabic, MSA) is derived from 

the Classical Arabic (CA) with new words added to it continually to meet the present 

and future needs of the language to express the evolution in science and society 

(Farghaly and Shaalan,2009). 

MSA texts are normally written without diacritics. Native speakers can infer the 

correct pronunciation of the script from the context and the speaker’s knowledge of the 

grammar and lexicon of the language. However, the lack of diacritics causes ambiguity 

for non-native speakers and children in their educational beginnings.  

Diacritic marks are used to add phonetic information to the alphabet letters.   

These marks could be written above or below the letter.  Diacritics can be divides into 

three categories: short vowels, nunation, and syllabification marks (Azmi and Almajed, 

2013). Table 1 goes over the basic diacritization marks. The three short vowels could be 

placed on any constant of the word. Nunation diacritics or sometimes named double 

case ending diacritics are only placed on last letter of the word. The Shaddah, or 

germination diacritic, is pronounced as consonant doubling and could be combined with 

any other diacritics. Sukon is used to show that the letter does not contain vowels. The 
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Buckwalter transliteration of diacritics is also mentioned because we are going to use 

Buckwalter morphological analyzer in this work and it has special transliteration for 

Arabic letters and diacritics. 

Table  1. The basic Arabic diacritics 

Diacritic category Diacritic name Shape Pronunciation 
Buckwalter 

Transliteration 

Short vowels 
Fatha   َ  /a/ a 
Damma   َ  /u/ u 

Kasra   َ  /i/ i 

Nunation 

Tanween fath   َ  /an/ F 

Tanween damm   َ  /un/ N 

Tanween kasr   َ  /in/ K 

Syllabification 

marks 

shaddah   َ  consonant doubling 

doubling 

~ 

sukon   َ  absence owelv o 

 

Language software applications benefit a lot from a diacritized text to correctly 

process data, Automatic Speech Recognition (ASR), and Text-to-speech (TTS) systems 

are few examples. These systems are the bases of many industrial applications like 

Interactive Voice Response (IVR) systems and screen readers for the blind and many 

other NLP applications (Anastasiou, 2011). Moreover, when searching for an Arabic 

word, many unrelated words would appear in the search results because of the lack of 

diacritization. Also, machine translation from and to Arabic need a diacritized text to 

get the correct translation. 

The lack of diacritical marks not only add ambiguity to the Arabic text but it also 

make the same effect on all other languages that uses the Arabic alphabet including 

Persian, Kurdish,urdu, and jawi (Lewis, 2009). 

Many people criticize the Arabic writing system and accuse it with being 

difficult to learn with. They claim that in other languages “you read to understand” but 

in Arabic “you need to understand in order to read”. Also they asked for Arabic writing 

that have complete match of Arabic speech. The lack of diacritization is the cause of 
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these problems (Abu-Hamedeh, 2009). This is a serious problem especially if you know 

that most MSA texts are not diacritized mainly to increase the typing speed. In addition 

to this, placing diacritics manually is inefficient and time consuming method. 

For all the reasons mentioned above, we realize that computer processing of 

Arabic text depends heavily on diacritized text and is no longer marginal or minor thing. 

1.2 Diacritization Types: Lexemic and Inflectional 

The problem with the undiacritized Arabic script is that the written word may 

not be correctly pronounced depending on the orthographic representation only.  The 

reason behind this is the language’s highly inflective and derivative nature where many 

words can be generated from the same combination of consonants with maybe different 

meanings and different pronunciations. Diacritics are needed to indicate the intended 

pronunciation.  

The diacritics can be classified into two kinds (Habash and Rambow, 2007): 

lexemic diacritics (morphology-dependent), and inflectional diacritics (syntax-

dependent).  

Lexemic diacritics distinguish between lexemes that have the same spelling. For 

example, the word (علم) has six possible morphological dictionary forms of 

diacritizations each of them has different meaning. Table 2 reviews the six forms that 

were generated using Buckwalter Morphological Analyzer BAMA (Buckwalter, 2004). 

The words pronunciations are written using Buckwalter transliteration (see Appendix 

A). The diacritics generated here are considered semantic-dependent. POS tags are used 

to distinguish between the different solutions. The first solution:  َِعَلم Ealima is tagged as 

3rd Person Masculine, Singular, Perfective Verb;   َِعُلم Eulima for 3rd Person Singular, 

Passive Verb, and    لَّم  Eal~ama for the Intensifying, Causative, Denominative Verb. The ع 
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three last solutions are tagged as nouns and they differ by meaning. 

Table  2. Possible diacritized dictionary forms of علم 

No. Script  Pronunciation(BW) meaning 

ل م   1  Ealima he know ع 
ل م   2  Eulima be known ع 

لَّم   3  Eal~ama teach ع 

ل م 4  Eilom knowledge/knowing ع 

ل م 5  Eilom science/study of ع 

ل م 6  Ealam flag ع 

 

On the other hand, the same word may have different syntactic rules depending 

on its role in the parsing tree of its sentence, and is typically expressed on the final 

consonant of a word.  The diacritics generated here are called inflectional diacritics and 

are considered syntax-dependent. It varies according to the nominal case or verbal 

mood. A single wrongly predicted case ending has the capacity to completely reverse 

the intended meaning. Ayah 28 from Fatir chapter in the holly Qur`an in Figure 1 is a 

clear example on the importance of correct diacritization. The first sentence implies the 

syntactic diacritic of the target word   َّّالل  -which is an “object” in the parsing tree – is 

“Fatha”, while the second one implies the syntactic diacritic of the target word    ّالل– 

which is a “subject” in the parsing tree – is “Damma”. The wrong diacritics on the last 

consonant of the words (ّالل) and (العلماء) completely reversed the meaning.  

 

 

 

 

 

 

 

 

 

Figure 1. An example on the significance of inflectional diacritization 
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1.3 Research Objectives and Contributions 

As we mentioned before, the human brain of native Arabic speakers can infer 

the correct pronunciation and the intended meaning of the script. It has been found that 

the human brain is a Recurrent Neural Network (RNN) consisting of neurons with 

feedback connections that can learn many behaviors. This was the motivation for us to 

try testing a novel approach of using RNN to automatically diacritize Arabic text 

(Pineda, 1987). 

We can assemble the human brain with artificial RNNs using general computers 

which can learn sequence processing tasks to map input sequences to output sequences. 

The network is trained through the interaction of previous experiences where we give 

the input, the undircritized Arabic text and the expected target of this input, which is the 

fully dicritized Arabic text, to train the RNN under supervised learning. Once this is 

done we can give the RNN any undircritized input text and get the fully diacritized 

output text. 

This method is very powerful compared to other adaptive approaches such as 

Hidden Markov Models HMM (no continuous internal states), feedforward networks 

FFN or Support Vector Machines SVM (no internal states at all). 

RNN has been used with many sequence problems such as handwriting recognition 

(Abandah, et al., 2014) and speech recognition (Graves, et al., 2013) and achieved 

fabulous results. 

Our novel approach is to use RNN in automatic Arabic text diacritization. We 

have tested this approach on a previous work (Abandah, et al., 2015) and achieved a 

state of art results in the field. The main contribution of this thesis is to improve these 

results even more by developing a hybrid system that combines the morphology based 
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diacritizer with the statistical RNN diacritizer.   

The objectives and contributions of this project are summarized as follows: 

1. Investigating the use of recurrent neural network (RNN) in automatic 

diacritization of the Arabic texts (Abandah, et al., 2015).  

2. Building an accurate system to restore  all Arabic diacritics (the three 

short vowels: fatha, kasra, and damma, the three tanweens, the shadda, 

and the sukoon) and comparing it with the best performing reported 

systems results using similar training and validation corpus for the sake 

of fair comparison. 

3. Improving the RNN diacritization accuracy by supplementing the RNN 

input with linguistic information as a pre-processing step and applying 

correction techniques to the RNN output as a post-processing step.   

Finally, we believe that this thesis is a useful addition to the field of Arabic text 

diacritization and a step towards the comprehensive computer support of the Arabic 

language. 

1.4 Thesis Outline 

After this introductory chapter; Chapter 2 reviews previous related work and 

past approaches used to automatically diacritize Arabic text including rule-based, 

statistical, and hybrid approaches. 

Chapter 3 describes the technologies used in our system including RNN that has 

been used in many sequence transcription tasks and recently used it in automatic 

diacritization. BAMA tool is also described which is widely used in previous works. 
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In Chapter 4 the methodology is described including the datasets, data pre-

processing, sequence transcription, RNN training parameters, and the data post-

processing.   

We give detailed descriptions for the conducted experiments of the four 

implemented systems in Chapter 5. Also results comparison with recent related work is 

made.  

Finally, the last chapter presents overall conclusions, observations, and 

suggestions for future work.  
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CHAPTER II 

Literature Review 

Restoration of diacritics is an active area in the current Natural Language 

Processing (NLP) literature. Most NLP tasks benefits a lot when using fully diacritized 

texts.  Many researchers have tried several methods to tackle this problem. However, 

there is still a room to improve the accuracy of adding diacritics. Past techniques to 

automatically diacritize Arabic text can be divided mainly into three categories: rule-

based, statistical, and hybrid approaches (Azmi and Almajed, 2013). The following 

sections give a brief description of the approaches that were state-of-art at the times 

when they were published in.  

2.1 Rule-based Approaches 

Automatic diacritization was initially solved using rule-based approaches. These 

approaches used morphological analyzers, dictionaries, and grammar modules. El-

Sadany and Hashish (1988) system uses a dictionary, analyzer, and a grammar module 

that contains morphophonemic and morphographemic rules. Another, rule-based 

method was presented by El-Imam (2004) as an essential intermediate step in the 

process of letter to sound mapping. Shaalan (2010) also developed a rule-based 

morphological and syntax analyzers. These analyzers depend on the linguistic 

knowledge only and could be used to predict the missing diacritics.  

Rule-based approaches are complicated and need efforts to build morphological, 

syntax, and semantics analyzers. Also, their limited ability to maintain up-to-date rules 

and extending them to other Arabic dialects made them insufficient for diacritization. 
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Also, new words are always generated in living languages; therefore using rule-based 

methods does not sustain for long period. 

2.2 Statistical Approaches 

With the beginning of the new century, there have been several studies that use 

statistical methods to solve the diacritization problem. These methods do not require 

any specific knowledge of the language, so they can be applied on Arabic text as well as 

any other language that use diacritical marks.  

Gal in (Gal, 2002) used the Hidden Markov Models (HMMs) to solve the 

problem. The HMM approach is a statistical approach used to capture the contextual 

correlation among words. It  consists  of  hidden  states  that  represent  diacritized 

words  from  the  training  corpus,  and  produce undiacritized word observation. Then 

Viterbi algorithm works on these observation sequences to predict diacritics.  Gal`s 

approach restores only short vowels (a subset of all diacritics). Gal achieved a word 

accuracy of 86%, where most of the errors were due to words that were not found in the 

training corpus. 

Kirchhoff et al. (2002) targeted improving Arabic speech recognition and 

investigated the use of diacritization to achieve their goal. They were also interested in 

improving dialectal Arabic recognition in addition to formal Arabic recognition. They 

used the LDC CallHome ECA dialectal corpus, which was distributed with both 

diacritized and undiacritized transcriptions, to derive diacritics using maximum-

likelihood unigram prediction. The results showed that the MSA word error rate is 28% 

to 9%, depending on whether or not case ending diacritics are counted.  
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Hifny (2012) used statistical trigram language model, smoothing techniques, and 

dynamic programming (DP) to restore diacritics. Each potential diacritized word 

sequence of an undiacritized input sentence carries a probability value set by the n-gram 

models. Dynamic programming algorithm is used to select the most probable sequence. 

Several smoothing techniques were used to handle the problem of unseen n-grams in the 

training data. Hifny using Tashkeela corpus (Zerrouki 2011) achieved 3.4 and 8.9% for 

diacritic and word error rates, respectively.  

Azim et al. (2012) diacritization system requires the availability of speech input 

as it combines acoustic information from the speech input model based on HMM to the 

text-based model based on Conditional Random Fields. The diacritic and word error 

rates on the Linguistic Data Consortium’s Part 3 of the Arabic Treebank of diacritized 

news stories (LDC ATB3) (Maamouri et al., 2004) are 1.6 and 5.2%, respectively. 

Although these are great results; this work is not very practical since you need the 

speech input which is not available for every text you want to diacritize.   

To the best of our knowledge, the most accurate statistical approach is due to 

(Abandah, et al., 2015). This approach is based on the deep bidirectional long short term 

memory architecture. It uses RNN sequence transcription to automatically add diacritics 

to Arabic text. They achieved 2.72 and 9.07% diacritic and word error rates 

respectively, on LDC ATB3. Using Tashkeela corpus the results were even better since 

the size of the corpus is much bigger and achieved 2.09 and 5.82% for diacritic and 

word error rates respectively. 

2.3 Hybrid approaches 

In (Vergyri and Kirchhoff, 2004), several knowledge sources (acoustic, 

morphological, and contextual) were used to automatically diacritize Arabic texts and 
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the effect of their combination was investigated. Diacritization is handeled as an 

unsupervised tagging problem where each word is tagged as one of the many possible 

forms provided by BAMA (Buckwalter, 2002). The Expectation Maximization (EM) 

algorithm is used to learn the tag sequences. They also investigated the use of Arabic 

dialectal speech in addition to MSA. For this study, they used two different corpora, the 

FBIS corpus of MSA speech and the LDC CallHome ECA corpus. Kirchoff and 

Vergyri did not model the shadda diacritic. They achieved a word error rate and 

diacritic error rate 27.3% and 11.5% respectively. 

A weighted finite state machine based algorithm was proposed to restore the 

missing diacritics by Nelken and Shieber (2005). Their basic module consists of three 

language models which are used in a serious of finite state transducers to produce the 

most probable diacritized word when given the undiacritized one. The problem with this 

approach is the independence of the transducers from each other where the later 

transducer for instance cannot refer to any former one to get some information from it. 

This system was trained and tested on LDC’s Arabic Treebank of diacritized news 

stories (Part 2) and generated a word error rate of 23.61% and a diacritic error rate of 

12.79% when case endings were included. Without case endings, the results were 

7.33% and 6.35% respectively. 

Zitouni et al. (2006) follow a statistical model based on the framework of 

maximum entropy where several sources of information are used including lexical, 

segment-based, and Part Of Speech (POS) features. They used statistical Arabic 

morphological analysis to segment each Arabic word into a prefix, a stem, and a suffix 

using WFST approach. Each of these morphemes is called a segment. POS features are 

then generated by a parsing model that also uses maximum entropy. All these features 

are then combined in the maximum entropy framework to predict the full diacritization 
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of the input words' sequence. Their system trained and evaluated on LDC ATB3 and 

performed 18% word error rate and 5.5% diacritic error rate with case endings. Without 

case endings, the results were 7.9% and 2.5% respectively. 

Habash and Rambow (2007) extended the use of their Morphological Analysis 

and Disambiguation of Arabic (MADA) system. They use the case, mood, and nunation 

as features because of their importance, and use the Support Vector Machine Tool 

(SVM Tool) as a machine learning tool.  The system also used LDC ATB3. They 

achieved a word error rate of 14.9% and diacritic error rate of 4.8% with the case ending 

diacritic. Without case endings, the word error rate and diacritic error rate were 5.5% 

and 2.2% respectively. 

The stochastic Arabic diacritizer (Rashwan and Al-Badrashiny, 2011) introduced 

a two-layer stochastic system to diacritize raw Arabic text automatically. The first layer 

predicts the most likely diacritics by choosing the sequence of unfactorized full-form 

Arabic word diacritizations with maximum marginal probability via A* lattice search 

algorithm and n-gram probability estimation. When full-form words not found, the 

system uses the second layer, which factorizes each Arabic word into its possible 

morphological components (prefix, root, pattern and suffix), then uses n-gram 

probability estimation and A* lattice search algorithm to select among the possible 

factorizations to get the most likely diacritization sequence. While the second layer has 

better coverage of possible Arabic forms, the first layer is faster to learn and yields 

better disambiguation results especially for predicting case endings diacritics. Their 

hybrid system exploits the advantages of both layers. The system used the same training 

and test corpus used by Zitouni et al. (2006), and achieved 12.5% word error rate and 

3.8% diacritic error rate with case endings, and 3.1% word error rate and 1.2% diacritic 

error rate without case endings. 
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The hybrid system by Said et al. (2013) also used LDC ATB3 and achieved 

excellent results. This approach involve using automatic correction, morphological 

analysis, POS tagging, and out of vocabulary diacritization and produces diacritic and 

word error rates of 3.6 and 11.4%, respectively. This system uses HMMs for 

morphological analyses disambiguation and resolving the syntactic ambiguity to restore 

the syntactic diacritic.  

In this thesis, we combine the use of linguistic module along with Abandah et al. 

(2015) statistical method. The results are very promising and they are reported in 

Chapter 5. 

In addition to the Arabic diacritization systems implemented by academic 

researchers and discussed above, there are systems implemented by commercial 

organizations to satisfy the market requirements. Sakhr’s, Xerox’s, and RDI’s systems 

are examples (Rashwan and Al-Badrashiny, 2011). These systems suffer from few 

drawbacks that prevent them from being widely adopted such as being based on the 

standard Arabic dictionaries (i.e., if the word is not registered in these dictionaries it is 

not considered). Also, some of these systems do not account for the correlation 

relationship between the word and its neighbors. Even if the two previous shortcomings 

are considered as in the RDI system, the long needed time for training and validation of 

the corpora make it ineffective. 
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CHAP288TER III 

Technologies Used 

3.1 Recurrent Neural Networks (RNN) 

Neural networks in the human brain works in a very accurate and complex way. 

It was found that the information is not stored in the human brain in a specific location, 

but spread over many neurons. When one tries to remember something, the brain 

collects this information from all these neurons. Scientists emulated the human brain 

using artificial neural networks through computer software which can solve many 

problems especially the ones that involve learning and decision making. 

Natural languages processing is one of the most difficult topics in machine 

learning. Nevertheless, it is progressing slowly and steadily. The use of neural networks 

is not very common in this field.  However, many researchers achieved promising 

results when using them. Khedher (1999) has a beautiful statement on this: “The main 

reason why it seems that the Arabic text processing seems to be suitable for neural 

network application is that people from their early age are trained to talk properly. Why 

neural networks cannot be trained similarly? Of course, proper and enough data is 

necessary.” 

The learning algorithm of a neural network can either be supervised or 

unsupervised. Our work uses supervised learning. The mission with this kind of 

learning is to infer a suitable function from labeled training data. In this work, the 

training data is part of the LDC ATB3 corpus that is composed of a set of training 

examples. Each example is a pair consisting of an input sequence (the undiacritized 
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sentence) and a desired target sequence (the same sentence but with diacritics).  A 

supervised learning algorithm uses the training data and infers a function, which can be 

applied to new examples.  These new test examples could be unseen before by the 

function that was found based on the training data. This requires the learning algorithm 

to generalize from the training data set to test data set in a reasonable way. That is why 

we use an extra validation set which is extracted from the training set to validate the 

performance of the learning algorithm during training. Actually validation sets are used 

to determine when training should stop, in order to prevent overfitting. 

This work presents a sequence transcription approach for the automatic 

diacritization of Arabic text using recurrent neural networks. RNNs are used to solve the 

diacritization problem because they benefit from the context of the input text sequences 

(El Hihi and Bengio, 1995).  

3.1.1 Feedforward neural network vs.  Recurrent neural networks 

The feedforward neural network is a simple type of artificial neural network. In 

this network, data passes forward in one direction from the input layer, which consists 

of one neuron per feature, through the hidden layers (if any), which have no cycles or 

loops to the output layer, which has one neuron per class as shown in Figure 2. The user 

determines the number of neurons and topology architecture within the hidden layer. 

The weights of the neural networks are adjusted frequently using algorithms such as the 

backpropagation that works by running the training data through the neural networks, 

and calculating the difference between the desired and actual outputs. The output layer 

then propagates these differences back to the input layer to adjust the weights of the 

network. 
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For the standard feed forward network, the output vector sequence y = (y1, . . . , 

yT) when given the input sequence x = (x1, . . . , xT) is computed by the following 

equations: 

ℎ𝑡 = ℋ (𝑊𝑖ℎ𝑥𝑡 + 𝑏ℎ )     (1) 

𝑦𝑡 = (𝑊ℎ𝑜ℎ𝑡 +  𝑏𝑜)      (2) 

where the W terms denote weight matrices (e.g., Wih is the input-hidden weight 

matrix), the b terms denote bias vectors (e.g., bh is hidden bias vector), and H is the 

hidden layer activation function (usually an element wise application of a sigmoid 

function) (Graves, et al., 2013).  

 

Figure 2. A simple feed forward network 

 The Recurrent neural network (RNN) is a different from feedforward 

architectures in the sense that they not only operate on the current inputs but also on the 

previous contents of the hidden layer for each time step. Therefore, in training, the 

gradient of an error function is calculated using all inputs, not the recent inputs only. 

This approach is known as the Back Propagation Through Time (BPTT); where the 
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hidden layer is updated using the external input and the activation from the previous 

forward propagation through an additional recurrent weight layer as shown in Figure 3.  

 

Figure 3. A simple recurrent network 

This simple recurrent network is also known as Elman network (Elman, 1990). 

The output layer, y, is computed by iterating the following equations (Abandah, et al., 

2015): 

     ℎ𝑡 =  ℋ (𝑊𝑖ℎ 𝑥𝑡 + 𝑊ℎℎ ℎ𝑡−1 + 𝑏ℎ )    (3) 

𝑦𝑡 = 𝑊ℎ𝑜ℎ𝑡 + 𝑏𝑜              (4) 

3.1.2 Long-Short Term Memory Network (LSTM) 

In Hochreiter and Schmidhuber (1997), the long short-term memory network is 

proposed to address the vanishing gradient issue when using recurrent networks.  This 

problem has been tackled by replacing a subset of neurons (or all of them) in the 

network by memory cells. Figure 4 illustrates such a cell. 

Each memory cell is designed with self-connections storing the temporal state of 

the network in addition to special multiplicative units called gates to control the flow of 
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information. Input gate, forget gate and output gate are multiplicative gate units that 

allow the cells to store and retrieve information over time, giving them access to long-

range context. The linear activation and self connection of value 1 means that the 

gradient through this connection does not loose norm, and therefore does not vanish 

(Graves and Schmidhuber, 2009).  

 

 

 

 

 

 

 

 

Figure 4. Long short-term memory cell 

For the version of LSTM used in this research [Gers, et al., 2003), the hidden 

layer activation function is implemented by the following composite function : 

𝑖𝑡 = 𝜎 (𝑊𝑥𝑖𝑥𝑡 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑊𝑐𝑖𝑐𝑡−1 + 𝑏𝑖)                      (5) 

     𝑓𝑡 = 𝜎 (𝑊𝑥𝑓𝑥𝑡 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑊𝑐𝑓𝑐𝑡−1 + 𝑏𝑓)      (6) 

𝑐𝑡 = 𝑓𝑡𝑐𝑡−1 + 𝑖𝑡 tanh(𝑊𝑥𝑐𝑥𝑡 + 𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐)                               (7) 

𝑜𝑡 = 𝜎 (𝑊𝑥𝑜𝑥𝑡 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑊𝑐𝑜𝑐𝑡 + 𝑏𝑜)                                   (8) 

ℎ𝑡 = 𝑜𝑡 tanh(𝑐𝑡)                                                                            (9) 
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where σ is the logistic sigmoid function and i , f , c, and o, respectively, are the 

input gate, forget gate, cell activation, and output gate vectors, all of which are of the 

same size as the hidden vector h. The weight matrix subscripts have an obvious 

meaning, for example, Whi is the hidden-input gate matrix, Wxo is the input–output gate 

matrix. The weight matrices from the cell to gate vectors (e.g., Wci ) are diagonal, so 

element m in each gate vector only receives input from element m of the cell vector. 

The bias terms (which are added to i , f , c, and o) have been omitted for clarity 

(Abandah, et al., 2015). 

3.1.3 Bidirectional Recurrent Neural Networks 

RNN’s proved that they can deal efficiently with sequential data that has 

relations between data points that are close in the sequence. In general RNN 

architecture, the input vectors are fed one at a time into the RNN. Instead of using a 

fixed number of input vectors as done in the Multilayer perceptrons (MLP’s) and time 

delay neural networks (TDNN’s) structures, this architecture can make use of all the 

available input data up to the current time tc (i.e. Wt, t=1,2,…, tc ) to predict Ytc .  

Future input information coming up after tc is sometimes also useful for 

prediction. This can be done using RNN by delaying the output by a certain units of G 

time frames to include future information up to Wtc+G to predict Ytc . Theoretically, G 

could be made very large to capture all the available future information, but in practice, 

it is found that prediction results drop if G is too big (Robinson, 1994). 

To overcome this limitation of a common RNN, Schuster and Paliwal (1997) 

proposed a bidirectional recurrent neural network (BRNN) that can be trained using all 

available input information in the past and future of a specific time period.  This is 

achieved by splitting the state neurons of a regular RNN in two parts; the first is the 



 20 

forward states which is responsible for the positive time direction from t=1 to T. and the 

second are the backward states which is responsible for the negative time direction from 

t=T to 1. Outputs from forward states are not connected to inputs of backward states. 

The data in both directions of the BRNN are then fed forward to the same output layer. 

This leads to the general structure that can be seen in Figure 5.  

BRNN hidden layers in the forward direction is the same as for a regular RNN, 

with the variation that is the input sequence is fed in opposite directions to the two 

hidden layers, and the output layer is not modified  until the hidden layers of both 

directions  have processed the whole input sequence. In a similar way, the backward 

direction of the BRNN is trained with back-propagation through time (BPTT), except 

that the entire output layer neurons are modified then fed back to the two hidden layers. 

 

 

 

 

 

 

 

Figure 5. General structure of the bidirectional RNN 

 The output sequence y of BRNN is computed by iterating the backward layer 

from t=T to 1, the forward layer from t=1 to T, and then updating the output layer: 

                                    ℎ𝑡
⃗⃗  ⃗ = ℋ(𝑊𝑥 ℎ⃗⃗  𝑥𝑡 + 𝑊ℎ⃗⃗  ℎ⃗⃗ ℎ𝑡−1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + 𝑏ℎ⃗⃗ )      (10) 

ℎ𝑡
⃖⃗ ⃗⃗ = ℋ(𝑊𝑥ℎ⃗⃗⃖  𝑥𝑡 + 𝑊ℎ⃗⃗⃖ℎ⃗⃗⃖ℎ𝑡+1

⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ + 𝑏ℎ⃗⃗⃖)                                             (11) 
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𝑦𝑡 = 𝑊ℎ⃗⃗ 𝑦ℎ𝑡
⃗⃗  ⃗ + 𝑊ℎ⃗⃗⃖𝑦 ℎ𝑡

⃖⃗ ⃗⃗ + 𝑏𝑜                                                   (12) 

where  ℎ𝑡
⃗⃗  ⃗  is the forward hidden sequence , and ℎ𝑡

⃖⃗ ⃗⃗   is the backward hidden sequence 

(Abandah, et al., 2015) (Graves, et al., 2013). 

3.1.4 Deep recurrent neural network  

In the last few years, neural networks have witnessed the increase in using 

networks composed of multiple hidden layers, which are often described as deep neural 

networks (DNN). DNNs have offered powerful solution for sequence problems such as 

speech recognition (Graves, et al., 2013) and handwritten digit recognition (Ciresan, et 

al., 2010). Their success is commonly referred to the hierarchy that is introduced due to 

the several layers. Each layer is responsible for part of the problem, and the output of 

one layer is passed as an input to the next layer. Take into your consideration that 

features on the higher layers are more complex and are constructed from the ones on the 

layers below as shown in Figure 6. This process continues until reaching the final layer 

which formulates the final output (Hermans and Schrauwen, 2013). 

 

 

 

 

 

 

 

 

 

Figure 6. Deep RNN 
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As mentioned before, DNNs can model complex non-linear relationships. This is 

the solution for the common RNN problem where information passes through one layer 

to output the final results. The extra layers of DRNN allow composition of input 

features from lower layers, giving the possibility of modeling complex data with fewer 

units than a standard network. Deep neural architectures have achieved state-of-the-art 

results in many tasks in natural language processing, such as information retrieval 

(Huang, et al., 2013), machine translation (Cho, et al., 2014), and other NLP areas. 

Assuming that the same hidden layer function is used for all N layers in the 

stack, the hidden vector sequences hn are iteratively computed from n=1 to N and t=1 to 

T: 

ℎ𝑡
𝑛 =  ℋ (𝑊ℎ𝑛−1ℎ𝑛 ℎ𝑡

𝑛−1 + 𝑊ℎ𝑛ℎ𝑛 ℎ𝑡−1
𝑛 + 𝑏ℎ

𝑛)                          (13) 

                  where ho = x. The network outputs yt are 

𝑦𝑡 = 𝑊ℎ𝑁 𝑦 ℎ𝑡
𝑁 + 𝑏𝑜                                                                           (14) 

If we use a bidirectional RNN to implement each hidden layer with LSTM 

nodes, then we are implementing deep bidirectional LSTM, the main architecture used 

in this research (Abandah, et al., 2015). Figure 7 illustrate this architecture. 

Our experiments were carried out with the open source software library 

RNNLIB which is a recurrent neural network library for sequence labeling problems 

developed by Alex Graves (Graves, 2008). We experimented using the “one-to-one” 

network that use the “one-to-one” letter encoding described in Section 4.3.1 in which 

the target sequences had a one-to-one correspondence with the inputs sequences. Thus, 

the lengths of sequences x and y are equal as implied by equations 1 and 2 above. 
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Figure 7. Deep bidirectional LSTM 

The network was trained to individually classify each input letter with the 

corresponding diacritized version. As is standard for classification tasks, a softmax 

output layer was used to define a probability distribution over the output labels, and the 

network was trained to minimize the cross-entropy of this distribution with the target 

labels. That is, given a length T input, target sequence pair (x, y*), the network outputs 

at time t are interpreted as the probability Pr(k|t, x) of emitting (diacritized) letter k at 

time t and the loss function minimized by the network is defined as L(x, y*) = -

∑ log Pr (𝑦𝑡
∗|𝑡, 𝑥)𝑇

𝑡=1 . The network is trained to minimize the loss function L using 

online gradient descent algorithm with momentum. A similar approach was previously 

used for bidirectional LSTM networks applied to framewise phoneme classification 

(Graves and Schmidhuber, 2005) the main difference being that the networks in this 

work had more than one hidden layer (Abandah, et al., 2015). 
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The sequence transducer that aligns the input and target sequences consists of 

two separate RNNs: the input network, which is typically bidirectional, and the 

prediction network, which must be unidirectional along with a feedforward output 

network used to combine the outputs of the two RNNs. The two networks are used to 

determine a separate distribution Pr(k|t, u) for every combination of input timestep t and 

output timestep u. Each distribution covers the K possible labels in the task plus a b. 

Intuitively, the network chooses what to output depending both on where it is in the 

input sequence and the outputs it has already emitted. For a length U target sequence y*, 

the complete set of TU decisions jointly determines a distribution over all possible 

alignments between x and y*, from which log Pr(y*|x) can be efficiently determined 

with a forward-backward algorithm (Graves, 2012). 

The one-to-one network was trained with online steepest descent (weight 

updates after every sequence) using a learning rate of 10-3 and a momentum of 0:9 and 

random initial weights drawn uniformly from [-0.1, 0.1]. The network was stopped at 

the point of lowest label error rate on the validation set (Abandah, et al., 2015).   

3.2 Buckwalter Arabic Morphological Analyzer (BAMA) 

Buckwalter analyzer is an Arabic morphological analysis tool provided by the 

LDC. The analyzer produces all potential morphological analyses, calls them solutions, 

of a given Arabic word. Each solution is fully diacritized according to the 

morphological status of that word except for the case ending diacritic 

(Buckwalter,2004). The BAMA tool consists of the following components: 

1. Lexicon: each word in Arabic can be segmented into stem and optional 

affixes. Prefixes, stem, and suffixes in BAMA have separate dictionaries. 
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Every word in these dictionaries is available as undiacritized and with 

diacritized variants, its morphological category, and its English meaning. 

Examples of prefixes are: b (with), k (as), w (and)..etc. examples of 

suffixes: y (my/mine), k (your/yours), hm (their/theirs masc. pl.)…etc. 

2. Compatibility tables:  Three compatibility tables 

"tableAB","tableAC",and "tableBC" that list compatible Prefix with 

Stem, Prefix with Suffix, and Stem with Suffix respectively. These tables 

are implemented using linguistic rules only. Each of the three 

compatibility tables sets pairs of compatible morphological categories. 

For examples Prefix category "Al" (the) is listed as being compatible 

with Stem categories "N" (nouns) i.e; Alkitab (The book). 

3. Morphology analysis algorithm: Perl code that makes use of the three 

lexicon files and three compatibility tables in order to perform 

morphological analysis and produce the possible solutions for each word. 

An example of BAMA analysis is shown in Figure 8. Here, the word يكتبون   has 

three solutions each with different meaning and pronunciation. The word has the present 

tense character  ي as the prefix, the stem  كتب  , and the sound plural masculine   ون  as 

the suffix. The letters and diacritics are written using Buckwalter transliteration, see 

appendix A. The first solution is   ت بون   and the third is ,  ي كت بون   : the second solution is ,  ي ك 

 The last letter usually is not diacritized in BAMA solutions but since the sound .ي كت بون  

plural masculine “ السالم جمع المذكر ” is in declension of the fatha “مبني على الفتح”, BAMA 

diacritizes the last letter with fatha. 
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INPUT STRING: يكتبون 

LOOK-UP WORD: yktbwn 

  SOLUTION 1: (yakotubuwna) [katab-u_1 ] 

ya/IV3MP+kotub/VERB_IMPERFECT+uwna/IVSUFF_SUBJ:MP_MOOD:I 

     (GLOSS): they (people) + write + [masc.pl.] 

  SOLUTION 2: (yukotabuwna) [katab-u_1 ] 

yu/IV3MP+kotab/VERB_IMPERFECT+uwna/IVSUFF_SUBJ:MP_MOOD:I 

     (GLOSS): they (people) + be written/be fated/be destined + 

[masc.pl.] 

  SOLUTION 3: (yukotibuwna) [>akotab_1 ] 

yu/IV3MP+kotib/VERB_IMPERFECT+uwna/IVSUFF_SUBJ:MP_MOOD:I 

     (GLOSS): they (people) + dictate/make write + [masc.pl.] 

Figure 8. BAMA analysis for the word يكتبون 

BAMA may provide wrong analysis.  This could happen due to improper Arabic 

names for places and companies that are not listed in the lexicons.  Also common nouns 

may be used as people names and you do not need to analyze these words (e.g., Khaled, 

Arabiyat) among many other possible problems (Maamouri, et al., 2004). 
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CHAPTER IV 

Methodology 

4.1 Introduction 

The diacritization process of an Arabic text can be divided into two types; 

morphology dependent and syntax dependent. BAMA morphological analyzer can 

extract some of the morphological diacritics. The rest of diacritics including the end of 

the word diacritics are restored using RNN statistical approach.  

Our diacritization system undergoes several steps to restore diacritics. The first 

phase is the training phase which is shown in Figure 9. First we perform data encoding. 

The data is now prepared in two formats; diacritized target sentences and undiacritized 

input sentences. Then we used BAMA to extract the morphological analysis of each 

word of the input sentences. Although we did not use an Arabic text tagger; we can 

infer partial diacritics from the results list of BAMA output solutions. Also, we use the 

morphological segmentation to get the word components; prefix, stem, and suffix. A 

text corrector is used next to fix some issues that come up when using BAMA. After 

that we use one of the four RNN schemes implemented in this thesis to transcribe the 

input sentences. Next, the RNN is trained to restore the rest of diacritics. In the second 

phase, the production phase, we use the testing data and apply all the previous steps 

except that we use the trained RNN networks to restore diacritics as shown in Figure 10. 

Post processing corrections are applied to improve the accuracy results. The 

diacritization accuracy metrics: diacritization error rate (DER) and word error rate 

(WER) are calculated to be compared to other approaches. 
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Figure 9. The schematic diagram of the proposed system (Training phase) 
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Figure 10. The schematic diagram of the proposed system (Production phase) 
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4.2 Data 

The diacritization schemes we implemented in this thesis are trained and 

evaluated on the LDC’s Arabic Treebank of diacritized news stories – Part 3 v3.2: 

catalog number LDC2010T08 ((Maamouri, et al., 2004). The LDC ATB3 corpus is a 

diacritized Arabic text taken from 599 documents from the Lebanese newspaper 

“AnNahar” of the year 2002 (including case-endings diacritics).  

Table 3 below shows some statistics regarding this corpus. Around 40% of the 

corpus has no diacritics suggesting that the LDC ATB3 corpus is partially diacritized. 

The percentage of letters with Shaddah and another diacritic is 5.4%. More than eleven 

words are in a typical sentence. This suggests the possibility of long dependencies 

between the words. The architecture of deep bidirectional LSTM that is used in this 

work to transcribe sequences fits these situations.  

Table  3. LDC ATB3 statistics 

Criterion Value 

Size 305 K words 

Letters per word 4.64 

Words per sentence 11.31 

No diacritics 39.8% 

One diacritic 54.8% 

Two diacritics 5.4% 

 

We choose to use this corpus because the state-of-art approaches in automatic 

Arabic text diacritization use this Treebank. So, we have established our experiments to 

allow an equitable comparison of our results directly to theirs. 
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4.3 Data Pre-processing 

A few stages are needed to prepare data for RNN sequence transcription. These 

stages are illustrated next. 

4.3.1 Data Encoding 

 Each diacritized sentence in LDC ATB3 corpus is placed in a separate line 

along with the undiacritized version of the same sentence. Comma is used to separate 

the two versions. This preparation of data is beneficial for supervised learning using 

RNN.  

In Unicode system, diacritics are encoded as separate characters coming after the 

letter Unicode presentation (see appendix A for Arabic character`s Unicode codes). This 

encoding technique is called “one-to-many” letter encoding (Abandah, et al., 2015). For 

example, the word   َوَقَّع has the two field record input and target “وَقَّعَ “,”وقع”  and is 

encoded as follows: 

“,”وقع“                                           وَقَّعَ   ” 

“0648 0642 0639”,“ 0648 064E 0642 0651 064E 0639 064E” 

Dealing with the diacritics as independent characters from letters adds 

complexity and some difficulties. Abandah et al. (2015) suggested a new method to 

encode the diacritics with letters using the same character encoding. In this architecture, 

the input and the target sentences have the same length. This encoding technique is 

called “one-to-one” letter encoding. 

 This new encoding is used as follows,  Arabic letters have the Unicode codes 

0x0621 through 0x063a and 0x0641 through 0x064a (36 letters). We start from the 

Unicode code for every letter; the most significant 8 bits are removed; the lower 8 bits 
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are shifted to the left four bits; so we get 12-bit numbers. If the letter is followed by 

shaddah (0x0651), Bit 3 is set.  If the letter is followed by a diacritic other than shadda, 

then bits 0 through 2 are set using the bit codes shown in Table 4: 

Table  4. Binary codes and hexadecimal Unicode’s of Arabic diacritics 

 

 

 

 

 The following formula is used to calculate a unique code L for the letter with 

Unicode value l and possible diacritics d1 and d2 (bit codes): 

𝐿 = {

(𝑙 ∧  0𝑥00𝑓𝑓 ≪ 4)                                   𝑛𝑜 𝑑𝑖𝑎𝑐𝑟𝑖𝑡𝑖𝑐𝑠
(𝑙 ∧ 0𝑥00𝑓𝑓 ≪ 4) ∨  𝑑1                         𝑜𝑛𝑒 𝑑𝑖𝑎𝑐𝑟𝑖𝑡𝑖𝑐𝑠
(𝑙 ∧ 0𝑥00𝑓𝑓 ≪ 4) ∨ 𝑑1 ∨ 𝑑2                 𝑡𝑤𝑜 𝑑𝑖𝑎𝑐𝑟𝑖𝑡𝑖𝑐𝑠

                   (15) 

The previous example is therefore encoded in decimal format as: “0480 0420 

0390”, “0484 042C 0394” 

4.3.2 Using BAMA 

BAMA is used by many researchers for Arabic text processing (Vergyri and 

Kirchhoff, 2004), (Habash and Rambow, 2007), and (Azim et al., 2012). Its capability 

of generating multiple possible diacritized and morphological analysis solutions for 

every word makes it quite important in automatic diacritization field.   

Let U be the set of undiacritized input words. Then for each word u ϵ U, BAMA 

gives a list of possible diacritized solutions Du.  For this work, we are interested in the 

Diacritic  

name 

Unicode Bit code 

No diacritic - 0000 

Fathatan 0x064b 0001 

Dammatan 0x064c 0010 

Kasratan 0x064d 0011 

Fataha 0x064e 0100 

Damma 0x064f 0101 

Kasra 0x0650 0110 

Sukun 0x0652 0111 
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morphological analysis as a morphological aid scheme. We are interested in the 

diacritics distributions on the word consonants in the partial diacritization scheme. For 

the hybrid scheme, we are interested in all information provided by BAMA. If the 

undicritized word u has n unique solutions, then Du is the set: Du = {du,1 , du,2 , du,3 , 

……, du,n}. This set of solutions is taken after some processing as an input to the RNN 

diacritizer. Where each w word is expressed with triple components so that w →t = 

(prefix, stem, suffix). 

The following example illustrates the way we use BAMA to extract partial 

diacritization and morphological division of words. Take the sentence   الطلاب يكتبون دروسهم

 as an example of undicritized input sentence. The BAMA solutions of this لوحدهم

sentence are listed in Figure 11. 

INPUT STRING: الطلاب 

LOOK-UP WORD: AlTlAb 

  SOLUTION 1: (AlTul~Ab) [Talib_1 ] Al/DET+Tul~Ab/NOUN 

     (GLOSS): the + students +  

INPUT STRING: يكتبون 

LOOK-UP WORD: yktbwn 

  SOLUTION 1: (yakotubuwna) [katab-u_1 ] 

ya/IV3MP+kotub/VERB_IMPERFECT+uwna/IVSUFF_SUBJ:MP_MOOD:I 

     (GLOSS): they (people) + write + [masc.pl.] 

  SOLUTION 2: (yukotabuwna) [katab-u_1 ] 

yu/IV3MP+kotab/VERB_IMPERFECT+uwna/IVSUFF_SUBJ:MP_MOOD:I 

     (GLOSS): they (people) + be written/be fated/be destined + [masc.pl.] 

  SOLUTION 3: (yukotibuwna) [>akotab_1 ] 

yu/IV3MP+kotib/VERB_IMPERFECT+uwna/IVSUFF_SUBJ:MP_MOOD:I 

     (GLOSS): they (people) + dictate/make write + [masc.pl.] 

  INPUT STRING: دروسهم 

LOOK-UP WORD: drwshm 

  SOLUTION 1: (duruwshm) [daros_1 ] duruws/NOUN+hum/POSS_PRON_3MP 

     (GLOSS):  + lessons/classes + their 

INPUT STRING: لوحدهم 

LOOK-UP WORD: lwHdhm 

  SOLUTION 1: (liwaHodhm) [waHod_1 ] li/PREP+waHod/ADV+hum/POSS_PRON_3MP 

     (GLOSS): for/to + alone/only + their 

  SOLUTION 2: (lawaHodhm) [waHod_1 ] la/EMPHATIC_PARTICLE+waHod/ADV+hum/POSS_PRON_3MP 

     (GLOSS): indeed/truly + alone/only + their 

  SOLUTION 3: (lawaH~adahum) [waH~ad_1 ] 

la/RESULT_CLAUSE_PARTICLE+waH~ada/VERB_PERFECT_SUBJ:3MS+hum/PVSUFF_DO:3MP 

     (GLOSS): would have + unite/regularize + he/it <verb> them 

Figure 11. BAMA output analysis of the sentence  الطلاب يكتبون دروسهم لوحدهم 
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For each word, we take the list of solutions and construct an array of prefixes, 

stems, and suffixes of these solutions. Each one of these entries is an array of characters 

as well. Figure 12 illustrates how we used the BAMA solutions to build our four 

schemes. For the Buckwalter transliteration codes of Arabic characters, see appendix A.   

INPUT STRING: الطلاب (AlTlAb) 

 Prefix stem suffix 

  SOLUTION 1 Al Tul~Ab  

INPUT STRING: يكتبون (yktbwn) 

 Prefix stem suffix 

  SOLUTION 1 Ya kotub uwna 

  SOLUTION 2 Yu kotab uwna 

  SOLUTION 3 Yu kotib uwna 

INPUT STRING: دروسهم (drwshm) 

 Prefix stem suffix 

  SOLUTION 1 - duruws hum 

INPUT STRING: لوحدهم (lwHdhm) 

 Prefix stem suffix 

  SOLUTION 1 Li waHod hum 

  SOLUTION 2 La waHod hum 

  SOLUTION 3 La waH~ada hum 

Figure 12. Summary of BAMA solutions for the previous sentence. 

To build the first scheme (Statistical), we take the representation of letters with 

no diacritics. For the previous example the input sequence is:  

" AlTlAb  yktbwn  drwshm  lwHdhm " 

The second scheme (Partial Diacritization Aid) discards the morphological 

analysis of the word and uses the persistent diacritics in all solutions of the words to be 

part of the input sequence. The input sequence in this scheme is: 
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" AlTul~Ab  y kotb uwna  duruws hum  l waHd hum" 

The third scheme (Morphological Aid) benefits from the morphological analysis 

of the word without the need of diacritization information. The input sequence in this 

scheme is: 

" Al+TlAb  y+ ktb+ wn  drws+ hm  l+ wHd+ hm" 

To build the fourth scheme (Hybrid), we take the representation of letters with 

matched diacritization in all solutions along with the morphological division of each 

word into its components. If the letter has more than one way of diacritization, we 

discard the diacritics and use the letter without diacritics. For the previous example the 

input sequence is:  

" Al+Tul~Ab  y+ kotb+ uwna  duruws+ hum  l+ waHd+ hum" 

It is worth to mention that usually BAMA doesn’t produce the syntactic 

diacritics. Few exceptions are available for some simple heuristic rules (SHR). Take the 

word يكتبون for example; the last ending diacritic is Fatha because the sound plural 

masculine “جمع المذكر السالم” is in declension of the fatha “مبني على الفتح”. 

4.3.3 Text Correction 

BAMA results have some issues that need to be fixed before moving on. We 

have applied several automatic text correction procedures to overcome these issues. 

4.3.3.1 Space and "+" Normalization  

 There are some extra spaces in BAMA`s results. This causes a serious 

problem in the use of RNN sequence transcription due to the required one to one 
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mapping between letters in the input sequence and the target sequence. Therefore, we 

remove these extra spaces. 

For the third and fourth schemes that involve the use of morphological division 

of words, we used the "+" sign to denote that this is the separation symbol between the 

word components. We normalize the target sequences to be morphologically divided in 

a consistent way with the morphologically divided input sequences.  This action again 

restores the one to one mapping between input sequences and target sequences.  

4.3.3.2 Extra Alf Removal 

We have noticed that some words when morphologically analyzed using BAMA 

get extra Alf letter. For example, the word " للدول  " is analyzed to " لدول+ال  ". The same 

word " ل  +ل    و  لدُّ  " in the target sentence doesn't have this Alef so we remove this extra 

letter from the input sequence. 

4.3.3.3 Letter Correction 

BAMA alters some words letters, increase the number of letters (e.g. كتاب instead 

of كتب), or decrease the number of letters of some input words (e.g. المر instead of 

 It sometimes also replicates some words in the input sequence many times. We .(المرتقب

fixe these problems through letter by letter alignment between the input sequence and 

the target sequence to make sure that they are matched letter-wise. 

4.3.3.4 OOV Conversion 

Some Arabic proper names or transliterated foreign names cannot be analyzed 

by BAMA. It returns numbers instead of the names. These numbers indicate the 

sequence number of the unanalyzed word. This Out Of Vocabulary (OOV) problem is 
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fixed and the correct names are restored from the target sequences and replaced the 

printed numbers in input sequences. 

4.3.3.5 Target Normalization 

After fixing the above problems, we need to morphologically analyze the target 

sequences in a similar manner to the input sequences for the third and forth schemes. 

Using the same example illustrated in 4.3.2 the input and target sequences for the third 

scheme was: 

"Al+TlAb  y+ktb+wn  drws+hm  l+wHd+hm", "AlTul~Abu  yakotubuwna 

duruwshmu liwaHodihmu " 

And after target normalization will be: 

"Al+TlAb  y+ktb+wn  drws+hm  l+wHd+hm", "Al+Tul~Abu  ya+kotubu+wna 

duruws+hmu li+waHodi+hmu " 

4.4 Sequence Transcription 

The open source software package RNNLIB (Graves, 2008), that is used in this 

work to transcribe sequences; is built using deep bidirectional LSTM. Many sequence 

transcription problems have been solved using this architecture and achieved state-of-art 

results such as handwriting recognition (Abandah, et al., 2014) and speech recognition  

(Graves, et al., 2013). 

We used the “one-to-one” network (Abandah, et al., 2015) to train and test 

sequences that were prepared using “one-to-one” letter encoding (described in Section 

4.3.1), where the input sequences have a one-to-one mapping with the target sequences. 

The “one-to-many” network (Abandah, et al., 2015) was also tested against the “one-to-
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one” and found that “one-to-one” is better in terms of diacritization accuracy. An 

experimental proof is given in Chapter 5. 

4.5 RNN Training Parameters 

Zitouni et al. (2006) have suggested a split of the LDC ATB3 corpus that is 

adopted by many researchers in the automatic diacritization field, (Habash and 

Rambow, 2007) (Rashwan and Al-Badrashiny, 2011), etc.  

This corpus includes 599 documents from the An Nahar News paper. The corpus 

is split into two sets: training and testing. The training set is the 509 documents of the 

first ten months of the year 2002. The last 90 documents of this year are the testing set 

and they are about 15% of the corpus. 

This split suggests using the same set as validation and testing rather than using 

separate validation and test sets as it should. This is not a good practice since it makes 

the network optimized for the test set. 

Although this split is adopted by the follower researcher, we decided to divide 

the training set into training and validation sets (70% for training and 30% for 

validation). We kept the last 90 documents for testing only. This split keeps the testing 

set unseen by the network until the testing step to give a true diacritization accuracy 

evaluation. 

4.6 Data Post-processing   

We use the following automatic post-processing techniques to correct some 

errors in the output sequences of the sequence transcription stage. These corrections 

have improved the diacritization accuracy. 



 39 

4.6.1 Letter Correction  

The letters in the output sequences after the sequence transcription should be the 

same in the input and target sequences. Errors could happen to letters in the output 

sequences. For example, you could have the word “  ل م  in the output sequence instead   ”ع 

of the word “  ل م  Although this letter correction step improves the output sequences, it . ”ح 

does not really affect the diacritization accuracy calculations because the latter is related 

to testing the correct diacritics restoration. 

4.6.2 Sukun Correction 

Some writing styles use the sukun diacritic to indicate that the letter does not 

have vowel. On the other hand, other styles do not use sukun at all assuming that the 

letters with no diacritic hold sukun by default. Both styles are correct. So we omit the 

sukun diacritic from target and output sequences to unify dealing with the sukun. This 

correction has reduces the diacritic error rate by 6.3% for ATB3.  

4.6.3 Fatha Correction 

In Arabic orthographic system, the letters Alef, Alef Maksura, and Taa Marbuta 

are always preceded by a letter that has the Fatha diacritic. If the RNN gives a diacritic 

other than Fatha, this diacritic is corrected to Fatha using this post-processing step. This 

correction improves the diacritic accuracy by 1.1% for ATB3. 

4.6.4 Dictionary Correction 

A dictionary is constructed out of the diacritized words in the training set and is 

indexed by the undiacritized word. We search for the undiacritized form for an output 

word. If we find it in the dictionary, we compare this output word with the stored 

diacritized forms of this word. If we could not find a match, we select the variant that 
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has the smallest edit distance. If the output is not found in the dictionary, we keep the 

output diacritics as is. This correction reduces the diacritic error by 1.3% for ATB3 

corpus. 

The next chapter presents the results of the four schemes that were introduced in 

Section 4.3.2. 
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CHAPTER V 

Experiments and Results  

Before investigating the results of the four suggested schemes to restore 

diacritics automatically using RNN, we did several preliminary experiments with 

different training options. These options include the choice of transcription network, the 

effect of using weight noise distortion, and the size of RNN impact. To the best of our 

knowledge, this is the first time RNN is used for automatic diacritization. No previous 

experience on the best network architecture was available (Abandah et al., 2015). So we 

needed these experiments to tune the RNN to get the best outcome out of it. 

5.1 RNN Tuning Experiments 

When we did these experiments, the LDC ATB3 corpus was not available for us 

yet. So we worked with the freely available diacritized books over the internet.  We 

selected parts of Moghny Almohtaj book (794 K words) and “Alahaad Walmathany” 

book (8 K words) from Tashkila (Zerrouki, 2014) to start experimenting with. The 

following subsections present the experiments conducted to tune the RNN. 

 5.1.1 One-to-many versus one-to-one 

We have tested the one-to-one network against one-to-many network to decide 

which network is better for automatic diacritization. In one-to-one network the target 

sequence has a one-to-one correspondence with the input sequence because the 

diacritical marks are embedded within the Unicode of the letter. On the other hand, in 

the one-to-many network, the target sequence is usually longer than the input sequence 

because the diacritical marks have separate Unicode value from the letter. The internal 

design of each network on RNNLIB package is illustrated in Abandah et al. (2015). 
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Figure 13 shows the diacritization error rates (DER) of the two networks using 

for Moghny Almohtaj book.  We have used one hidden layer (250 nodes) on both 

networks. The one-to-one network achieved lower DER (the proportion of letters with 

incorrectly restored diacritics). Therefore, we decided to use this transcription method in 

the following experiments. 

 

Figure 13. One-to-many vs One-to-one on Moghny Almohtaj book.  

5.1.2 Weight noise regularization 

Overfitting may occur when training any neural network. This happens when the 

neural network memorizes the training examples after long training and produces low 

error rate using the training set. However, when new test data is used, the error rate 

turnout to be very large. We need to get the neural network to generalize well for new 

data. Weight noise regularization is one of the methods that is used to solve this 

problem. 

The standard deviation of the noise is selected to be 0.075 as in (Graves, 2011). 

Figure 14 shows the effect of using weight noise distortion on the classification error 

rate (rate of number of diacritization errors over total number of symbols) using one-to-
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one network of one hidden layer (250 neurons). We used Moghny Almohtaj book for 

RNN training.    

  

Figure 14. The effect of using weight noise distortion on Moghny Almohtaj book. 

We have noticed that using weight noise gives better results. Hence, we use this 

option in the following experiments. 

5.1.3 Network size 

The size of the neural network is a function of the number of hidden layers and 

the number of neurons in each layer. The purpose of this experiment is to determine the 

size of RNN that gives the optimal accuracy. Figure 15 shows the effect of the number 

of hidden layers on the classification error rate. In this experiment, each hidden layer 

has 250 neurons. We found that increasing the number of the layers from one hidden 

layer to two layers improves the accuracy. In contrast, increasing the number of layers 

from two to three has a negative impact on the accuracy. Oversized networks could 

worsen the generalization. So the optimal number of layers for this problem is two 

hidden layers.  
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Figure 15. Effect of changing number of hidden layers using Moghny Almohtaj book. 

We have also tested the impact of each hidden layer size on the error rate. We 

found that smaller number of neurons (less than 250) affects the accuracy rate and 

greater number does not add a significant improvement. Then we tested the effect of 

reducing one of the hidden layers size on error rate. We found that the error rate 

increases as the size of the layer decreases no matter if it was the first, middle, or last 

hidden layer as shown in Figure 16 below. 

 

 

 

 

 

 

Figure 16. Size effect on each hidden layer using Alahaad Walmathany book. 
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Therefore, we adopt the one-to-one transcription method with weight noise 

distortion and two hidden layers each with 250 nodes for all the following experiments. 

5.2 Suggested Schemes Results 

With reference to the explanation of the four schemes described in section 4.3.2, 

we present here the results of each of them. Recall that we have implemented four 

schemes: 

1. Statistical Scheme (stat.)        

2. Partial Diacritization Aid Scheme (partial.)        

3. Morphological Aid Scheme (morph.)        

4. Hybrid Scheme (hybrid) 

The results presented using two metrics: diacritization error rate (DER) and 

word error rate (WER). These are the metrics that are used in the literature for 

performance evaluation where DER represents the proportion of letters with incorrectly 

restored diacritics, and WER represents the proportion of words that have at least one 

diacritization error. 

We find these accuracy measures for LDC ATB3 under the same conditions 

mentioned in previous work of (Zitouni et al., 2006), (Habash and Rambow, 2007), 

(Rashwan and Al-Badrashiny, 2011), and (Said et al., 2013) where: 

1. Words, numbers, and punctuators are all used in calculating accuracy. 

2. Each letter or digit in a word can hold diacritics. 

3. In DER calculation, if the letter holds more than one diacritic (e.g., the 

letter is hosting Shaddah with some other diacritic) then you need to 

restore them all or else it will be counted as one error.   
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4. If the target letter is not diacritized, the same letter in the output sequence 

is skipped as there is no reference to compare it with. 

The results when experimenting on RNN using the four schemes are presented 

in the Table 5. DER_all and WER_all are the error rates when all diacritization errors 

are counted.  Where DER_ilast and WER_ilast are the error rates when the errors in 

diacritization the last letter of each word are ignored. The last raw represents the 

difference between the all-diacritics DER and the ignore-last DER. All schemes are 

trained using the same division of training and testing set of ATB3 that is described in 

Section 4.5 and the reported results are the results after automatic post-processing 

corrections which are described in Section 4.6. 

Table  5. Diacritization results of the four schemes using ATB3 

Accuracy  stat. partial. Morph. Hybrid 

DER_all 3.00 2.74 2.89 2.80 

WER_all 10.36 9.66 10.17 9.92 

DER_ilast 1.42 1.24 1.36 1.26 

WER_ilast 4.52 3.95 4.43 4.07 

DER_last 1.58 1.50 1.53 1.54 

 

We have noticed that in all schemes diacritization error rates decrease when we 

ignore the diacritization error of the last letters of each word. This is expected since 

restoring the syntactic diacritics on the words ends is much difficult than restoring the 

morphological diacritics. Recall that the syntactic diacritic is related to the word 

position in the parsing tree. The WER is also affected by the last letter diacritic since it 

may not appear on the last letter of the word because it may have a suffix and the  

syntactic diacritic would appear on the last letter of the stem of that word such as the 

word “بكتابهِا”. The last raw represents the proportion of last-letter diacritization errors to 

all letters errors. About 50% of the errors are due to the last letter diacritics. 
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5.3 Post-processing Contribution 

The post-processing procedures improve the diacritization error rates. Table 6 

details the contribution of each post-processing correction on DER calculation. 

The Sukun correction has the greatest contribution among other techniques. This 

is predictable since the ATB3 is partially diacritized.  Fatha correction contributes with 

1.1% in reducing the DER values. It is not a significant value but still is considered a 

good practice in improving the error rates.  

Table  6. Impact of the post-processing techniques on DER reduction. 

Technique Reduction % 

Sukun correction 6.3 

Fatha correction 1.1 

Dictionary correction 1.3 

Total 8.7 

 

The dictionary used in ATB3 is created using the diacritized words variants in 

the training set. The ATB3 corpus is implemented using training set of approximately 

the first ten months stories of AnNahar newspaper (~258 K words) and a test set using 

the last two months stories of the same year 2002 (~47 K words). The low contribution 

of dictionary correction is a logical consequence of having new words and vocabulary 

in the test set that are not present in the stories of the train set. If we use a bigger 

dictionary that includes all the words with all of their diacritized variants, we would 

achieve a better correction contribution out of the dictionary correction. 

5.4 Discussion  

We found that the second scheme (partial.) has the best results among the three 

other schemes. It is predictable that it would be better than the statistical approach (the 
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first scheme) since it adds partial diacritization to the input sequences and this would 

apparently help the RNN in restoring the rest of the diacritics.  

We expected that the fourth scheme (hybrid) would be the best implementation 

since it benefits from all the linguistic information added to other schemes. 

Unfortunately, this is not the case. On investigating the problem, we found that the 

contribution of the morphological segmentation is the reason that worsens the results of 

the fourth scheme. It is not that the morphological segmentation is a bad practice; it is 

the way the segmentation implemented that caused the problem. Take the verse “ ّأليس الل

 using BAMA, you will get the ”عبده“ for instance; if you analyze the word ”بكاف عبده

potential solutions shown in Figure 17.  

INPUT STRING: عبده 
LOOK-UP WORD: Ebdh 

  SOLUTION 1: (Eaboduh) [Eaboduh_1]  

             Eaboduh/NOUN_PROP 

     (GLOSS):  + Abdo/Abduh +  

  SOLUTION 2: (Eabadahu) [Eabad-u_1]        

Eabad/VERB_PERFECT+a/PVSUFF_SUBJ:3MS+hu/PVSUFF_DO:3MS 

     (GLOSS):  + worship + he/it <verb> it/him 

  SOLUTION 3: (Eab~adahu) [Eab~ad_1]  

Eab~ad/VERB_PERFECT+a/PVSUFF_SUBJ:3MS+hu/PVSUFF_DO:3MS 

     (GLOSS):  + enslave + he/it <verb> it/him 

  SOLUTION 4: (Eabodh) [Eabod_2]  

              Eabod/NOUN+hu/POSS_PRON_3MS 

     (GLOSS):  + slave/servant + its/his 

Figure 17. BAMA analyses of the word عبده 

Figure 18 shows the summary of BAMA results regarding the morphological 

segmentation. In our morphological scheme, we firstly check for the number of 

segments or morphemes resulted in all solutions. If they were different we return the 

raw input word without segmentation. So this word is used in input sequence as “Ebdh” 

instead of being used as “Eabod + hu”.  
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INPUT STRING: عبده (Ebdh) 

 Word Form Prefix Stem  Suffix1 Suffix2 

  SOLUTION 1 Eaboduh (عَبْدُه) 0 Eaboduh 0 0 

  SOLUTION 2 Eabadahu(ُُعَبَدَه) 0 Eabad a hu 

  SOLUTION 3 Eab~adahu(ُُعَبَّدَه) 0 Eab~ad a hu 

  SOLUTION 4 Eabodh(عَبْده) 0 Eabod hu 0 

Figure 18. Summary of  BAMA analysis of the word عبده 

We could not do better with the available information. If we used a POS tagger, 

we would know that it is the fourth solution that should be selected to be the solution of 

this word. The POS tags are bolded in Figure 17. Incorrect segmentation led to this 

degradation in the results of schemes three and four. 

Nevertheless, it is still better than that the statistical approach since it adds 

morphological information to the input sequences by segmenting words into 

morphemes. This practice seems to be beneficial to the RNN in its process of sequence 

transcription. Figure 19 and Figure 20 demonstrate the error rates DER and WER for 

the four schemes.   

 

 

 

 

 

 

 

Figure 19. DER results of the four schemes 
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Figure 20. WER results of the four schemes. 

 

However, using the morphological segmentation does improve the classification 

as Figure 21 shows. This proves that word segmentation into its morphemes got the 

potential to improve the diacritization accuracy if it were done correctly. We have the 

intention of using the POS feature in the future to apply correct segmentation of the 

words. In addition to that, POS is beneficial in selecting partial diacritics of the partial 

scheme. Refer to the example in Figure 17, if the POS tagging is used and the word  عبده 

was used in a sentence where its role in the parsing tree was verb, then solution 2 and 3 

will be picked for comparison (as they are tagged as verbs). The morphemes of these 

solutions are compared to each other; if they match, then the morpheme is copied as is. 

If they do not, the mapping stops on the letter where the difference first appears. So the 

word عبده with verb POS tagging would look like “Eabdahu” in the second scheme and 

“Eabd+a+hu” in the fourth scheme. 
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Figure 21. RNN classification error rates for all schemes. 

5.4.1 Comparison with state-of-art systems 

Table 7 reviews the accuracy results to restore diacritics automatically of the 

best published researches in the field. Zitouni et al. (2006), Habash and Rambow 

(2007), Rashwan et al. (2011), Said et al. (2013) are all utilizing hybrid approaches that 

combine statistical approaches with rule-based approaches. Abandah et al. (2015) use 

statistical approach based on the deep bidirectional LSTM. All these systems are tested 

using LDC ATB3 to be comparable with each other. 

Table  7. Comparison between our diacritization schemes results with related work. 

System  All Diacritics   Ignore Last   DER Last 
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As depicted in Table 7, our schemes provide the best results compared to all 

state-of-art hybrid approaches. The partial scheme achieved the highest scores among 

the three linguistic-added information schemes and provides 24% DER improvement 

and 15% WER improvement over the best reported hybrid approach of Said et al. 

(2013). 

Abandah, et al. (2015) achieved 2.72 and 9.07% diacritic and word error rates, 

respectively. We achieved 3.00 and 10.36% diacritic and word error rates, respectively, 

using the statistical scheme. Our statistical scheme is exactly the same as Abandah, et 

al. (2015). The only difference is that Abandah, et al. used the LDC ATB3 corpus split 

that initiated by Zitouni et al. (2006) and adopted by the follower researchers. This split 

uses the same set as validation and testing rather than using separate validation and test 

sets as it should. We kept the last 90 documents of the ATB3 for testing only 

(previously used as validation and testing sets). This split keeps the testing set unseen 

by the network until the testing step to give a true diacritization accuracy calculation. 

This is the interpretation of Abandah, et al. superiority over our system. We are 

intending to repeat all the experiments again using Zitouni et al. (2006) split of the 

corpus to provide fair comparisons to other approaches. It is expected that the results of 

all of our schemes will be enhanced when adopting Zitouni’s split. 

5.4.2 Error Analysis 

In this section, we first inspect the distribution of diacritic errors in words and 

whether the last letter diacritic is counted or not. Table 8 shows the distribution of errors 

for all schemes. One% denotes the proportion of the words that have only one error. 

Two% refers to the proportion of the words that have two diacritization errors. If the 

word has three or more errors then it is counted under Three+% column. 
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Table  8. Distribution of word errors for all schemes. 

Scheme Errors per word One% Two% Three+% Total % 

stat. 
Last letter correct 27.10 7.80 1.86 36.76 

Error in last letter 52.97 7.47 2.80 63.24 

partial. 
Last letter correct 26.02 8.32 1.41 35.75 

Error in last letter 55.43 6.32 2.49 64.25 

morph. 
Last letter correct 26.88 8.50 1.36 36.73 

Error in last letter 53.68 6.76 2.83 63.27 

hybrid 
last letter correct 26.33 7.56 1.53 35.42 

Error in last letter 55.31 6.51 2.76 64.58 

 

We noticed that the results are close to each other since we are using the same 

corpus with the same training parameters.  

The table shows that in all schemes about 80% of the words ,that contribute in 

calculating WER, are having one diacritic error, nearly 15% having two errors, and only 

about 4% are having three or more errors. 

Almost more than 63% of the words have error in the last letter. When studying 

sample of the corpus we found that many words that have error in the last letter 

(syntactic diacritics) are not really words, in fact they are proper names or foreign 

transliterated names. So they contribute in increasing the DER and WER percentages. 

We also noticed that restoring shaddah is harder than restoring the other 

diacritics. It is common in some Arabic texts that writers write without diacritics except 

for shadda. In this case, we need to restore all diacritics but shadda. To find out the 

effect of having shadda in the input sequences, we ran two experiments using statistical 

scheme on “Alahaad Walmathany” book. The first has shadda in its input sequences 

(true shadda), and the second do not and has to predict all diacritics including shadda 

(predicted shadda). The results are shown in Figure 22. We found that having shadda in 

input sequences improves the classification error rate by 11%. This is predictable, but 
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we are sticking with the configuration that treats shadda as one of the eight diacritics 

that need to be predicted. 

 

Figure 22. Effect of shadda on error rate. 
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CHAPTER VI 

Conclusions and Future Work  

The basic rule in Arabic text diacritization is أشك ل ما أشك ل; i.e., you need to 

diacritize the words that could cause ambiguity in order to get the correct pronunciation 

and the intended meaning of the word. 

Many researchers in the literature have tried to tackle this problem automatically 

using rule-based, statistical, and hybrid methods. To the best of our knowledge this is 

the first time that RNN is utilized to restore diacritics using a sequence transcription 

network of deep bidirectional LSTM (Abandah, et al., 2015). With the aid of the 

morphological analysis provided by BAMA, we could add extra linguistic information 

to the raw input Arabic text. This has proven to be a good practice and it did increase 

the diacritization accuracy. 

As this method has not been used before to restore diacritics, we did several 

preliminary experiments with different training options to decide the best configuration 

of RNN network. We found that using one-to-one transcription method with two hidden 

layers (each 250 neuron) and applying weight noise distortion is the best configuration. 

Our diacritization schemes have resulted in a superior outcome on LDC ATB3. 

About 24% DER improvement and 15% WER improvement is achieved over the best 

reported hybrid approach of Said et al. (2013). 

BAMA solutions are utilized for lexical analyses that provide partial 

diacritization and morphological segmentation to the input sequences. On the other 

hand, RNN is used to restore the rest of diacritics especially the last ending diacritic that 
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depends on the context. The deep bidirectional LSTM memory cells can handle 

dependences between words in both directions in long sentences. 

In this work, we applied some post processing on diacritics such as sukun and 

fatha corrections and this has improved the results. In future, we could apply other 

corrections according to some other rules of Arabic text diacritization. For example, a 

word-initial letter cannot host shaddah or sukun. Tanween diacritics can only be placed 

on the word-final letter. Also, special diacritization rules can be applied to some letters: 

 do not host shaddah. The letters that precede إ and ء ,ة ;do not host diacritics ى and آ ,ا

long vowels ا, و   and ي carry a diacritic similar to the vowel, i. e, fatha, damma and 

kasrah, respectively (Elshafei, et al., 2006). ؤ , ئ , إ , أ and ء represent the glottal stop, 

but are written in different forms depending on the consonant position in the word. أ 

could have damma or fatha. إ is always diacritized with kasra.  ؤ ,أ and ئ are preceded 

by a diacritic harmonize the consonant of the glottal stop, i. e, fatha, damma and kasrah, 

respectively. 

Our results came consistent with (Azim et al., 2012) and (Rashwan et al., 2011) 

that segmenting words into morphemes of prefixes, stems, and suffixes are more useful 

units to restore diacritics than whole words. This segmentation was not utilized in its 

best capability because we need POS tagger that could assign grammatical part-of-

speech tags to words as it is being used in context. Therefore, we will consider using 

POS tagger in the future so that the selection of a specific analysis out of list of BAMA 

solution will be more precise and beneficial. Take the following BAMA analysis of the 

word من in Figure 23. If we are using a POS tagger, we would select the ultimate 

solution directly. The POS tags are bolded. If the word is tagged as preposition we 

would select the first solution (ن  as the appropriate diacritization form.  If it is tagged (م 
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as pronoun, the solution would be (ن نَّ ) The verb form of this word is .(م   and the noun (م 

form is (  ن  .The POS tagger selects one of these tags according to the context .(م 

INPUT STRING: من  

LOOK-UP WORD: mn 

     Comment:  

       INDEX: P2W48 

  SOLUTION 1: (min) [min_1] min/PREP 

     (GLOSS): from 

  SOLUTION 2: (man) [man_1] man/REL_PRON 

     (GLOSS): who/whom 

  SOLUTION 3: (man~a) [man~-u_1] man~/PV+a/PVSUFF_SUBJ:3MS 

     (GLOSS): bestow/grant + he/it [verb] 

  SOLUTION 4: (man~) [man~_1] man~/NOUN 

     (GLOSS): grace/favor 

Figure 23. BAMA analysis of the word من 

Many Arabic language computer processing researches including automatic 

diacritization have been developed into commercial applications. This is for sure is 

something good but what if these applications were not honest is serving the language? 

What if they use rules that were morphologically or syntactically incorrect?   Even if 

this was not done on purpose, we should be aware to them. Earlier researches in the 

literature were done by people who were not even Arabs like Gal in (Gal, 2002) 

(Vergyri and Kirchhoff, 2004), (Nelken and Shieber, 2005) and others. They tackled the 

diacritization problem using statistical approaches so they did not need to understand 

the language first. Although their efforts are highly appreciated, it is our job as Arabic 

native speakers to develop this research so that we can be sure that it is perfectly 

handled without any potential manipulation. Arabic is the language of Islam, and 

serving it is considered as serving Islam. May Allah accepts this work and rewards us 

on it. 
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Appendix A 

Unicode and Buckwalter transliteration of Arabic characters.    

Arabic Character Shape Unicode Buckwalter 

 Arabic Letter HAMZA ء U+0621  " 

Arabic Letter ALEF with MADDA above آ U+0622 | 

Arabic Letter ALEF with HAMZA above أ U+0623 > 

Arabic Letter WAW with HAMZA above ؤ U+0624  & 

Arabic Letter ALEF with HAMZA BELOW إ U+0625 < 

Arabic Letter YEH with HAMZA above ئ U+0626 } 

Arabic Letter ALEF ا U+0627 A 

Arabic Letter BEH ب U+0628 B 

Arabic Letter TEH MARBUTA ة U+0629 P 

Arabic Letter TEH ت U+062A t 

Arabic Letter THEH ث U+062B v 

Arabic Letter JEEM ج U+062C j 

Arabic Letter HAH ح U+062D H 

Arabic Letter KHAH خ U+062E x 

Arabic Letter DAL د U+062F d 

Arabic Letter THAL ذ U+0630 * 

Arabic Letter REH ر U+0631 r 

Arabic Letter ZAIN ز U+0632 z 

Arabic Letter SEEN س U+0633 s 

Arabic Letter SHEEN ش U+0634 $ 

Arabic Letter SAD ص U+0635 S 

Arabic Letter DAD ض U+0636  D 

Arabic Letter TAH ط U+0637 T 

Arabic Letter ZAH ظ U+0638 Z 

Arabic Letter AIN ع U+0639  E 

Arabic Letter GHAIN غ U+063A g 

Arabic Letter FEH ف U+0641 f 

Arabic Letter QAF ق U+0642  q 

Arabic Letter KAF ك U+0643  k 

Arabic Letter LAM ل U+0644 l 

Arabic Letter MEEM م U+0645 m 

Arabic Letter NOON ن U+0646 n 

Arabic Letter HEH ه U+0647 h 

Arabic Letter WAW و U+0648 w 

Arabic Letter ALEF MAKSURA ى U+0649 Y 

Arabic Letter YEH ي U+064A y 
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Arabic Character Shape Unicode Buckwalter 

Arabic FATHATAN   َ  U+064B F 

Arabic DAMMATAN   َ  U+064C N 

Arabic KASRATAN   َ  U+064D K 

Arabic FATHA   َ  U+064E a 

Arabic DAMMA   َ  U+064F u 

Arabic KASRA   َ  U+0650 i 

Arabic SHADDA   َ  U+0651 ~ 

Arabic SUKUN   َ  U+0652  o 
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 العصبونية الشبكات باستخدام العربية للنصوص الآلي التشكيل

 الراجعة التغذية ذات 

 

 
 إعداد

 آلاء خالد رضوان عربيات

 

 

 المشرف

 غيث علي عبندة الدكتور

 

 

ملخــــــــص        

 

كتب العربية المستخدمة حاليا في المدارس والجامعات وأماكن العمل وفي الالنصوص 
الكثير  لذلك، السبب في هذا هو لتقليل أجور الطباعة. نتيجةوالاعلام غالبا ما تكون غير مشكلة. 

 ن يكونأالكلمة ممكن أن تقرأ بأكثر من طريقة وممكن من الكلمات تكون مبهمة وذلك لأن نفس 
 عينة منمكلمة للها أكثر من معنى. أبناء اللغة العربية يستطيعون استنباط اللفظ الصحيح والمعنى 

ثا لا ة حديخبرتهم وعلمهم باللغة ومن سياق الجملة لكن الأجانب والأطفال الذين يتعلمون اللغ
ل من لتحويات اللغة الحاسوبية مثل تمييز الكلام بشكل آلي وايستطيعون، بالإضافة لذلك تطبيق

لنص نص مكتوب الى كلام منطوق والعديد من التطبيقات الأخرى كلها تحتاج إلى ان يكون ا
 مشكولا.

 التي عالج الباحثون في هذا المجال مسألة التشكيل بطرق مختلفة. من هذه الطرق تلك
طرق باط حركات التشكيل المناسبة، وأخرى تعتمد التعتمد على قواعد النحو والصرف لاستن

رق الاحصائية، وهناك نوع هجين حقق أفضل النتائج لغاية الآن؛ وهو الذي يدمج بين الط
 الاحصائية والمعرفة اللغوية بقواعد النحو والصرف.

 تم تقديم مقترح جديد لتشكيل النصوص في هذا البحث بحيث يتم استغلال الشبكات
ات التغذية الراجعة في استرجاع حركات التشكيل باستخدام طريقة تحويل العصبونية ذ

مد. رة الأالمتسلسلات للشبكات العميقة ثنائية الإتجاه ذات وحدات التخزين طويلة الأمد وقصي
ناتها ى قريأثبتت هذه الطريقة الإحصائية كفاءتها في مجال التشكيل حيث حققت نتائج متفوقة عل

ة ث الأخرى. قمنا بعد ذلك ببناء طرق أخرى تعتمد على هذه الطريقمن الطرق في الأبحا
لى جعة عالإحصائية ولكن باضافة معلومات لغوية تساعد الشبكات العصبونية ذات التغذية الرا

ات تم تعزيز نتائج الشبك استرجاع علامات التشكيل بشكل أفضل لنحصل على طريقة هجينة.
 هذا ساهم في تحسين دقة التشكيل أكثر فأكثر.العصبونية ببعض الوسائل التصحيحة و

حقيق تاضافة المعلومات اللغوية ساعد الشبكات العصبونية ذات التغذية الراجعة على 
 لبياناتامعية جنتائج هي الأكثر دقة لغاية الآن في مجال أنظمة التشكيل الهجينة. باستخدام كتاب 

% 2.74طأ في التشكيل على مستوى الحرف اللغوية الجزء الثالث، حقق نظامنا الهجين نسبة خ
فإن  %. اذا لم نحتسب حركة التشكيل على الحرف الأخير9.66ونسبة خطأ على مستوى الكلمة 

  .كلمةعلى مستوى ال %3.95 % و1.24نسبة الخطأ على مستوى الحرف تصبح 


