
IJDAR manuscript No.
(will be inserted by the editor)

Recognizing handwritten Arabic words using grapheme segmentation
and recurrent neural networks

Gheith Abandah · Fuad Jamour · Esam Qaralleh

Received: May 12, 2013 / Accepted: January 22, 2014

Abstract The Arabic alphabet is used in around 27 lan-
guages, including Arabic, Persian, Kurdish, Urdu, and Jawi.
Many researchers have developed systems for recognizing
cursive handwritten Arabic words, using both holistic and
segmentation-based approaches. This paper introduces a sys-
tem that achieves high accuracy using efficient segmentation,
feature extraction, and recurrent neural network (RNN). We
describe a robust rule-based segmentation algorithm that uses
special feature points identified in the word skeleton to seg-
ment the cursive words into graphemes. We show that careful
selection from a wide-range of features extracted during and
after the segmentation stage produces a feature set that sig-
nificantly reduces the label error. We demonstrate that using
same RNN recognition engine, the segmentation approach
with efficient feature extraction gives better results than a
holistic approach that extracts features from raw pixels. We
evaluated this segmentation approach against an improved
version of the holistic system MDLSTM that won the IC-
DAR 2009 Arabic handwritten word recognition competition.
On the IfN/ENIT database of handwritten Arabic words, the
segmentation approach reduces the average label error by
18.5%, the sequence error by 22.3%, and the execution time
by 31%, relative to MDLSTM. This approach also has the
best published accuracies on two IfN/ENIT test sets.

G. Abandah
Computer Engineering Department, The University of Jordan, Amman,
11942, Jordan
Tel.: +962-6-5355000
Fax: +962-6-5300813
E-mail: abandah@ju.edu.jo

F. Jamour
King Abdullah University of Science and Technology
E-mail: fjamour@gmail.com

E. Qaralleh
Princess Sumaya University for Technology
E-mail: qaralleh@psut.edu.jo

Keywords Optical character recognition · Handwritten
Arabic words · Segmentation · Feature evaluation and
selection · Recurrent neural networks

1 Introduction

Offline cursive handwriting recognition is a hard problem
for which no satisfactory general solutions are yet available.
Major challenges include the overlap and interconnection
of neighboring characters, the huge variability in both qual-
ity and style of human handwriting, and the similarities of
distinct character shapes [9,33].

Arabic is the native language of more than 440 million
people and its alphabet is used in around 27 languages, in-
cluding Arabic, Persian, Kurdish, Urdu, and Jawi [34]. Ara-
bic is always cursive in print and in handwriting. Despite
decades of research, there is still a lack of accurate Arabic
handwriting recognition systems [44].

Arabic handwritten script recognizers can be divided into
holistic and segmentation approaches. Holistic approaches
process the words as a whole without segmentation into
smaller components. Segmentation approaches first segment
the words into characters or strokes, then pass the segments
to the recognizer [38].

Developing effective segmentation algorithms for cursive
script is difficult and requires considerable expert language
knowledge. However such algorithms generally lead to a
substantial gain in recognition accuracy, since they provide
richer feature extraction and allow the recognition of open
vocabulary [35].

Holistic approaches have so far proved more successful
in limited-vocabulary handwriting recognition [44]. These
approaches build on advances in other areas such as speech
recognition and recurrent neural networks (RNNs) [28,14].

2 Gheith Abandah et al.

This paper presents an efficient system for recognizing
handwritten Arabic words that combines efficient segmen-
tation, feature selection, and recurrent neural networks to
achieve state-of-the-art accuracy. The main contributions are
as follows:

– A novel rule-based segmentation algorithm that segments
cursive words into graphemes by collecting special fea-
ture points from the word skeleton.

– A selection of an efficient subset of features for recogniz-
ing handwritten Arabic words through an evaluation of
wide-range of feature extraction techniques.

– A demonstration that the segmentation approach with
efficient feature extraction gives better label and sequence
error rates than a holistic approach that extracts features
from the raw pixels, using the same recurrent neural
network recognition engine.

This paper is organized as follows: The rest of this sec-
tion reviews the Arabic writing system, gives an overview of
related work in Arabic handwriting recognition, and provides
an overview of our system’s processing stages. Section 2
describes the sub-word and grapheme segmentation stages.
Section 3 describes the feature extraction stage and the algo-
rithm used in selecting features. Section 4 describes the RNN
used in the character sequence recognition stage. Section 5
describes the algorithms used in the word matching stage.
Section 6 presents the experimental results, while Section 7
compares our system with the best alternatives, including a
detailed comparison with the record holder for the ICDAR
offline Arabic handwriting recognition competitions [44]. Fi-
nally, Section 8 provides conclusions and plans for future
work.

1.1 Overview of Arabic writing

Arabic is written from right to left and is always cursive.
The Arabic alphabet has 28 basic letters [3]. Each letter has
multiple forms depending on its position in the word. Each
letter is drawn in an isolated form when it is written alone,
and is drawn in up to three other forms when it is written
connected to other letters in the word. For example, the letter
Ain has four forms: isolated (¨), initial («), medial (ª), and

final (©).
Within a word, every letter can connect from the right

with the previous letter. The horizontal level where letters
are connected is the baseline. There are six letters that do
not connect from the left with the next letter. These letters
only have the isolated and final forms. When one of these six
letters is present in a word, the word is broken into sub-words,

often called parts of Arabic words (PAWs). For example, the
word “Arabic” (�

éJ
K. Q«) has two PAWs: the first PAW consists

of the initial Ain («) and final, left-disconnecting, Reh (Q);

and the second PAW consists of the initial Beh (K.), medial

Yeh (J
), and final Teh Marbuta (�
é).

1.2 Related work

Many researchers have developed algorithms to segment
handwritten Arabic words into smaller components [6,45,
55,37,59,32]. A review of several relevant segmentation
algorithms is available in [1]. Segmentation-based papers
generally report the segmentation accuracy and do not report
overall recognition accuracy or report accuracies that are
lower than the holistic systems.

Wshah et al. use the skeleton and the boundary of the
word to do over/under segmentation [59]. The output of the
algorithm is graphemes that represent anything between one
fifth of a letter and three connected letters. They report that
their algorithm segments 93% of the test samples into seg-
ments that each has at most one letters.

Kundu et al. developed a complete system for the recog-
nition of unconstrained handwritten Arabic words using
over-segmentation of characters and variable duration hidden
Markov model [32]. Their segmentation algorithm translates
the 2-D image into 1-D sequence of sub-character symbols.
They report recognition accuracies of only 66% and 60% on
IfN/ENIT database test sets d and e [48], respectively.

Furthermore, many researchers have experimented with
a wide range of feature extraction techniques to recognize
handwritten Arabic text. Some examples can be found in [8,
54,16,38,15]. Feature selection is often used for excluding
irrelevant and redundant features. When successful, it can
greatly reduce system complexity and processing time as
well as improving recognition accuracy [29].

Märgner, El Abed, and Pechwitz have organized a se-
ries of Arabic handwriting recognition competitions [40–44].
The purpose of these competitions is to advance the research
and development of Arabic handwritten word recognition
systems. These competitions use the IfN/ENIT database and
have had excellent participations from the research leaders in
the area. The participations have shown remarkable progress
over seven years. In the following paragraphs, we review a
selection of systems that have participated in these competi-
tions and achieved top results. Moreover, the performance of
these systems is summarized in Section 7.1.

The UOB system developed by Al-Hajj et al. won the first
competition in ICDAR 2005. This system estimates the word
baseline and extracts robust language independent features
using a sliding window, without character segmentation [5].
The system uses a pure HMM recognizer originally devel-
oped for speech recognition.

Recognizing handwritten Arabic words 3

The competitions organizers also participated with their
ARAB-IFN system in ICDAR 2005. This system got the
second place and is described in [47]. The authors performed
a thorough analysis of the IfN/ENIT database. They experi-
mented with advanced techniques to estimate the word base-
line and top line and used these estimations to normalize
the word. The normalization goal is to make the feature ex-
traction more robust against size, slant, skew, and line width
variations of a word. They used two feature extraction meth-
ods that have similar performance. The first method extracts
pixel features using a sliding window with three columns and
the second method extracts skeleton direction features in five
zones using overlapping frames.

The Siemens system submitted by Alary et al. was the
winner of the ICDAR 2007 competition. This system was
adapted for Arabic script from the standard HMM-based
Latin script word recognizer that is widely in use within
Siemens AG for postal automation projects [56].

The MDLSTM system developed by Graves was the
winner of the ICDAR 2009 competition. This system uses a
hierarchy of multidimensional recurrent neural networks [28].
It is further described in Section 7.2. This system holds the
record for recognition accuracy on the main competition test
set, outperforming the winners of both ICFHR 2010 and
ICDAR 2011 competitions.

The UPV-PRHLT system developed by Alkhoury et al.
was the winner of the ICFHR 2010 competition. This system
uses windows of raw, binary image pixels, which are directly
fed into embedded Bernoulli HMMs [7]. The authors found
that best results are obtained with a nine-column window and
when the extracted window is repositioned to align its center
of mass with the window center.

The RWTH-OCR system developed by Dreuw et al. was
the winner of the ICDAR 2011 competition. This system
uses sliding window for HMM-based handwriting recogni-
tion [14]. Discriminative training based on the maximum mu-
tual information criterion is used to train writer independent
handwriting models. Writer adaptation is used to improve
accuracy through an unsupervised confidence-based discrim-
inative training on a word and frame level within a two-pass
decoding process.

The majority of these recognition engines use HMMs to
build letter, PAW, or word models. The engines that build
PAW or word models suffer from limitations in recognizing
PAWs or words that are not represented in the training set;
they are generally limited-vocabulary recognizers. Moreover,
they generally rely on sliding windows to extract features
from the word image. Such windows limit the variety of fea-
tures that can be extracted. The size of these windows often
requires tuning according to the writing style, which signifi-
cantly affects the recognition accuracy as reported in [7].

Our system segments words to elementary graphemes to
eliminate the problems associated with building PAW and

word models; thus it may support open vocabulary. It also
eliminates the need to tune the feature extractor for differ-
ent writing styles without sacrificing the recognition accu-
racy. The use of an RNN with bi-directional long short-term
memory (BLSTM) enables high letter recognition rates. This
accuracy is possible even with difficult letters because of
BLSTM’s ability to exploit context information. The use of
connectionist temporal classification (CTC) output layer fa-
cilitates training without the need to manually segment and
annotate the letters in each word.

1.3 System overview

Figure 1 summarizes the five main stages of our approach to
recognizing handwritten Arabic words: (i) sub-word segmen-
tation, (ii) grapheme segmentation, (iii) feature extraction,
(iv) sequence transcription, and (v) word matching. Unlike
most of the available recognition systems, the sequence tran-
scription stage does not use a language model. Thus, word
matching in our system is optional, and words can be added
or removed from the dictionary to enhance the word recog-
nition accuracy without the need to re-train the system. An
earlier version of this approach, based on modifying the OCR
system ‘Tesseract’ [58], is described in Ref. [1]. Tesseract
was chosen then because it is an accurate and open-source
system.

In this paper we only consider isolated word recognition.
When the system is used to recognize complete documents,
line and word segmentation must be added as preprocessing
stages.

We now describe each of the five recognition stages in
detail.

2 Segmentation

The input word is segmented into graphemes in two stages;
the word is first segmented into sub-words, then the sub-
words are segmented into graphemes.

2.1 Sub-word segmentation

In this stage the baseline is estimated first; then the main and
secondary bodies are identified, the main bodies of the sub-
words are extracted, and the secondary bodies are assigned
to their respective main bodies to yield the sub-words.

We estimate the word baseline using the horizontal pro-
jection histogram method [39]. The row that contains the
maximum number of black pixels is the baseline. This sim-
ple method is sufficient for our purposes. We only use the
baseline estimation in recognizing secondary bodies and ex-
tracting some configuration features, as described below.

4 Gheith Abandah et al.

Baseline and

Secondary Bodies

Identification

ركّب وب يديس

 ّ و ي د ي

Sub-word Extraction

and Secondary Bodies

Assignment

Thinning and Feature

Points Detection

Segmentation and

Grapheme Separation

Feature Extraction

Sequence Transcription

(LSTM RNN with CTC)

Word Matching

(Dictionary)

Output Text

Input Image

ر ّ و ي د ي

x1

.

.

xm

x1

.

.

xm

x1

.

.

xm

x1

.

.

xm

x1

.

.

xm

x1

.

.

xm

x1

.

.

xm

x1

.

.

xm

x1

.

.

xm

x1

.

.

xm

x1

.

.

xm

x1

.

.

xm

x1

.

.

xm

x1

.

.

xm

x1

.

.

xm

x1

.

.

xm

x1

.

.

xm

x1

.

.

xm

x1

.

.

xm

S
u

b
-w

o
rd

S
e

g
m

e
n

ta
ti

o
n

G
ra

p
h

e
m

e

S
e

g
m

e
n

ta
ti

o
n

Fig. 1 Processing stages of our Arabic handwriting recognition system

Fig. 2 (a) Secondary bodies identification, (b) sub-words extraction

We use a contour-based connected components extraction
algorithm to identify the components of the image and its sec-
ondary bodies [11]. A component is classified as a secondary
body when one of the following conditions applies: (i) it is
very small compared to other components in the same image,
(ii) it is relatively small and far from the baseline, or (iii) it is
a vertical line with a relatively large component below it. The
light bodies in Fig. 2(a) are examples of identified secondary
bodies and are labeled s1 through s8. Furthermore, secondary
bodies that are close to each other and are similar in size are
considered one secondary body group, e.g., s8. As explained
below, this grouping is important in grapheme separation.

Components that are not secondary bodies are the main
bodies of the sub-words. Every main body is extracted with
its secondary bodies as one sub-word and is passed to the
next stage. Secondary bodies are examined from right to left.
For every secondary body, the algorithm assigns it to a main

body according the the following rules (first that applies): (i)
the main body that is above its midpoint, e.g., s1, (ii) below
its midpoint, e.g., s4, (iii) above its left endpoint, e.g., s6, (iv)
below its left endpoint, e.g., s2, (v) to its right, e.g., s8, or (vi)
the rightmost main body in the word, e.g., s5. In Fig. 2(b),
the upper word contains three sub-words (labeled w1 through
w3), and the lower word contains four sub-words (labeled
w4 through w7). Additionally, any overlap between adjacent
sub-words is eliminated by separating them horizontally.

2.2 Grapheme segmentation

We now describe the two steps of grapheme segmentation:
feature points detection and grapheme separation.

2.2.1 Feature point detection

In this step, morphological features are detected in the skele-
ton of the sub-words. The secondary bodies are temporarily
removed before using Deutsch’s thinning algorithm to get the
skeleton of the sub-word’s main body [12]. This algorithm is
robust and works well with handwritten Arabic script. How-
ever, similar to other algorithms, it sometimes removes fine
features such as Seen teeth (�) [3].

The feature points detected are end points, branch points,
and cross points. They are detected by examining the eight
neighbors of every skeleton pixel. An end point has one black
neighbor, a branch point has three, and a cross point has four.

Our algorithm identifies continuities to detect edge points.
A continuity is a continuous string of black pixels in the
skeleton that connects two feature points. If the starting point
is the ending point, then the continuity is a loop.

The edge points are points where the direction of the
continuity changes and are detected using the polygonal ap-
proximation of the skeleton. The algorithm used to find the
polygonal approximation is due to Douglas and Peucker [13].

Each vertex in the polygon that is not an end point, branch
point, or cross point is considered an edge point. For each
edge point the bisector angle is found. This is the angle be-
tween the bisector line of the edge and the horizontal line. For
more details and examples, refer to Ref. [1]. Figure 3 shows
example three sub-words with their feature points identified.
The edge point marked with BA ∼ 0° is an example edge
point with a horizontal bisector.

Recognizing handwritten Arabic words 5

Fig. 3 Grapheme segmentation examples. EP: End point, BP: Branch
point, CP: Cross point, BA: Bisector angle of an edge point

Once the feature points are detected, a continuity that con-
tains them is split into as many child continuities as needed
so that each new continuity connects two feature points and
has no feature points inside it. This yields a list of continuities
that each has two ends. The orientation of the continuity and
the attributes of its ends are used to find the segmentation
points, as explained in the following subsection.

2.2.2 Grapheme separation

Continuities that have the following properties are segmented
to split the sub-word into graphemes. Figure 3 shows three
continuities that are segmented at the shown points and
marked C1, C2, and C3. Other example continuities that
are not segmented are marked N1 through N5.

1. Low slope: the orientation of the continuity should be
between −45° and +45°. N1 is not segmented because
its orientation is larger than 45°.

2. If the right end is an edge, its bisector angle should be
between 45° and 225° as in C1 and C3.

3. The left end is not an end point. N3 and N4 are not
segmented because they violate this property.

4. If the left end is an edge, its bisector angle should be
between −155° and 65° as in C3.

5. It is not totally covered from above or from below. This
property avoids segmenting loops and some continuities
such as N2.

The angle ranges above are selected to cover the various
cases of Arabic sub-word configurations. For example, the
sub-word (A

	
K) contains two letters: the right letter is initial

Noon (
K) that has an edge with bisector angle of 135°, and

the left letter is final Alef (A) that has an edge with bisector
angle of 45°. The horizontal continuity connecting the two
edge points in this sub-word satisfies the five properties above
and is segmented.

Each continuity that should be segmented is then exam-
ined to find the best cut point in it. The cut point is searched
for starting from the first left quarter of the continuity. The
first point in a horizontal small segment of the continuity
is the cut point. If the cut point happens to cut a letter (by
inspecting the stroke width at this point), the cut point is
shifted to the point where the stroke width is minimum. If
the continuity has no horizontal segments, its midpoint is
selected as the cut point. This method enhances the accuracy
of secondary body assignment.

Finally, the secondary bodies are reassigned to the seg-
mented graphemes using the assignment method described in
Subsection 2.1. The entire secondary body group is assigned
to one grapheme because such group belongs to one letter.
The segmented main bodies and their respective secondary
bodies are then passed to the feature extraction stage.

3 Feature Extraction and Selection

As the above segmentation algorithm identifies sub-words,
secondary and main bodies, and feature points, it collects
features of the identified and segmented bodies.

3.1 Feature extraction

Additional features are extracted in the feature extraction
stage. We started with extracting a total of 103 features that
are listed in Table 1. These features can be grouped into six
classes: statistical, configuration, skeleton, boundary, elliptic
Fourier descriptor, and directional features and are described
in the following paragraphs. More details about the extraction
of these features can be found in Refs. [3,4].

3.1.1 Statistical features

These 15 features are extracted from the object’s binary im-
age. The area is calculated from the binary image using
A = ∑x ∑y B(x,y). The object’s width W and height H are
also used to derive the scale invariant feature: width to height
ratio W/H. The fraction of black pixels in each of the four
quadrants are UR/A, UL/A, LL/A, and LR/A.

The object’s center of mass (x,y) is used in computing
the normalized central moments of order (u+ v) by ηu,v =

6 Gheith Abandah et al.

Table 1 List of extracted features

No Feature Description

St
at

is
tic

al
Fe

at
ur

es

1 A Area
2 W Width
3 H Height
4 W/H Width to height ratio
5 UR/A Upper right quadrant pixels fraction
6 UL/A Upper left quadrant pixels fraction
7 LL/A Lower left quadrant pixels fraction
8 LR/A Lower right quadrant pixels fraction
9 x Center of mass: x coordinate
10 y Center of mass: y coordinate
11 η2,0 Normalized central moment
12 η0,2 Normalized central moment
13 xN Normalized COM: x coordinate
14 yN Normalized COM: y coordinate
15 θ Orientation angle

C
on

fig
ur

at
io

n
Fe

at
ur

es

16 U/A Fraction of pixels above the baseline
17 Dy Center of mass to baseline distance
18 DTop Top pixel to baseline distance
19 Loops The number of closed loops
20 Form The position in the sub-word; iso-

lated, initial, medial, or final
21 Is Sec Used to distinguish secondary bodies

from main bodies
22 S No. of secondary bodies for a main

body (S = Sa +Sb)
23 Sa No. of secondary bodies above
24 Sb No. of secondary bodies below
25 Sec Conf Configuration of secondary bodies

Sk
el

et
on

26 Branchs No. of branch points in the skeleton
27 Ends No. of end points in the skeleton
28 E1 Edge point feature 1
29 E2 Edge point feature 2

B
ou

nd
ar

y 30 m The number of boundary pixels
31 T Perimeter Length
32 T/2D Perimeter to diagonal ratio
33 γ Compactness ratio

34–59 an,bn,cn,dn 26 Elliptic Fourier Descriptors, n =
0,1, . . . ,6

60–103 DR,C
r,c,d 44 Directional Features

1
Ak ∑x ∑y(x− x)u(y− y)vB(x,y) where k = 1+(u+ v)/2. In
this work, we only generated the top two most relevant mo-
ments: η2,0 and η0,2 [4].

The normalized center of mass (xN ,yN) is calculated
using xN = x−(W−1)/2

W/2 and yN = y−(H−1)/2
H/2 .

The orientation θ of an elongated object is the orientation
of the elongation axis with respect to the horizon [3].

3.1.2 Configuration features

These 10 features are extracted from the configuration of the
object and its surroundings. Relative to the word’s baseline,
we extract three features: the fraction of pixels above the
baseline U/A, the distance from the center of mass to the

Fig. 4 Example handwritten letter, its boundary, and four images that
contain boundary pixels (dark pixels) of direction codes d = 0, 1, 2, and
3, respectively.

baseline Dy, and the distance from the top black pixel to the
baseline DTop.

The Loops feature is the number of closed loops in the ob-
ject. The Form feature is a categorical feature of the position
of the object in its sub-word.

The remaining five features are related to the object type
and its secondaries. The binary feature Is Sec is true when
the object is a secondary object. For a main object, the num-
ber of its secondary objects is S. Sa and Sb specify for a main
object the number of secondary bodies above it and below
it, respectively. The secondary configuration Sec Conf fea-
ture specifies one of four main object types: object without
secondaries, with secondaries above it, below it, and with
secondaries above and below it.

3.1.3 Skeleton features

These four features are extracted from the object’s skeleton.
Branchs is the number of branch points in the object’s skele-
ton and Ends is the number of end points. The features E1
and E2 are edge points experimental features computed as
the sum of moments of the bisection angles of the body’s
edge points using E1 = ∑i xiyi|BAi| and E2 = ∑i xiyiBAi, re-
spectively.

3.1.4 Boundary features

These four features are extracted from the object’s boundary.
Figure 4 shows an example handwritten letter and its bound-
ary. For the outer boundary pixels (x(t),y(t)), t = 1,2, . . . ,m,
the number of boundary pixels is m. The Freeman chain code
is used to compactly encode the boundary pixels [17]. The di-
rection from every boundary pixel to the next boundary pixel
is put in the chain. The direction codes f (t) ∈ {0,1, . . . ,7}
are used such that right is 0, up-right is 1, up is 2, etc.

The perimeter length is T =∑
m
t=1 L(f (t)) where L(f (t))=

1 for f (t) even and
√

2 for f (t) odd. The perimeter to diag-
onal ratio is T/2D = (T/2)/

√
W 2 +H2. The compactness

ratio γ = T 2/4πA.

Recognizing handwritten Arabic words 7

3.1.5 Elliptic Fourier descriptors

The outer boundary is a piece-wise linear closed curve and is
used in extracting the elliptic Fourier descriptors (EFD) [31].
The four descriptors of order n are found by

an =
T

2n2π2

m

∑
i=1

∆xi

∆ ti
[cosφi− cosφi−1] (1)

bn =
T

2n2π2

m

∑
i=1

∆xi

∆ ti
[sinφi− sinφi−1] (2)

cn =
T

2n2π2

m

∑
i=1

∆yi

∆ ti
[cosφi− cosφi−1] (3)

dn =
T

2n2π2

m

∑
i=1

∆yi

∆ ti
[sinφi− sinφi−1] (4)

where
φi = 2nπti/T, ∆xi = x(i)− x(i−1),

∆yi = y(i)− y(i−1), ∆ ti =
√

∆x2
i +∆y2

i ,

ti = ∑
i
j=1 ∆ t j, T = tm = ∑

m
j=1 ∆ t j.

(5)

We extract a set of 26 EFDs comprising a0, c0, and
an,bn,cn,dn for n = 1,2, . . . ,6.

3.1.6 Directional features

The directional features are extracted from the chain codes of
the object’s boundaries [36]. Only four of the eight directions
are relevant as the last four directions are mirror images
of the first four. The four directional features Dd for d =

0,1,2,3 are defined as Dd = ∑t Cd(f (t)) where Cd(f (t)) = 1
for (f (t) mod 4) = d and 0 otherwise. Figure 4 shows four
images for the boundary pixels of directions codes d = 0, 1,
2, and 3, respectively. In other words, the feature Dd is the
number of pixels of direction code d.

To exploit the topological distribution of the directional
features, the object is split into regions of R rows and C
columns. Then the four directional features are found for each
region separately to get features DR,C

r,c,d . For an R×C split,
there are 4RC directional features where r = 0,1, . . . ,R−1,
c= 0,1, . . . ,C−1, and d = 0,1,2,3. For example, the feature
D2,3

0,1,2 is the number of vertical pixels in Row 0, Column 1 of
an image split into 2 rows and 3 columns.

We extracted features from three splits 1×1, 2×2, and
2×3, totaling 4× (1×1+2×2+2×3) = 44 features.

3.2 Feature selection

Feature selection is important in many pattern recognition
problems for excluding irrelevant and redundant features. It
typically decreases system complexity and processing time
and often improves recognition accuracy [29].

We tested several feature selection techniques ranging in
complexity from simply picking the best individual features
to evolutionary optimization algorithms [4]. We concluded
that the minimal-redundancy-maximal-relevance (mRMR)
technique [50] offers the best compromise between accuracy
and speed, and therefore we use this technique in this paper.

In the mRMR algorithm, the subset S of m best features
is grown iteratively from the complete set of features X using
forward search algorithm. The following criterion is used to
add the x j feature to the previous subset of m−1 features:

argmax
x j∈X−Sm−1

[
I(x j;ω)− 1

m−1 ∑
xi∈Sm−1

I(x j;xi)

]
(6)

This algorithm maximizes the difference between the mu-
tual information of the feature x j and class ω (relevance) and
the mean of the mutual information values between feature
x j and previously selected features xi ∈ Sm−1 (redundancy).
Where the mutual information for two random variables x
and y is found in terms of their probabilistic density functions
p(x), p(y), and p(x,y) as

I(x;y) =
∫∫

p(x,y) log
p(x,y)

p(x)p(y)
dxdy. (7)

As described in Section 6.3, we use a feature subset of
length m = 30. For each object i, the m selected features are
assembled in a feature vector xi1,xi2, . . . ,xim.

Using feature statistics from the training samples, the
feature vector is normalized to zero mean and unit standard
deviation using x̂ik = (xik− xk)/σk, for k = 1,2, . . . ,m. The
normalized vector is then passed to the sequence transcription
stage.

4 Sequence Transcription

The sequence transcription stage maps from sequences of
feature vectors to sequences of recognized characters. Our
sequence transcription is carried out using a recurrent neural
network (RNN) with the bi-directional long short-term mem-
ory architecture (BLSTM) [27]. The connectionist temporal
classification (CTC) [23] output layer is used to determine a
probability distribution over all possible character sequences,
given a particular feature sequence. A list of the most proba-
ble output sequences are then selected and passed along to
the final word matching stage of recognition.

8 Gheith Abandah et al.

State

Net input

Input
gate

Output
gate

Forget
gate

Net ouput

Fig. 5 LSTM block

The combination of BLSTM and CTC has been success-
fully applied to both online and offline handwriting recogni-
tion in the past [26]. Our experiments on BLSTM-CTC were
carried out with the open source software library RNNLIB
[19].

4.1 Bi-directional long short-term memory

Recurrent neural networks exploit the sequence context through
cyclic connections in the hidden layer [20]. Given an input
sequence (x1, . . . ,xT), a traditional RNN computes the hid-
den vector sequence (h1, . . . ,hT) and the output sequence
(y1, . . . ,yT) by iterating the following equations from t = 1
to T :

ht = H (Wxhxt +Whhht−1 +bh) (8)

yt = Y
(
Whyht +by

)
(9)

where Wxh is the input-hidden weight matrix, Whh is the
hidden-hidden weight matrix, Why is the hidden-output weight
matrix, bh and by are bias terms, H is the hidden layer func-
tion and Y is the output layer function.

In traditional RNNs H is usually element-wise applica-
tion of the tanh or logistic sigmoid σ(x) = 1/(1+ exp(−x))
functions. However, the long short-term memory (LSTM)
architecture is better at finding and exploiting long range
context information [30,18]. The LSTM blocks replace the
non-linear units in the hidden layer of traditional RNNs [30].
Figure 5 shows an LSTM block which consists of a core state
cell and three gates. The input gate controls storing into the
state cell and allows holding information for long periods of
time. The forget gate affects the internal state and the output
gate controls the output activation function.

For the version of LSTM used in this paper H is imple-
mented by the following composite function:

αn = σ (Wiα in +Whα hn−1 +Wsα sn−1) (10)

βn = σ
(
Wiβ in +Whβ hn−1 +Wsβ sn−1

)
(11)

sn = βnsn−1 +αn tanh(Wisin +Whs) (12)

γn = σ
(
Wiγ in +Whγ hn−1 +Wsγ sn

)
(13)

hn = γn tanh(sn) (14)

where α , β , γ and s are respectively the input gate, forget
gate, output gate and state vectors, all of which are the same
size as the hidden vector h. The weight matrix subscripts
have the obvious meaning, for example Whα is the hidden-
input gate matrix, Wiγ is the input-output gate matrix etc. The
weight matrices from the state to gate vectors are diagonal,
so element m in each gate vector only receives input from
element m of the state vector. The bias terms (which are
added to α , β , s and γ) have been omitted for clarity.

A bi-directional RNN [57] computes the forward hid-
den sequence (

−→
h 1, . . . ,

−→
h T), the backward hidden sequence

(
←−
h 1, . . . ,

←−
h T), and the output sequence (y1, . . . ,yT) by first

iterating the backward layer from t = T to 1:

←−
h t = H

(
Wi
←−
h it +W←−h←−h

←−
h t+1 +b←−h

)
, (15)

then iterating the forward and output layers from t = 1 to T :

−→
h t = H

(
Wi
−→
h it +W−→h −→h

−→
h t−1 +b−→h

)
(16)

yt = Y
(

W−→h y

−→
h t +W←−h y

←−
h t +by

)
(17)

The advantage of using bi-directional RNNs (BRNNs)
is that the output layer is able to make use of both past and
future context at each point along the sequence. Combing
BRNNs with LSTM gives bi-directional LSTM (BLSTM;
[27]), the RNN architecture used throughout this work.

4.2 Subsampling layers

Using multiple bi-directional RNN hidden layers can lead
to improved performance, compared to a single-level archi-
tecture. However it can lead to a very large number of con-
nection weights between the forward and backward layers
in successive levels, which may increase overfitting as well
as computational cost. One way to reduce the number of
weights is to separate the levels with feedforward subsam-
pling layers. Figure 6 shows one subsampling layer between
the two hidden layers of a neural network.

The two layers in each level feed forward to a subsam-
pling layer, which then feeds forward to the two layers in
the next level up. The total number of inter-level weights
can therefore be controlled by adjusting the sizes of the sub-
sampling layers. For the experiments in this paper, all the

Recognizing handwritten Arabic words 9

Input
layer

Hidden
layer

Subsample
layer

Hidden
layer

Output
layer

Fig. 6 Neural network topology with subsampling layer

subsampling layers consist of standard summation units with
tanh activation functions.

The RNN topology (specifically the number of hidden
layers, and the number of LSTM cells in each hidden layer)
was optimized through experimentation as described in Sec-
tion 6.4.

4.3 Connectionist temporal classification

Connectionist temporal classification (CTC) is an output
layer designed for sequence transcription with RNNs [23].
It trains the network to predict a conditional probability dis-
tribution over all possible output transcriptions, or labelings,
given the complete input sequence. It therefore does not re-
quire pre-segmented training data.

A CTC output layer contains one more unit than there
are elements in the alphabet L of labels for the task. The first
|L| outputs estimate the probabilities of observing the corre-
sponding labels at that time, and the extra output estimates the
probability of observing a ‘blank’, or no label. For a length
T input sequence x, the complete sequence of CTC outputs
therefore defines a probability distribution over the set L′T of
length T sequences over the alphabet L′ = L∪{blank}. We
refer to the elements of L′T as paths. Since the probabilities
of the labels at each time step are conditionally independent
given x, the conditional probability of a path π ∈ L′T is given
by

p(π|x) =
T

∏
t=1

yt
π(t), (18)

where yt
k is the activation of output unit k at time t.

Paths are mapped onto labelings l ∈ L≤T by an operator
B that removes first the repeated labels, then the blanks. The
conditional probability of some labeling l ∈ L≤T is the sum

of the probabilities of all paths corresponding to it:

p(l|x) = ∑
π∈B−1(l)

p(π|x). (19)

This ‘collapsing together’ of different paths onto the same
labeling is what allows CTC to use unsegmented data, be-
cause it means that the network only requires the order of the
labels to define its distribution, and not their alignment with
the input sequence.

For a training set S, consisting of pairs of input and target
sequences (x,z), the CTC objective function O is the negative
log probability of the network correctly labeling all of S:

O =− ∑
(x,z)∈S

log p(z|x). (20)

This function can be efficiently differentiated with respect to
the network outputs using the CTC forward-backward algo-
rithm [23]. Back propagation through time [53] can then be
used to find the derivatives of O with respect to the weights,
and the network can be trained with gradient descent.

4.4 Error measures

A common error measure for sequence transcription tasks is
the test set label error rate, which is the total number of in-
sertions, deletions and substitutions on the test set, divided by
the total number of target labels in the test set, and multiplied
by 100.

For complete word recognition however, a more appropri-
ate error measure is the word, or sequence, error rate, which
is simply the fraction of test set sequences that were correctly
transcribed.

5 Word Matching

When a dictionary is available, a word matching algorithm is
needed. Word matching can greatly improve accuracy since
many transcription mistakes that result in non-dictionary
words are corrected. The example in Fig. 1 shows how word
matching corrects the miss-transcribed last letter from Lam

(È) to the letter Reh (P), drawn underlined.
The two algorithms we use select the k most probable

dictionary words using the RNN output of the sequence tran-
scription stage. If the dictionary is a set of words S and the

10 Gheith Abandah et al.

output sequences are l ∈ L≤T , then the word matching stage
outputs the k words s ∈ S that have lowest values of the cost
function D(s,L), where L is the set of the l most probable
output sequences (highest p(l|x)). This function estimates
the average distances between the dictionary word and the
output sequences. The following subsections describe the
two word matching algorithms used.

5.1 Weighted edit distance

The weighted edit distance algorithm WED is based on the
edit distance between two sequences ed(l,s) [52] and is
found through the summation

D(s,L) = ∑
l∈L

(1− p(l|x))× ed(l,s), (21)

where p(l|x) is the output conditional probability. The stan-
dard edit distance is defined as the minimum total number of
changes, insertions, and deletions required to change pattern l
to pattern s. However, in WED, changes take values between
0 and 1 that represent how dissimilar the two interchanged
letters are. For this purpose, we created a look-up table based
on the Arabic letter shapes. For example, as the letters Teh

(
�

H) and Theh (
�

H) have similar shapes, the table gives
low change value for these two letters. More detail on this
algorithm is in Ref. [2].

5.2 RNNLIB word matching

The RNNLIB has a word matching algorithm that is inte-
grated in the CTC output layer. This algorithm is the CTC
token passing algorithm described in Refs. [24,21]. Through
this algorithm the CTC labeling is constrained to only the se-
quences of the complete dictionary words. For any word that
has variant spellings, this algorithms sums the probabilities
of all the word’s variants to find the word probability.

6 Experimental Results

This section describes the experiments carried out to tune the
recognition system for efficient results.

Table 2 The IfN/ENIT database of handwritten Arabic words

Set Names PAWs Characters

Training sets

a 6,537 28,298 51,984
b 6,710 29,220 53,862
c 6,477 28,391 52,155
d 6,735 29,511 54,166
e 6,033 22,640 45,169

Test sets f 8,671 32,918 64,781
s 1,573 6,109 11,922

6.1 Samples

Our experiments are based on the IfN/ENIT database of
handwritten Arabic words [48]. This database is used by
more than 110 research groups in about 35 countries [44].
The database version used is v2.0p1e and consists of 32,492
Arabic words handwritten by more than 1,000 writers. These
words are 937 Tunisian town/village names. This database is
divided into five training sets and two test sets. The numbers
of names, parts of Arabic words (PAWs), and characters in
each of the sets are shown in Table 2.

The two test sets were publicly unavailable and were
only used in competitions. Therefore, we use the five training
sets for training, validation, and testing as described below.
However, the two test sets were recently released and we
were able to use them in some tests as shown in Table 5.

In the rest of this paper, we show results of experiments
carried out by training the system using some of these sets
and testing using some other set. We refer to each experiment
by its training sets followed by its test set, separated by a
hyphen. For example, abcd-e experiment indicates that the
training sets are a through d and the test set is e. Ten percents
of the training samples are randomly held out for validation
in the RNN training.

6.2 Segmentation algorithm evaluation

We have evaluated the segmentation algorithm through in-
spection. Figure 7 shows four output examples of this algo-
rithm. The four examples a through d consist of 7, 8, 8, and
7 letters, respectively. Most letters are segmented into one

Recognizing handwritten Arabic words 11

Fig. 7 Examples of the segmentation algorithm results

Table 3 Summary of segmentation algorithm evaluation

Measure Count Percentage

Total words 107 100%
Correctly-segmented words 103 96%
Under-segmented words 1 1%
Over-segmented words 3 3%

grapheme but some are over-segmented into two or three.
The over-segmented letters in these examples are: 	á in words

b and c, �
é in word d, and � in word d. It is the responsibility

of the transcriber in the following stage to map one or more
graphemes into their corresponding letters. Note that there
are also some cases (not shown) where multiple letters in a
vertical ligature are segmented into one grapheme.

Table 3 summarizes the evaluation of 107 samples se-
lected from the IfN/ENIT database. The segmentation algo-
rithm produces the expected graphemes accurately in more
than 96% of the samples. Only one sample is under seg-
mented and three samples suffer over segmentation. This
evaluation was done by human inspection at an early stage
of the system development to ensure that the segmentation
algorithm is accurate. As illustrated in Section 7, the overall
system evaluation on tens of thousands of samples validates
the results of this early evaluation.

6.3 Selecting features

We used the mRMR feature selection tool developed by H.
Peng to select the best subsets of features for recognizing
the segmented objects [49]. We extracted 103 features from
17,943 objects. These sample objects belong to 1,696 ran-
domly selected word images of sets a and b: 1,233 words
from set a and 463 words from set b. The features along
with their grapheme codes were presented to the mRMR
tool. This tool discretizes continuous features using their
means and standard deviations at thresholds x̄k±nkσk, where
n = 0,1,2, . . . and we selected k = 0.2. Table 4 lists the
mRMR output of the 103 features ordered according to their
mRMR scores (where ‘score’ is ‘relevancy minus redun-
dancy’ of the feature as computed by Eqn. 6).

It is interesting to note that the top two features are the
configuration features: Is Sec that distinguishes a secondary
object from a main object and Form that specifies the object’s

 15

 20

 25

 30

 35

 40

 45

 0 10 20 30 40 50 60 70 80 90 100 110

La
b
e
l
E
rr

o
r

(%
)

No. of Features

mRMR
EFD
Dir

EFD+6
Dir+6

Fig. 8 The label error for abcd-e experiments using multiple feature
subsets

position in the sub-word. Note also that the subset of m = 30
includes only three statistical features, five configuration fea-
tures, two boundary features, seven EFDs, and 10 directional
features mainly of the 2×2-region split.

To find how many features are needed to achieve good
recognition accuracy, we find the label error as a function of
the number of features used. In each experiment, we use best
m mRMR features; for m from 5 to 103 in varying steps. The
results are shown in Fig. 8. In each experiment, we train the
3S RNN (described the next subsection) using the m features
from sets a through d and find the label error of the test set e
(abcd-e experiments).

The curve in this figure shows that the label error de-
creases rapidly as m increases from 5 to 20 and does not
improve for m > 30. Therefore, we adopt the top 30 features
only in our system. The remaining 73 features are not used
in the final system as their extraction does not provide added
accuracy.

Set e is used here for testing because it is the hardest; it
has the highest label error among the five sets. However, the
other sets demonstrate similar curve shapes but with lower
label error and curve knees at smaller m values.

6.3.1 Simple feature sets

The set of 30 features used in our final system requires mul-
tiple feature extraction techniques. We also performed four
more experiments to test simpler feature sets; their results are
shown as four points in Fig. 8. The four sets and their label
errors are:

EFD is the 26 elliptical Fourier descriptor features, 28%.
Dir is the 44 directional features, 32%.
EFD+6 is the 26 EFDs and six selected features, 22%.
Dir+6 is the 44 directional features and six selected features,

22%.

The six selected features are: A, W , H, Is Sec, Form,
and Dy. These features are selected because they are readily

12 Gheith Abandah et al.

Table 4 The features as ordered by the mRMR tool; the best m features are the top features from 1 through m, inclusive

Feature Score Feature Score Feature Score Feature Score

1 Is Sec 0.720 31 m 0.243 61 c4 0.192 91 D2,3
0,0,0 0.136

2 Form 0.399 32 c5 0.240 62 D2,3
1,1,2 0.192 92 c6 0.135

3 c1 0.422 33 D2,3
1,2,1 0.238 63 D2,3

0,1,1 0.192 93 Sa 0.133
4 T/2D 0.392 34 D2,2

1,0,3 0.238 64 W 0.193 94 LR/A 0.128
5 Ends 0.370 35 a3 0.238 65 D2,3

1,0,3 0.190 95 D2,3
0,2,1 0.122

6 a2 0.377 36 E1 0.230 66 D2,2
1,0,1 0.190 96 d6 0.122

7 η0,2 0.345 37 D2,2
0,1,0 0.230 67 D2,3

0,0,1 0.188 97 D2,3
0,0,3 0.117

8 T 0.322 38 D2,2
1,0,2 0.229 68 D2,3

0,1,2 0.185 98 d1 0.114
9 Dy 0.314 39 A 0.231 69 Sec Conf 0.184 99 UR/A 0.114
10 Branchs 0.320 40 D1,1

0,0,3 0.226 70 D2,3
0,2,0 0.183 100 b6 0.112

11 xN 0.310 41 c2 0.224 71 θ 0.179 101 x 0.104
12 H 0.311 42 D2,2

0,0,1 0.219 72 d4 0.176 102 a0 0.089
13 b1 0.288 43 c3 0.216 73 D2,2

1,1,0 0.174 103 Sb 0.088
14 b3 0.292 44 D2,3

0,1,0 0.216 74 b4 0.173
15 D2,2

1,1,1 0.289 45 D2,3
1,1,1 0.216 75 a5 0.173

16 D1,1
0,0,2 0.289 46 D2,3

1,2,2 0.215 76 c0 0.172
17 D2,3

1,0,2 0.271 47 D2,3
1,2,3 0.211 77 η2,0 0.171

18 b2 0.268 48 D2,2
1,0,0 0.213 78 D2,3

1,1,0 0.166
19 γ 0.271 49 D2,3

0,2,2 0.212 79 D2,3
0,1,3 0.164

20 Loops 0.255 50 E2 0.202 80 d3 0.162
21 b5 0.250 51 D1,1

0,0,0 0.202 81 a1 0.159
22 D2,2

0,0,2 0.249 52 D2,3
1,1,3 0.201 82 yN 0.159

23 a4 0.251 53 D2,3
0,2,3 0.198 83 D2,3

1,0,1 0.156
24 D2,2

0,1,3 0.250 54 W/H 0.195 84 y 0.155
25 DTop 0.248 55 S 0.195 85 LL/A 0.154
26 D2,2

0,1,2 0.251 56 D2,3
0,0,2 0.195 86 D2,2

0,0,3 0.150
27 D2,3

1,0,0 0.250 57 D2,3
1,2,0 0.192 87 D2,2

0,1,1 0.149
28 D2,2

1,1,3 0.249 58 U/A 0.192 88 UL/A 0.144
29 D1,1

0,0,1 0.248 59 D2,2
0,0,0 0.192 89 d5 0.141

30 D2,2
1,1,2 0.247 60 d2 0.193 90 a6 0.136

available from the segmentation process and have relatively
high mRMR score.

The homogeneous sets of EFD or Dir have low accuracy.
However, complementing them with the six selected features
produces simple feature sets with high accuracy. Note that
the best label error achieved from the entire 103 features is
21%.

6.4 RNN tuning

We carried out two sets of experiments: the first set for se-
lecting the number of layers and the second set for selecting
the size of each layer. Similar to the feature selection exper-
iments, we used abcd− e experiments. As neural network
training involves some randomness, each configuration was
repeated four times to get the average performance.

To select the number of layers, we used the following
configurations:

1 One hidden layer of size 100

2 Two hidden layers of sizes 60 and 180
2S Two hidden layers of sizes 60 and 180 with sub-sampling

layer of size 60
3 Three hidden layers of sizes 40, 80, and 180
3S Three hidden layers of sizes 40, 80, and 180 with two

sub-sampling layers of sizes 40 and 80
4 Four hidden layers of sizes 40, 80, 120, and 180

These layer sizes are the default sizes that are found in
the RNNLIB library’s configuration files. Figure 9 shows
the results of testing these six configurations. These results
show that the accuracy improves with more layers and with
using sub-sampling layers. However, the accuracy does not
increase when increasing the number of layers from three to
four. Therefore, we adopt the topology of three layers with
two sub-sampling layers.

In order to achieve higher accuracy, we use layer sizes
larger than those used in the default 3S configuration [51].
The selected tuned neural network size: three hidden layers
of sizes 100, 100, and 360 with two sub-sampling layers

Recognizing handwritten Arabic words 13

 0

 5

 10

 15

 20

 25

 30

1 2 2S 3 3S 4

La
b
e
l
E
rr

o
r

(%
)

Neural Network Layers

26.2

24.0
22.5 22.5

21.0
22.6

Fig. 9 The label error for abcd-e experiments using the top 30 selected
features on neural networks of six topologies

of sizes 120 and 180. This configuration achieves a label
error of 19.8%, whereas the label error of the 3S configura-
tion is 21.0%. The tuned RNN size is used in the following
comparison.

7 Comparison

This section compares our results with the results of other
best systems. We also present a detailed comparison with the
MDLSTM system by Graves and Schmidhuber which has
the best accuracy on test set f [21].

7.1 Arabic handwriting recognition competitions

Table 5 summarizes the results of the best systems that have
participated in the series of Arabic handwriting recognition
competitions. We also include here the results of: our earlier
system JU-OCR that has participated in ICDAR 2011, the
recently published system AUC, an improved version of the
system that has won ICDAR 2009 competition (MDLSTM2),
and the system described in this paper JU-OCR2. The table
shows the word recognition accuracy of four test sets (d, e,
f , and s) and the training sets used. For test sets d and e, the
table also shows the percentage of correct result within the
first five results and within the first 10 results, when available.
The UOB, Siemens, UPV-PRHLT, RWTH-OCR, and AUC
systems’ results for these two test sets are the published
results [7,14,10].

In the first competition (ICDAR 2005), set e was un-
known to the participants and was used as the test set. The
UOB system scored 75.93% on this set. In later competitions,
set e was made available to the participants and new test sets
(sets f and s) were used.

Our earlier system JU-OCR has relatively low accuracy.
Although it uses the grapheme segmentation algorithm de-
scribed in this paper, but it uses inferior classifier (random

forests) and less efficient feature set and word matching algo-
rithm [44].

The last two rows in Table 5 summarize the word recog-
nition accuracy of our experiments conducted to evaluate
JU-OCR2 against MDLSTM2. These results illustrate that
the two systems hold the best published accuracies on the
four test sets. JU-OCR2 has the highest accuracy on set d
and s at 98.96% and 84.80%, respectively. MDLSTM has
the highest accuracy on sets e and f at 94.76% and 94.13%,
respectively. The JU-OCR2 results are using WED word
matching. However, the abc-d result is using the RNNLIB
word matching because it has the best accuracy here (98.96%
vs. 98.75%).

We didn’t expect that JU-OCR2 scores lower than MDL-
STM2 on set e because, as shown below, the former sys-
tem has lower label and sequence error rates. However, it
seems that MDLSTM2 benefits more from the integrated
word matching stage and achieves higher accuracy on set e.

The following subsections describe the MDLSTM system
and provide a detailed comparison between it and JU-OCR2.

7.2 Multidimensional LSTM (MDLSTM)

A system similar to the RNN employed in this work won
the Arabic, Farsi and French offline handwriting recognition
competitions at ICDAR 2009. This system also employed a
CTC output layer together with the LSTM network architec-
ture to transcribe handwritten text. The main difference is that
the network used for ICDAR 2009 extracted input features
directly from the raw pixel data of the images, using a hierar-
chy of network layers. Because images are two dimensional,
this necessitated the use of multidimensional LSTM (MDL-
STM; [25]). MDLSTM differs from ordinary bi-directional
LSTM in that there are four distinct hidden layers instead
of two, and each of these layers receives information from
two previous states instead of one. The complete MDLSTM
recognition system is described in detail in Ref. [22].

The advantage of using raw pixels is that the system can
be easily adapted to new languages. However, as the results in
the next section demonstrate, expertly chosen input features
from the segmented sub-words can give better performance.

7.3 Detailed comparison

Figure 10 shows the label error of five test sets and the av-
erage label error on MDLSTM and JU-OCR2. The figure
demonstrates that JU-OCR2 achieves better label error; its
average label error is 8.63% and the MDLSTM average label
error is 10.39%. Relative to MDLSTM, JU-OCR2 average la-
bel error is 16.9% lower. These results are obtained using the
open-source RNNLIB version that was used by MDLSTM
in ICDAR 2009 competition [19].

14 Gheith Abandah et al.

Table 5 Recognition results of correctly recognized images in % for nine systems

abc-d abcd-e abcde-f abcde-s
Competition ID Approach top 1 top 5 top 10 top 1 top 5 top 10 top 1 top 1

ICDAR 2005 [40] UOB HMM 85.0 75.93 87.99 90.88
ICDAR 2007 [41] Siemens HMM 81.89 87.22 73.94
ICDAR 2009 [42] MDLSTM NN 93.37 81.06
ICFHR 2010 [43] UPV-PRHLT HMM 95.2 93.9 92.20 84.62
ICDAR 2011 [44] RWTH-OCR HMM 96.53 92.74 92.20 84.55
ICDAR 2011 [44] JU-OCR RF 75.49 1 89.29 92.47 63.75 80.84 86.06 63.86 49.75

– [10] AUC HMM 97.7 93.44 93.1 84.8
– MDLSTM2 NN 98.57 99.76 99.87 94.76 98.71 99.20 94.13 84.66
– JU-OCR2 NN 98.96 99.87 99.91 93.46 98.09 98.85 92.46 84.80

1 Trained on only 1,696 words from sets a and b

 0

 5

 10

 15

 20

bcde-a acde-b abde-c abce-d abcd-e Avg

La
b
e
l
E
rr

o
r

(%
)

Test Set

MDLSTM
JU-OCR2

8.01 8.15 8.50
7.71

19.6

10.39

5.93 5.83 5.64 5.95

19.8

8.63

Fig. 10 Label error comparison between MDLSTM and JU-OCR2 over
five test sets

We have also repeated the above experiments using a new
version of RNNLIB and their results are shown in Fig. 11.
The new version has slightly better performance as it has
some minor bugs solved. However, the results of both systems
shown in Fig. 11 are much better than the results in Fig. 10.
The main reason for this improvement is that both systems
were trained with the weight noise option. Injecting weight
noise is used to improve the convergence and generalization
abilities of RNNs [46]. We have noticed that best results are
achieved when we first train the system without this option
then retrain it with this option starting from the weights of
the last best epoch. JU-OCR2 achieves better label error for
all sets; its average label error is 5.55% and the MDLSTM2
average label error is 6.81%. Relative to MDLSTM2, JU-
OCR2 average label error is 18.5% lower.

Figure 12 shows the sequence error of the five test sets
on the two systems using the experiments described above.
Consistent with the label error results, JU-OCR2 achieves
better sequence error for all sets; its average sequence error
is 24.28% and the MDLSTM2 average sequence error is
31.26%. Relative to MDLSTM2, JU-OCR2 average sequence
error is 22.3% lower.

Moreover, although MDLSTM is the fastest system in
ICDAR 2009 [42], JU-OCR2 is faster. The JU-OCR2’s av-

 0

 5

 10

 15

 20

bcde-a acde-b abde-c abce-d abcd-e Avg

La
b
e
l
E
rr

o
r

(%
)

Test Set

MDLSTM2
JU-OCR2

4.67 4.88 4.88 4.57

15.05

6.81

3.62 3.49 3.58 3.62

13.42

5.55

Fig. 11 Label error comparison between MDLSTM2 and JU-OCR2
over five test sets with the weight noise option

 0

 10

 20

 30

 40

 50

 60

bcde-a acde-b abde-c abce-d abcd-e Avg

S
e
q
u
e
n
ce

 E
rr

o
r

(%
)

Test Set

MDLSTM2
JU-OCR2

24.12 24.46 25.03 24.11

58.59

31.26

17.81 16.57 17.99 18.49

50.52

24.28

Fig. 12 Sequence error comparison between MDLSTM2 and JU-OCR2
over five test sets

erage time to recognize one image in the abcd-e experiment
is 147 ms vs. 213 ms for MDLSTM2 (31% advantage). As
MDLSTM processes the entire image pixels in the RNN
sequence transcription, it takes 137 ms in sequence transcrip-
tion and word matching vs. only 73 ms in JU-OCR2. The
remaining 76 ms of MDLSTM2 are spent preparing the input
files from the word images, whereas, the remaining 74 ms of
JU-OCR2 are spent in the segmentation and feature extrac-
tion stages. These experiments were carried out on Ubuntu

Recognizing handwritten Arabic words 15

12.04 computer with Intel Core 2 Quad CPU Q9550 running
at 2.83 GHz and equipped with 2 GB memory.

8 Conclusion

We have described the JU-OCR2 system for recognizing
handwritten Arabic words. This system segments the cur-
sive words into graphemes; most of the letters are segmented
into one grapheme each, some letters are over-segmented
into multiple graphemes, and some vertical letter ligatures
are under-segmented into one composite grapheme each. A
set of 30 features is selected from a rich set of features that
are extracted from the segmented bodies. The feature vec-
tor is passed to an RNN sequence transcriber that features
bi-directional long short-term memory to exploit grapheme
contexts and achieve high recognition accuracy.

The transcriber maps the feature vectors of the segmented
bodies directly into letters and is able to achieve a low label
error rate (5.55% on average for the IfN/ENIT database),
without the use of a dictionary. This suggests that the sys-
tem may be suitable for unlimited vocabulary recognition.
The high label accuracy is made possible by the robust seg-
mentation algorithm, the careful feature selection, and the
well-tuned RNN.

Although the best systems in recent Arabic handwriting
recognition competitions have used holistic approaches, we
have demonstrated that our segmentation-based approach
gives lower label and sequence error rates and has best pub-
lished accuracy on some test sets. The MDLSTM system
that holds the record accuracy in these competitions on test
set f uses the same RNN classifier as JU-OCR2. The main
difference between the two systems is the feature extraction
approaches. Whereas MDLSTM extracts features from the
raw pixels, JU-OCR2 extracts features from the segmented
bodies.

We evaluated JU-OCR2 against an improved version of
MDLSTM. Compared with MDLSTM2, JU-OCR2 reduces
the label error, sequence error, and execution time by 18.5%,
22.3%, and 31%, respectively.

We have inspected 100 randomly-selected, miss-classified
samples to find what went wrong. As Table 6 shows, we clas-
sify these samples according to the problem source into four
types: transcription problem, bad hand writing, segmentation
problem, and feature extraction problem (ordered from most
to least frequent). The table shows eight example samples,
two of each type with explanations. We think that many of
these cases can be solved by improving the segmentation,
feature extraction, and transcription stages.

As part of our future work plans, we intend to improve
the system to solve these problems. We also plan to test our
system on complete documents with unlimited vocabulary.
We also intend to add some pre-processing stages that have
been proven to enhance the recognition accuracy [7,14,10].

Acknowledgements This work was supported by the Deanship of the
Scientific Research in the University of Jordan. Some of this research
was completed when G. Abandah was in a sabbatical leave in Princess
Sumaya University for Technology. We would like to thank Alex Graves
for making the RNNLIB publically available [19], for giving us a copy
of the latest RNNLIB version, and for his help in using it. We also thank
him for providing parts of the RNN sequence transcriber description
included in Section 4. We would like to thank Hanchuan Peng for
making mRMR tools publically available [49]. We would like also
to thank Haikal El Abed for giving us copies of sets f and s of the
IfN/ENIT database.

References

1. Abandah, G., Jamour, F.: Recognizing handwritten Arabic script
through efficient skeleton-based grapheme segmentation algorithm.
In: Int’l Conf. Intelligent Systems Design and Applications, pp.
977–982 (2010)

2. Abandah, G., Jamour, F.: Word matching algorithms for recogniz-
ing handwritten Arabic words (2013). Submitted

3. Abandah, G., Khedher, M.: Analysis of handwritten Arabic letters
using selected feature extraction techniques. Int’l J. Computer
Processing of Languages 22(1), 49–73 (2009)

4. Abandah, G., Malas, T.: Feature selection for recognizing handwrit-
ten Arabic letters. Dirasat Engineering Sciences J. 37(2), 242–256
(2010)

5. Al-Hajj, R., Likforman-Sulem, L., Mokbel, C.: Arabic handwriting
recognition using baseline dependant features and hidden Markov
modeling. In: Int’l Conf. Document Analysis and Recognition, pp.
893–897 (2005)

6. Alginahi, Y.M.: A survey on Arabic character segmentation. Int’l J.
Document Analysis Recognition 16(2), 105–126 (2013)

7. Alkhoury, I., Giménez, A., Juan, A.: Arabic handwriting recogni-
tion using Bernoulli HMMs. In: V. Märgner, H. El Abed (eds.)
Guide to OCR for Arabic Scripts, pp. 255–272. Springer London
(2012)

8. Amin, A.: Arabic character recognition. In: H. Bunke, P. Wang
(eds.) Handbook of Character Recognition and Document Image
Analysis, pp. 397–420. World Scientific (1997)

9. Arica, N., Yarman-Vural, F.: Optical character recognition for cur-
sive handwriting. IEEE Trans Pattern Anal Mach Intell 24(6),
801–813 (2002)

10. Azeem, S.A., Ahmed, H.: Effective technique for the recognition
of offline Arabic handwritten words using hidden Markov mod-
els. Int’l J. Document Analysis and Recognition (2013). DOI
10.1007/s10032-013-0201-8

11. Chang, F., Chen, C.J., Lu, C.J.: A linear-time component-labeling
algorithm using contour tracing technique. Computer Vision and
Image Understanding 93(2), 206–220 (2004)

12. Deutsch, E.: Thinning algorithms on rectangular, hexagonal, and
triangular arrays. Comm of the ACM 15(9), 827–837 (1972)

13. Douglas, D., Peucker, T.: Algorithms for the reduction of the num-
ber of points required to represent a line or its caricature. The
Canadian Cartographer 10(2), 112–122 (1973)

14. Dreuw, P., Rybach, D., Heigold, G., Ney, H.: RWTH OCR: A large
vocabulary optical character recognition system for Arabic scripts.
In: V. Märgner, H. El Abed (eds.) Guide to OCR for Arabic Scripts,
pp. 215–254. Springer London (2012)

15. El Abed, H., Märgner, V.: Comparison of different preprocessing
and feature extraction methods for offline recognition of hand-
written Arabic words. In: Int’l Conf. Document Analysis and
Recognition, pp. 974–978 (2007)

16. El-Hajj, R., Likforman-Sulem, L., Mokbel, C.: Arabic handwriting
recognition using baseline dependant features and hidden Markov

16 Gheith Abandah et al.

Table 6 Miss-classified samples grouped according to the problem type. The table shows the frequency of the each problem type, the sample with
its segmentation points in blue, its correct target word, the wrong output, and explanation.

Problem type Sample Target Output Explanation

Transcription Qå�
�
®Ë@ Qå�

	
®Ë @ Letter �

® miss transcribed as 	
®

(37%) �
é�Ê

	
mÌ'@

�
éJ
Ê

	
mÌ'@ Letter � miss transcribed as J

Writing H. Qk È
	Q 	
�Ó H. QÒ» QÓ The writer didn’t write the dots of Letters 	

J and 	Q

(27%) ÉJ
«AÖÞ� @ ø

YJ
� ú

ÎJ
«A�@ ø

YJ
� The writer wrote very small Ò and shifted the dots of last J
 to the left

Segmentation Q»Q» XQ» The segmentation algorithm missed segmenting the second Q»

(25%) 	
à@QÔ«ñK.

	
à@Q«ñK. The segmentation algorithm missed the second segment in QÔ«

Feature Ext. P@Y
	
K 	Q

	
k P@Y

	
Kñ

�
K The three dots are very small and not detected as secondary bodies

(11%) �@XQÓñK. �@QÓñK. As the X is very small, it was detected as a secondary body

modeling. In: Int’l Conf. Document Analysis and Recognition, pp.
893–897 (2005)

17. Freeman, H.: On the encoding of arbitrary geometric configurations.
IRE Trans. Electron Computer 10(2), 260–268 (1961)

18. Gers, F.: Long short-term memory in recurrent neural networks.
Ph.D. thesis, Ecole Polytechnique Fédérale de Lausanne (2001)

19. Graves, A.: RNNLIB: a recurrent neural network library for se-
quence learning problems. http://sourceforge.net/projects/rnnl/

20. Graves, A.: Supervised sequence labelling with recurrent neural
networks. Ph.D. thesis, Technische Universität München (2008)

21. Graves, A.: Offline Arabic handwriting recognition with multidi-
mensional recurrent neural networks. In: V. Märgner, H. El Abed
(eds.) Guide to OCR for Arabic Scripts, pp. 297–313. Springer
London (2012)

22. Graves, A.: Supervised Sequence Labelling with Recurrent Neu-
ral Networks, Studies in Computational Intelligence, vol. 385.
Springer (2012)

23. Graves, A., Fernández, S., Gomez, F., Schmidhuber, J.: Connection-
ist temporal classification: Labelling unsegmented sequence data
with recurrent neural networks. In: Int’l Conf. Machine Learning
(2006)

24. Graves, A., Fernández, S., Liwicki, M., Bunke, H., Schmidhuber, J.:
Unconstrained online handwriting recognition with recurrent neural
networks. Advances in Neural Information Processing Systems 20,
1–8 (2008)

25. Graves, A., Fernández, S., Schmidhuber, J.: Multi-dimensional re-
current neural networks. In: Int’l Conf. Artificial Neural Networks
(2007)

26. Graves, A., Liwicki, M., Fernández, S., Bertolami, R., Bunke, H.,
Schmidhuber, J.: A novel connectionist system for unconstrained
handwriting recognition. IEEE Trans. Pattern Analysis Machine
Intelligence 31(5), 855–868 (2009)

27. Graves, A., Schmidhuber, J.: Framewise phoneme classification
with bidirectional LSTM and other neural network architectures.
Neural Networks 18(5), 602–610 (2005)

28. Graves, A., Schmidhuber, J.: Advances in Neural Information Pro-
cessing Systems, NIPS’22, vol. 22, chap. Offline Handwriting
Recognition with Multidimensional Recurrent Neural Networks,
pp. 545–552. MIT Press, Vancouver (2009)

29. Guyon, I., Elisseeff, A.: An introduction to variable and feature
selection. J. Maching Learning Research 3(1), 1157–1182 (2003)

30. Hochreiter, S., Schmidhuber, J.: Long Short-Term Memory. Neural
Computation 9(8), 1735–1780 (1997)

31. Kuhl, F., Giardina, C.: Elliptic Fourier features of a closed contour.
Computer Graphics and Image Processing 18(3), 236–258 (1982)

32. Kundu, A., Hines, T., Phillips, J., Huyck, B.D., Van Guilder, L.C.:
Arabic handwriting recognition using variable duration HMM. In:
Int’l Conf. Document Analysis and Recognition, vol. 2, pp. 644–
648 (2007)

33. Lee, H., Verma, B.: Binary segmentation algorithm for English
cursive handwriting recognition. Pattern Recognition 45(4), 1306–
1317 (2012)

34. Lewis, M.P. (ed.): Ethnologue: Languages of the World. SIL Inter-
national (2009)

35. Likforman-Sulem, L., Mohammad, R.A.H., Mokbel, C., Menasri,
F., Bianne-Bernard, A.L., Kermorvant, C.: Features for HMM-
based Arabic handwritten word recognition systems. In:
V. Märgner, H. El Abed (eds.) Guide to OCR for Arabic Scripts,
pp. 123–143. Springer London (2012)

36. Liu, C.L.: Handwritten Chinese character recognition: Effects of
shape normalization and feature extraction. In: D. Doermann,
S. Jaeger (eds.) Arabic and Chinese Handwriting Recognition, vol.
LNCS 4768, pp. 104–128. Springer Berlin / Heidelberg (2008)

37. Lorigo, L., Govindaraju, V.: Segmentation and pre-recognition
of Arabic handwriting. In: Int’l Conf. Document Analysis and
Recognition, pp. 605–609 (2005)

38. Lorigo, L., Govindaraju, V.: Offline Arabic handwriting recog-
nition: A survey. IEEE Trans Pattern Anal Mach Intell 28(5),
712–724 (2006)

39. Maddouri, S.S., El-Abed, H., Samoud, F.B., Bouriel, K., Ellouze,
N.: Baseline extraction: Comparison of six methods on IFN/ENIT
database. In: Int’l Conf. Frontiers in Handwriting Recognition
(2008)

40. Märgner, V., El Abed, H.: ICDAR 2005 - Arabic handwriting
recognition competition. In: Int’l Conf. Document Analysis and
Recognition, pp. 70–74 (2005)

41. Märgner, V., El Abed, H.: ICDAR 2007 - Arabic handwriting
recognition competition. In: Int’l Conf. Document Analysis and
Recognition, pp. 1274–1278 (2007)

42. Märgner, V., El Abed, H.: ICDAR 2009 - Arabic handwriting
recognition competition. In: Int’l Conf. Document Analysis and
Recognition, pp. 1383–1387 (2009)

43. Märgner, V., El Abed, H.: ICFHR 2010 - Arabic handwriting recog-
nition competition. In: Int’l Conf. Frontiers in Handwriting Recog-
nition, pp. 709–714 (2010)

44. Märgner, V., El Abed, H.: ICDAR 2011 - Arabic handwriting
recognition competition. In: Int’l Conf. Document Analysis and
Recognition, pp. 1444–1448 (2011)

45. Motawa, D., Amin, A., Sabourin, R.: Segmentation of Arabic cur-
sive script. In: Int’l Conf. Document Analysis and Recognition, pp.

Recognizing handwritten Arabic words 17

625–628 (1997)
46. Murray, A., Edwards, P.: Synaptic weight noise during multilayer

perceptron training: Fault tolerance and training improvements.
IEEE Trans Neural Networks 4(4), 722–725 (1993)

47. Pechwitz, M., El Abed, H., Märgner, V.: Handwritten Arabic
word recognition using the IFN/ENIT-database. In: V. Märgner,
H. El Abed (eds.) Guide to OCR for Arabic Scripts, pp. 169–213.
Springer London (2012)

48. Pechwitz, M., Maddouri, S.S., Märgner, V., Ellouze, N., Amiri, H.:
IFN/ENIT - database of handwritten Arabic words. In: Colloque
Int’l Francophone sur l’Ecrit et le Document, pp. 129–136 (2002)

49. Peng, H.: mRMR (minimum redundancy maximum relevance fea-
ture selection). http://penglab.janelia.org/proj/mRMR/

50. Peng, H., Long, F., Ding, C.: Feature selection based on mutual
information: Criteria of max-dependency, max-relevance, and min-
redundancy. IEEE Trans Pattern Anal Mach Intell 27(8), 1226–
1238 (2005)

51. Qaralleh, M., Abandah, G., Jamour, F.: Tuning recurrent neural
networks for recognizing handwritten Arabic words. J. Software
Engineering & Applications 6(10), 533–542 (2013)

52. Ratcliff, J., Metzener, D.: Pattern matching: the Gestalt approach.
Dr. Dobb’s J. 13(7), 46–72 (1988)

53. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Parallel Distributed
Processing: Explorations in the Microstructure of Cognition, vol.
1: foundations, chap. Learning Internal Representations by Error
Propagation, pp. 318–362. (1986)

54. Safabakhsh, R., Adibi, P.: Nastaaligh handwritten word recognition
using a continuous-density variable-duration HMM. The Arabian
J. Science and Eng. 30(1B), 95–118 (2005)

55. Sari, T., Souici, L., Sellami, M.: Off-line handwritten Arabic charac-
ter segmentation algorithm: ACSA. In: Int’l Workshop on Frontiers
in Handwriting Recognition, pp. 452–457 (2002)

56. Schambach, M.P., Rottland, J., Alary, T.: How to convert a Latin
handwriting recognition system to Arabic. In: Int’l Conf. Frontiers
in Handwriting Recognition (2008)

57. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural net-
works. IEEE Trans. Signal Processing 45, 2673–2681 (1997)

58. Smith, R.: An overview of the Tesseract OCR engine. In: Int’l
Conf. Document Analysis and Recognition, vol. 2, pp. 629–633
(2007)

59. Wshah, S., Shi, Z., Govindaraju, V.: Segmentation of Arabic hand-
writing based on both contour and skeleton segmentation. In: Int’l
Conf. Document Analysis and Recognition, pp. 793–797 (2009)

