
IJDAR manuscript No.
(will be inserted by the editor)

Automatic diacritization of Arabic text using recurrent neural
networks

Gheith A. Abandah · Alex Graves · Balkees Al-Shagoor ·
Alaa Arabiyat · Fuad Jamour · Majid Al-Taee

Received: February 17, 2014 / Revised: December 13, 2014 / Accepted: February 16, 2015

Abstract This paper presents a sequence transcription

approach for the automatic diacritization of Arabic text.

A recurrent neural network (RNN) is trained to tran-

scribe undiacritized Arabic text with fully diacritized

sentences. We use a deep bidirectional long short-term

memory (LSTM) network that builds high-level linguis-

tic abstractions of text and exploits long-range context

in both input directions. This approach differs from pre-

vious approaches in that no lexical, morphological, or

syntactical analysis is performed on the data before be-

ing processed by the net. Nonetheless, when the network

is post-processed with our error-correction techniques,

it achieves state of the art performance, yielding an av-

erage diacritic and word error rates of 2.09% and 5.82%

respectively on samples from 11 books. For the LDC

ATB3 benchmark, this approach reduces the diacritic
error rate by 25%, the word error rate by 20%, and the

last letter diacritization error rate by 33% over the best

published results.
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1 Introduction

The Arabic alphabet is the base alphabet used in around

27 languages, including Arabic, Persian, Kurdish, Urdu,

and Jawi [26]. The Arabic language has 28 basic let-

ters and eight basic diacritics that are encoded in the

Unicode code block 0600–06FF. Figure 1 shows where

these letters and diacritics are encoded in this code

block. Note that this code block includes 36 variants of

the 28 letters having hexadecimal codes 0621–063A and

0641–064A; the diacritics have codes 064B–0652 [1].

The Modern Standard Arabic (MSA) is commonly

written without diacritics as the example shown in

Fig. 2(a) (note that Arabic is written from right-to-left).

Classical Arabic (CA), on the other hand, is written

with diacritics as in Fig. 2(b). The Holy Quran and

classical books are usually diacritized to specify the

accurate pronunciation and the intended meaning.

Although the MSA writing is faster, undiacritized

words often cannot be pronounced correctly from their

orthographic representation only. Educated native read-

ers can generally infer the correct pronunciation of undi-

acritized words from the context, and from their knowl-

edge of the grammar and lexicon. However, the lack of

diacritics causes ambiguity for children and non-native

speakers, who have not mastered the language’s rich

derivation and inflection mechanisms.

In Arabic, many stem words can be derived from the

finite Arabic root consonant combinations into known

patterns [32]. Different words, with different meanings

and pronunciations, often differ only by their diacritics

[7].

For example, the first word in the previous example

I.
�
J» is the verb “wrote” and is pronounced “kataba”.
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 U+062x U+063x U+064x U+065x 

ِ   ذ  0
ّ  ف ر ء 1
ْ  ق ز آ 2
  ك س أ 3
  ل ش ؤ 4
  م ص إ 5
  ن ض ئ 6
  ه ط ا 7
  و ظ ب 8
  ى ع ة 9
A ي غ ت  
B ث   ً  
C ج   ٌ  
D ح   ٍ  
E خ   َ  
F د   ُ  

Fig. 1 Unicode Arabic code block, showing the 36 Arabic
letter variants and eight diacritics.
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Fig. 2 The sentence “The student wrote a letter” in (a)
Arabic without diacritics, (b) Arabic with diacritics

The same three letters can mean “books” and are pro-

nounced “kutub” I.

��
J
�
». Nevertheless, the native reader

would easily infer that the first word is the verb “kataba”
�

I.

��
J
�
». As the second and third words are the nouns “the

student” I. ËA¢Ë@ and “letter”
�
é ËA�P, respectively, the

reader would likely assume that this is a verb-subject-

object sentence.

Inflection changes are phonological changes a word

undergoes as it is being used in context. In Arabic,

there are rules to inflect a stem word according to its

tense/aspect, person, voice, mood, gender, number, case,

and definiteness. In many cases, different inflections
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Fig. 3 The four words in top are diacritized as shown in (a)
or (b) depending of the last word of the sentence.

differ only by the diacritic of the last letter [22]. For

example, the verb “kataba” �
I.

��
J
�
» is inflected for mascu-

line second person as “katabta”
��

I
�
�.

��
J

�
» (with Fatha

diacritic at the end) and is inflected for feminine second

person as “katabti” �
I
�

�
�.

��
J
�
» (with Kasra). Another exam-

ple: the noun
�
é
�
Ë A

�
�P

�
is inflected as “risalatun”

��
é
�
Ë A

�
�P

�
(with

Dammatan) in the subject case and as “risalatan”
��
é
�
Ë A

�
�P

�
(with Fathatan) in the object case.

To correctly diacritize the words of a sentence, it is

often required to analyze the entire sentence. Figure 3

shows two different diacritizations of four words based

on the fifth (last) word. The four words are diacritized

as shown in (a)“Books of Ahmad and Ali and Omar are

numerous” when followed by the adjective “numerous”
�
èQ�


�
J», or as shown in (b) “Ahmad and Ali and Omar

wrote the lesson” when followed by the noun “the lesson”

�PYË@. As the last word in (a) is an adjective, the word

I.
�
J» must be the noun “books” �

I.

��
J
�
». Whereas the last

word in (b) is a noun; so it is more likely that the word

I.
�
J» is the verb “wrote” �

I.

��
J
�
».

This example illustrates that it is not possible to

automatically diacritize a word based only on its past
context. The successor words must often be considered

to reach correct analysis and diacritization. Moreover,

it is often necessary to do-long range context analysis.

For example, checking only one, two, or three successor

words of the word I.
�
J» is not sufficient in this example.

Adding diacritics to undiacritized or partially dia-

critized text is very helpful for children and non-native
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speakers who are trying to learn Arabic. It is a necessary

step in text-to-speech (TTS) software, as otherwise pro-

nunciation is ambiguous, and is also useful for training

automatic speech recognition (ASR) engines [25]. More-

over, indexing diacritized text instead of undiacritized

text enables search engines to better exclude unwanted

matches.

The best methods to date for diacritization generally

analyze the input text and derive extensive morpho-

logical and contextual information, then use pattern

classification techniques to select the analysis that best

matches the context.

This paper proposes a novel approach, where dia-

critization is solved as a sequence transcription problem.

We use a recurrent neural network (RNN) to transcribe

raw Arabic sentences, without relying on any prior mor-

phological or contextual analysis, into fully diacritized

sentences. We use a deep bidirectional long short-term

memory (LSTM) network that builds high-level linguis-

tic abstractions of text and exploits long-range context

in both input directions. We describe how Arabic sen-

tences are encoded into sequences suitable for sequence
transcription by an RNN. Moreover, we describe some

post-processing corrections developed to improve the re-

sults of the sequence transcription stage. This approach,

which builds on recent advances in sequence transcrip-

tion using RNNs [17], yields higher accuracy than the

best published results.

The problem that our approach solves is adding

diacritics to undiacritized sentences. Given an input

sequence x = (x1, . . . , xT ) that represents an Arabic

sentence of T unicode letters of the set U in the range

0621–064A and x ∈ UT , transcribe this sequence into

the output sequence y = (y1, . . . , yU ) that represents

the diacritized sequence and consists of U unicode let-

ters and diacritics of the set D in the range 0621–0652

and y ∈ DU . Generally, adding diacritics increases the

sequence length and U ≥ T .

The following section reviews the related work, Sec-

tion 3 describes the RNN used in this work for se-

quence transcription, Section 4 describes our experi-

mental setup, Section 5 describes the experiments con-

ducted and presents their results, Section 6 discusses

the results of this approach and compares its results

with other leading work, and finally Section 7 presents

the conclusions and suggestions for future work.

2 Literature Review

Past approaches to automatic diacritization of Arabic

text can be roughly divided into rule-based, statisti-

cal and hybrid methods [5]. The earliest approaches

were rule-based [11,3], and relied on morphological ana-

lyzers, dictionaries, and grammar modules. The major

drawbacks of rule-based diacritization are the high de-

velopment cost and the reliance on parsed corpora that

are difficult to create. Additionally, the rules must be

continuously maintained as new words and terms are

generated in living languages.

More recently, there have been several statistical,

machine-learning approaches. Gal used hidden Markov

models (HMMs) to capture the contextual correlation

between words [12]. His approach restores only short

vowels (a subset of all diacritics).

Hifny used statistical n-gram language modeling of

a large corpus [23]. He used the Tashkila diacritized

Arabic text corpus described in Section 4.1. The possible

diacritized word sequences of an undiacritized input

sentence are assigned probability scores using the n-gram

models. Then using a dynamic programming algorithm,

the most likely sequence is found. Smoothing techniques
were used to handle unseen n-grams in the training data.

The accuracy of n-gram models depends on the order

n. Larger order gives higher accuracy as it incorporate
longer linguistic dependencies. However, larger order

results in larger models and requires larger training data.

Hifny used n-gram models of order three (trigram), thus,

does not exploit long-range context dependencies.

To best of our knowledge, the most accurate sys-

tem reported also uses a statistical approach and is due

to Azim et al. [4]. However, this system requires the

availability of speech input as it combines acoustic infor-

mation from the speech input to complement text-based

conditional random fields model.

Most current work in the area relies on hybrid ap-

proaches that combine rule-based and statistical mod-

ules. Vergyri and Kirchhoff investigated the effect of

combining several knowledge sources (acoustic, mor-

phological, and contextual) to automatically diacritize

Arabic text [35]. They treated diacritization as an unsu-

pervised tagging problem where each word is tagged as

one of the many possible forms provided by the Buck-

walter Arabic morphological analyzer (BAMA) [8]. They

also investigated the use of Arabic dialectal speech. In

this study, they used two different corpora: the Foreign

Broadcast Information Service (FBIS) corpus of MSA

speech and the LDC CallHome Egyptian Colloquial

Arabic (ECA) corpus. However, they did not model the

Shadda diacritic.

Nelken et al. proposed a weighted finite state ma-

chine algorithm to restore the missing diacritics [30].

Their basic module consists of a standard trigram lan-

guage model that chooses the most probable diacritized

word sequence that could have generated the undia-

critized text. They also used several other transducers
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to improve the diacritization process. This system was

trained and tested on LDC’s Arabic Treebank of dia-

critized news stories (Part 2).

Zitouni et al. followed a statistical model based

on the framework of maximum entropy where several

sources of information were used, including lexical, segment-

based, and part-of-speech (POS) features [38]. Their

system was trained and evaluated on Linguistic Data

Consortium’s Part 3 of the Arabic Treebank of dia-

critized news stories (LDC ATB3) [27]. They described

their experimental setup in great detail, and the LDC

ATB3 subsequently became a benchmark in the area.

They reported that the hybrid approach has better dia-

critization accuracy compared with the pure statistical

approach. Their maximum entropy model makes a deci-

sion for each state independent of other states. Therefore,

it does not exploit context information to achieve high

diacritization accuracy.

Habash and Rambow extended the use of their mor-

phological analysis and disambiguation of Arabic system

(MADA) for diacritization [22]. MADA consults BAMA

to get a list of possible diacritized analyses for a word.

To narrow this list to a small number, fourteen SVM

predictors are used to predict morphological features

of the possible analyses and to rank them. Finally, one

solution is selected from the narrowed list using n-gram

language models. The n-gram models used don’t exploit

long-range context dependencies as they are limited to

three words.

The stochastic Arabic diacritizer by Rashwan et al.

is a recent approach with excellent results [31]. The sys-

tem uses two stochastic layers, the first of which predicts

the most likely diacritics by choosing the sequence of

unfactorized full-form Arabic word diacritizations with

maximum marginal probability via A* lattice search

algorithm and n-gram probability estimation. When

full-form words are not found, the system falls back

on the second layer, which factorizes each Arabic word

into its possible morphological components (prefix, root,

pattern and suffix), then uses n-gram probability esti-

mation and A* lattice search algorithm to select among

the possible factorizations to get the most likely dia-

critization sequence. Similar to Habash and Rambow’s

approach, this approach is limited by relying on trigram

language models to select most probable diacritization

options. However, it achieves better results through its

elaborate factorization and dictionary techniques.

Said et al. developed a hybrid system that achieves

the best results prior to this paper on LDC ATB3 with-

out speech input [33]. The system relies on automatic

correction, morphological analysis, POS tagging, and

out of vocabulary diacritization. This system is similar

to Rashwan et al.’s system but uses HMMs for mor-

phological analyses disambiguation and resolving the

syntactic ambiguity to restore the syntactic diacritic.

The HMM estimates the most probable tag sequence of

the alternative POS tag sequences uring Viterbi algo-

rithm. However, this estimation is based on two local

probabilities: the word likelihoods and adjacent word

transition probabilities.

Bahanshal and Al-Khalifa evaluated the accuracy

of three available diacritization systems using fully dia-

critized text from the Quran and short poems [6]. This

study demonstrates that the available systems’ accuracy
is still not sufficient and there is still ample room for

improvement.

Our pure statistical approach of sequence transcrip-

tion is based on the deep bidirectional LSTM architec-

ture [24]. This architecture has been successfully applied

to many sequence transcription tasks, including auto-

matic speech and handwriting recognition [20,15], which

is currently state-of-the-art in offline Arabic handwrit-

ing recognition [28,2]. To best of our knowledge, this

work is the first to use RNN sequence transcription to

automatically add diacritics to Arabic text. Our experi-

ments were carried out with the open-source software

library RNNLIB [19].

3 Sequence Transcription

The basic recurrent neural network (RNN) used in this
work is deep bidirectional LSTM [20]. This architecture

combines long short-term memory (LSTM) [24] with

bidirectional RNNs [34] and the stacked hidden layers

seen in deep feedforward neural networks.

Deep LSTM networks have been previously applied

to character-level text prediction, and have proven capa-

ble of modeling long-range linguistic dependencies [18].

Given an input sequence x = (x1, . . . , xT ), a stan-

dard RNN computes the hidden vector sequence h =

(h1, . . . , hT ) and output vector sequence y = (y1, . . . , yT )

by iterating the following equations from t = 1 to T :

ht = H (Wihxt +Whhht−1 + bh) (1)

yt = Whoht + bo (2)

where the W terms denote weight matrices (e.g., Wih

is the input-hidden weight matrix), the b terms denote

bias vectors (e.g., bh is hidden bias vector), and H is the

hidden layer activation function. Note the recurrence in

Eq. 1 where ht depends on the previous vector ht−1.

3.1 Long short-term memory

H is usually an elementwise application of a sigmoid

function. However, the long short-term memory (LSTM)
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Fig. 4 Long short-term memory cell

architecture [24], which uses purpose-built memory cells

to store information, is better at finding and exploiting

long range context. Figure 4 illustrates a single LSTM

memory cell. For the version of LSTM used in this

paper [13], H is implemented by the following composite

function:

it = σ (Wxixt +Whiht−1 +Wcict−1 + bi) (3)

ft = σ (Wxfxt +Whfht−1 +Wcfct−1 + bf ) (4)

ct = ftct−1 + it tanh (Wxcxt +Whcht−1 + bc) (5)

ot = σ (Wxoxt +Whoht−1 +Wcoct + bo) (6)

ht = ot tanh(ct) (7)

where σ is the logistic sigmoid function, and i, f , c,

and o are respectively the input gate, forget gate, cell

activation, and output gate vectors, all of which are the

same size as the hidden vector h. The weight matrix

subscripts have the obvious meaning, for example, Whi

is the hidden-input gate matrix, Wxo is the input-output

gate matrix, etc. The weight matrices from the cell to

gate vectors (e.g. Wci) are diagonal, so element m in

each gate vector only receives input from element m of

the cell vector. The bias terms (which are added to i, f ,

c and o) have been omitted for clarity.

3.2 Bidirectional RNNs

One shortcoming of conventional RNNs is that they are

only able to make use of previous context. In automatic

diacritization, where whole sentences are transcribed at

once, there is no reason not to exploit future context

as well. Bidirectional RNNs (BRNNs) [34] do this by

processing the data in both directions with two separate

hidden layers, which are then fed forwards to the same

output layer. A BRNN computes the forward hidden

sequence
−→
h , the backward hidden sequence

←−
h , and the

output sequence y by iterating the backward layer from

t = T to 1, the forward layer from t = 1 to T , and then

updating the output layer:

−→
h t = H

(
W

x
−→
h
xt +W−→

h
−→
h

−→
h t−1 + b−→

h

)
(8)

←−
h t = H

(
W

x
←−
h
xt +W←−

h
←−
h

←−
h t+1 + b←−

h

)
(9)

yt = W−→
h y

−→
h t +W←−

h y

←−
h t + bo (10)

Combing BRNNs with LSTM, gives bidirectional LSTM,

which can access long-range context in both input di-

rections [21].

3.3 Deep recurrent neural network

A crucial element of the recent success of hybrid systems

is the use of deep architectures, which are able to build

up progressively higher level representations of text.

Deep RNNs can be created by stacking multiple RNN

hidden layers on top of each other, with the output

sequence of one layer forming the input sequence for the

next. Assuming the same hidden layer function is used

for all N layers in the stack, the hidden vector sequences

hn are iteratively computed from n = 1 to N and t = 1

to T :

hnt = H
(
Whn−1hnhn−1t +Whnhnhnt−1 + bnh

)
(11)

where h0 = x. The network outputs yt are

yt = WhNyh
N
t + bo (12)

Deep bidirectional RNNs can be implemented by

replacing each hidden sequence hn with the forward

and backward sequences
−→
h n and

←−
h n, and ensuring

that every hidden layer receives input from both the

forward and backward layers at the level below. If LSTM

is used for the hidden layers, the complete architecture

is referred to as deep bidirectional LSTM [20].

Two different methods were used to train the RNN
to transcribe sequences of undiacritized Arabic letters

with their diacritized counterparts. These two methods

are described in the following two subsections.

3.4 One-to-one network

In the first method, the “one-to-one” letter encoding

described in Section 4.2 was used, ensuring that the

target sequences had a one-to-one correspondence with

the inputs sequences. Thus, the lengths of sequences x

and y are equal as implied by Eqs. 1 and 2 above.
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The network was trained to individually classify

each input letter with the corresponding diacritized

version. As is standard for classification tasks, a softmax

output layer was used to define a probability distribution

over the output labels, and the network was trained to

minimize the cross-entropy of this distribution with the

target labels. That is, given a length T input, target

sequence pair (x,y∗), the network outputs at time t

are interpreted as the probability Pr(k|t,x) of emitting

(diacritized) letter k at time t and the loss function

minimized by the network is defined as L(x,y∗) =
−
∑T

t=1 log Pr(y∗t |t,x).

The network is trained to minimize the loss func-

tion L using online gradient descent algorithm with

momentum. A similar approach was previously used

for bidirectional LSTM networks applied to framewise

phoneme classification [21]—the main difference being

that the networks in this work had more than one hidden

layer. From now on, we will refer to this configuration

as the “one-to-one” network.

3.5 One-to-many network

The second network transcribes undiacritized input en-

coded in Unicode to diacritized output using the “one-

to-many” encoding described in Section 4.2. In this

encoding the output sequence is usually longer than the

input sequence (U ≥ T ).

The second training method used an additional,

single-layer LSTM network to predict the “one-to-many”

output symbols. This approach was based on the “se-

quence transducer” recently applied to phoneme recog-

nition [16]; again the main modification in the current

work was that the bidirectional network contained mul-

tiple hidden layers.

The sequence transducer is able to emit zero, one

or many output labels for every input label, making

it possible to train with input and target sequences of

different lengths. Furthermore, the transducer automat-

ically learns to align the two sequences, so there is no

need to pre-define which diacritic marks correspond to

which letters. We will refer to this as the “one-to-many”

network.

The sequence transducer that aligns the input and

target sequences consists of two separate RNNs—the in-

put network, which is typically bidirectional, and the pre-

diction network, which must be uni-directional—along

with a feedforward output network used to combine the

outputs of the two RNNs. The two networks are used

to determine a separate distribution Pr(k|t, u) for every

combination of input timestep t and output timestep

u. Each distribution covers the K possible labels in the

task plus a b. Intuitively, the network chooses what to

output depending both on where it is in the input se-

quence and the outputs it has already emitted. For a

length U target sequence y∗, the complete set of TU de-

cisions jointly determines a distribution over all possible

alignments between x and y∗, from which log Pr(y∗|x)

can be efficiently determined with a forward-backward

algorithm [16].

Denote by
−→
h N and

←−
h N the uppermost forward and

backward hidden sequences of the input network, and

by p the hidden sequence of the prediction network. At

each t, u the output network is implemented by feeding−→
h N and

←−
h N to a linear layer to generate the vector lt,

then feeding lt and pu to a tanh hidden layer to yield

ht,u, and finally feeding ht,u to a size K + 1 softmax

layer to determine Pr(k|t, u):

lt = W−→
h N l

−→
h N

t +W←−
h N l

←−
h N

t + bl (13)

ht,u = tanh (Wlhlt,u +Wpbpu + bh) (14)

yt,u = Whyht,u + by (15)

Pr(k|t, u) =
exp(yt,u[k])∑K

k′=1 exp(yt,u[k′])
, (16)

where yt,u[k] is the kth element of the length K+1 unnor-

malized output vector. For simplicity we constrained all

non-output layers to be the same size (|
−→
h n

t | = |
←−
h n

t | =
|pu| = |lt| = |ht,u|); however they could be varied inde-

pendently.

More detail about this network and its training is in
Ref. [16].

4 Experimental Setup

Figure 5 summarizes our experimental setup. For evalu-

ation purposes, the diacritized Arabic sentence is first

encoded in a record suitable for RNN sequence tran-

scription. This record consists of the diacritized target

sequence and the undiacritized input sequence. The

RNN transcribes the input with fully diacritized out-

put sequence. We apply post-processing corrections to

overcome some transcription errors. Finally, the cor-

rected output is compared with the target to find the
diacritization accuracy.

During training the RNN, both the input and the tar-

get sequences are presented to the net. For diacritizing

an undiacritized sentence, the target field is not available

and, consequently, no comparison is made. The following

subsections describe this method in more detail.



Automatic diacritization of Arabic text using recurrent neural networks 7

Diacritized 
sentence

َّمُث

Encoding

RNN sequence 
transcription

Post-
processing 
corrections

Output

Comparison

Corrected
output

Accuracy

Input sequence
02B0 0450

Target sequence
02B5 045C

Fig. 5 Experimental setup

4.1 Data

Our experimental data were drawn from ten books

of the Tashkila collection of Islamic religious heritage

books [37], along with the simple version of the Holy

Quran [36]. These 11 books, summarized in Table 1,

are written in classical Arabic with full diacritization

provided in HTML format. However, Book 1 is partially

diacritized and is selected to study the effect of using

partially diacritized input on the diacritization accuracy.

We also used LDC’s Arabic Treebank (#LDC2010T08)

of diacritized news stories, Part 3, v3.2 [27]. The LDC

ATB3 is an example of the modern standard Arabic

and consists of 599 distinct newswire stories from the

Lebanese publication An-Nahar that were published

in 2002. This treebank is used in this work in the fi-
nal experiments to facilitate comparisons with previous

systems.

Some of these classical books are large, multi-volume

texts that take a long time to process, e.g., Book 11 is

1,306-K words long (punctuation marks are not counted).

As the table indicates, we randomly selected subsets

of each book’s sentences in our experiments. To have

varying data set sizes, we selected about 3% of Book 1

on one end and 100% of Book 4 and the ATB3 on the

second end.

These books have wide range of sizes and sentence

length styles. They widely differ in the utilization of

the punctuation marks. However, they share similarities,

particular to the Arabic language, such as the average

number of letters per word, and the average percentages

of letters with no, one, and two diacritics. Book 1 and

the ATB3 have higher values of the first percentage

because they are partially diacritized.

The Tashkila books are encoded in Code Page 1256

Windows Arabic and are organized in paragraphs that

each contains one or more sentence. We prepare them for

training and testing purposes by first converting them
from HTML to plain text files that have one sentence per

line. A paragraph is split into more than one sentence

when it contains sentence-ending punctuation marks

such as ‘.’, ‘, ’, ‘; ’, ‘:’, ‘? ’, ‘�’, and ‘�’. However, the
punctuation marks used for interjection do not break

the sentence, e.g., ‘(’ and ‘)’.

Note that the simple version of the Quran comes

in a UTF-8 encoded text file. This file does not have

punctuation marks and every Quranic verse (sentence)

is in a separate line.

We extracted the diacritized version of the ATB3 sen-

tences from the ATB3 integrated format, every sentence

in a separate line. The diacritized words in this format

are available in the unsplit vocalization field which is en-
coded in Buckwalter Arabic transliteration [8]. As some

words in the ATB3 are not available in the diacritized

version, we use the source undiacritized version instead

for these words.

All data lines are then converted to Unicode encod-

ing. Each line has a diacritized Arabic sentence.

4.2 Data encoding

This sections described how the sentences are encoded

for sequence transcription. These sentences are con-

verted to sentence records that has each sentence in two

versions: (i) input sequence, without diacritics, and (ii)

target sequence, with diacritics, comma separated. The

non-diacritized version is generated from the original

sentence after removing all diacritics.

Diacritics are represented in Unicode as additional

characters. For example, the word “thumma”
��Õç

�
�
' has the

two-field record “ Õç
�
'”, “

��Õç
�
�
'”, and is encoded as “062B

0645”, “062B 064F 0645 0651 064E”. Therefore the

diacritized target sequences are in general longer than
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Table 1 Summary of the samples used in this study including the ID, name, size, used size, average letters per word, average
words per sentence, and percentages of letters without diacritics, with one diacritic, and with two diacritics

ID Name Size Used Letters Words per No One Two
(K Words) (K Words) per word sentence diacritics diacritic diacritics

1 Alahaad Walmathany 241 8 3.78 6.01 43.1% 52.6% 4.3%
2 Majma Aldamanat 218 53 4.04 14.25 21.1% 74.6% 4.3%
3 Sahyh Muslim 494 68 3.81 21.01 26.4% 67.8% 5.8%
4 The Holy Quran 76 76 4.25 12.48 22.1% 72.2% 5.7%
5 Alqwaed Labn Rajab 169 81 4.12 16.20 20.9% 74.2% 4.9%
6 Alzawajer An Aqtiraf Alkabaer 284 150 3.94 9.57 21.6% 72.3% 6.1%
7 Ghidaa Alalbab 316 189 3.99 9.28 21.9% 72.2% 5.9%
8 Aljwahrah Alnyyrah 385 205 3.99 22.77 20.7% 74.1% 5.2%
9 Almadkhal Lilabdary 361 236 4.05 13.68 21.1% 73.1% 5.8%
10 Durar Alhokam 674 407 3.83 24.22 21.5% 73.2% 5.3%
11 Moghny Almohtaj 1,306 794 3.93 9.63 20.5% 73.9% 5.6%

12 LDC ATB3 305 305 4.64 11.31 39.8% 54.8% 5.4%

Average 402 214 4.03 14.20 25.1% 69.6% 5.4%

the non-diacritized input sequences. This “one-to-many”
encoding is used with the one-to-many network.

For the one-to-one network, we encode every possible

diacritization of every letter with a single symbol. Thus,

the input and target sequences have same length. We

use the following formula to obtain a unique code L for

the letter with Unicode value l and possible diacritics
d1 and d2:

L =


(l ∧ 0x00ff� 4) no diacritics

(l ∧ 0x00ff� 4) ∨ d1 one diacritic

(l ∧ 0x00ff� 4) ∨ d1 ∨ d2 two diacritics

(17)

The most significant eight bits of the letter’s Unicode

code are cleared, the masked code is shifted four bit

positions to the left, then the shifted code is ORed with

the bit code(s) of its diacritics d1 and d2 that are shown

in Table 2, if any. The previous example is therefore

encoded as “02B0 0450”, “02B5 045C” where each input

code is mapped to one target code. Note that an Arabic

letter cannot have more than two diacritics, and if it

has two diacritics, then one of them must be Shadda

(bit code 1000).

4.3 Training parameters

The RNNs are generally trained in this work using

88% of the available sentences. The remaining 12% are

randomly selected from the available data and are used

for testing purposes. For the ATB3, we use the same

split of data between training and testing as in previous

work [38,22,31,33]. The first, in chronological order,

509 newswire stories are used for training and the last

90 newswire stories are used in testing.

Table 2 The main eight Arabic diacritics along with their

shapes on the Teh Marbuta (
�
è) letter, sounds, hexadecimal

Unicode codes, and binary bit codes.

Name Shape Sound Unicode Bit code

Fathatan
��
è an 064B 0001

Dammatan
��
è un 064C 0010

Kasratan
�
è
�

in 064D 0011

Fatha
��
è a 064E 0100

Damma
��
è u 064F 0101

Kasra
�
è� i 0650 0110

Sukun
��
è None 0652 0111

Shadda
��
è Doubling 0651 1000

We follow previous researchers in having a single set

for development and testing, rather than separate devel-

opment and test sets (as is common). Zitouni et al. have

proposed this split when they started the LDC ATB3

benchmark [38] and this split is reluctantly followed by

all following researchers [22]. This adoption allows us to

compare our results to theirs.

However, using the test set as the validation set

in training a neural network would generally give a

net that is optimized for the test set. Therefore, we

also experimented with using separate development and

test sets. In the separate case, the training sentences

described above are randomly split into 70% training set

and 30% validation test. The resulting net is then used

to find the diacritization accuracy on the held-aside test

set.
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All networks were trained with online gradient de-

scent (weight updates after every sequence) using a learn-

ing rate of 10−3 and a momentum of 0.9 and random

initial weights drawn uniformly from [−0.1, 0.1]. The

training algorithm uses an error gradient calculated with

a combination of Real Time Recurrent Learning (RTRL)

and Back Propagation Through Time (BPTT) [21,16].

The one-to-one network was stopped at the point of

lowest label error rate on the validation set. The one-

to-many network was stopped at the point of lowest

log-loss.

In order to train the RNN to achieve high accuracy,

we have experimented with several training options.

These options include transcription method, net param-

eters and size, and size of the training data. The results

are presented in Section 5.

4.4 Post-processing

We use the following post-processing techniques to im-

prove the output of the sequence transcription stage.

– Letter correction: As the input letter sequences should

not change and the main objective is to add their

diacritics, any letter error in the output sequence

is corrected by consulting the input sequence. For

example, if for the input word I.
�
J », we get the

output “kababa” �
I.

�
J.

�
» which has the second letter

miss-transcribed. Then this letter is corrected to get

“kataba” �
I.

��
J
�
». Letter miss-transcriptions are rare;

they occur when the training set is too small. How-

ever, although correcting them is necessary, this

correction does not improve (or worsen) the diacriti-
zation accuracy.

– Sukun correction: The Sukun diacritic is used as an

indication that the letter does not hold one of the

three main short vowels (Fatha, Damma, and Kasra).

Some writing styles use the Sukun diacritic to mark
un-vowelized letters and some styles leave such letters

without any diacritic. To overcome these differences

when counting diacritization errors, we remove the

Sukun from the output and target sequences. For

example, the output “attalibu” �
I. Ë�A

��
¢

�
Ë @ is corrected

to “attalibu” �
I. Ë�A

��
¢Ë@.

– Fatha correction: The letter that precedes the letters

Alef ( @), Alef Maksura ( ø), or Teh Marbuta (
�
è)

always has the short vowel Fatha (or Shadda and

Fatha). If such a letter in the output sequence has

a short vowel other than Fatha, it is corrected to

Fatha. For example, the output “attualibu” �
I. Ë�A

��
¢Ë@ is

corrected to “attalibu” �
I. Ë�A

��
¢Ë@.

– Dictionary correction: A dictionary is consulted to

check whether the output word is in this dictionary.

This dictionary is built from the training data and is

indexed by the non-diacritized version of the word.

For every training word, the dictionary holds all its

diacritized variants. Each output word is checked

whether it is in the dictionary or not using its non-

diacritized version. If the word is present and does

not match any of the dictionary diacritized variants,

the variant that has the smallest edit distance is

selected as a correction [10] for the output word. If

the word is not in the dictionary or does match one

of the dictionary variants, the word is not changed.

However, we have noted that when the only difference

between the output word and a dictionary word is in

the last letter’s diacritic, it is better not to correct

the output word.

4.5 Accuracy evaluation

The output of the post-processing stage is analyzed for

accuracy against the target sequence using the following

two metrics.

– Diacritization error rate (DER) which is the propor-

tion of characters with incorrectly restored diacritics.

– Word error rate (WER) which is the percentage of

incorrectly diacritized white-space delimited words:
in order to be counted as incorrect, at least one letter

in the word must have a diacritization error.

We calculate these two metrics as is done in previous
related work [31,33]: (i) all words are counted including

numbers and punctuators, (ii) each letter or digit in a

word is a potential host for a set of diacritics, and (iii)

all diacritics on a single letter are counted as a single

binary (True or False) choice. Moreover, the target letter

that is not diacritized is skipped as there is no reference

to compare the output letter’s diacritics with.

5 Experiments and Results

The following subsections present the experiments, and

their results, that we carried out to train and tune

the RNNs to automatically add diacritics on Arabic

sentences.
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Fig. 6 The DER of the one-to-many and one-to-one networks
on four books

5.1 One-to-many vs. one-to-one

We have evaluated the accuracy of the two sequence

transcription networks: one-to-many and one-to-one.

Figure 6 shows the diacritization error rates of these

two networks for books of four representative sizes. The

hidden layer size in both networks is 250 nodes and the

one-to-many network has a 250-node prediction network.

For the four books, the one-to-one network has lower

error. We have also noticed that this advantage holds

even when we change the network size and the training

options. Therefore, we adopt the one-to-one network

and use it in the following experiments.

5.2 Weight noise distortion

All networks were found to overfit on the training data,

and we therefore used ‘weight noise’ regularisation [29,

14] to improve generalisation. Following previous work [14]

the standard deviation of the noise was fixed at 0.075 for

all network weights. Figure 7 shows the effect of train-

ing the RNN with and without weight noise. The figure

shows the DER for the four representative books. These

experiments were done using the one-to-one network of

one hidden layer. In all the experiments that we have

conducted, weight noise gave considerably superior re-

sults. Therefore we adopt this option in all the following

experiments.

In fact best results are obtained when the network

is trained in two steps. First the network is trained

without weight noise. Then it is retrained with weight

noise, starting from the weight values found in the first

step.
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Fig. 8 The effect of changing the number of the RNN’s hidden
layers

5.3 Network size

As the neural network size and topology have a great

impact on its performance, we conducted experiments

to optimise these hyperparameters. Figure 8 shows the

effect of changing the number of RNN hidden layers on

the DER. Each hidden layer used here has 250 nodes. We

have adopted the 250-node size because we noticed that

using fewer nodes decreases the accuracy and using more

nodes does not significantly improve it. This figure shows

that the error decreases as we go from one layer to two

layers. But the error increases slightly when we go from

two to three. Additionally, three layers are slower than

two layers. Therefore, we adopt the two-layer structure

in the final system.

Similar results have been recorded in the speech

recognition literature, with additional neural network

hidden layers rapidly decreasing the error up to a cer-

tain point, after which performance either levels out or

slightly degrades as more layers are added [9,20].
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5.4 Data size

We have conducted several experiments to study the

effect of changing the training data size on performance.

Figure 9 shows the DER for 11 books (the ten Tashkila

books and the Quran) and the weighted average of their

errors. This figure shows the error rates of two schemes:

Individual training Eleven RNNs are each trained

and tested using the training and testing sets of one
of the 11 books.

All training One RNN is trained using all the training

sets of the 11 books and is tested 11 times using the

testing sets of these books.

We have several observations about these experi-

ments. The main observation is that the error rate gen-
erally decreases as the training set size increases. The

weighted average DER when using all training sets is

2.48% versus 2.88% for the individual training. More-

over, the error rate generally decreases as the book size

increases. Note that the books are ordered in increasing

size as we go from Book 1 to Book 11, and the DER

generally decreases as we go from left to right in Fig. 9.

For nine out of the 11 books, the “all training”

scheme gives lower DER than the “individual training”

scheme. Only Books 3 and 4 have higher error rates.

These two books are Sahyh Muslim and the Quran and

they seem to benefit more from the specific individual

training than the “all training”. It seems that their char-

acteristics are, to some degree, different form the other

books. For example, the Quran has the largest letters

per word average among the used samples and Book 3

has the second smallest average (see Table 1).

The training time for the RNNs was in general very

long, especially for the larger datasets. For example, it

took more than three months to train the RNN using

Table 3 Diacritization results of the LDC ATB3 samples

Training Data DER WER

1 Eleven books 9.98% 30.27%

2 Eleven books and ATB3 5.82% 20.46%

3 ATB3 only 2.74% 9.31%

Table 4 The contributions of the post-processing techniques
in reducing the DER in “all training” and the ATB3

Technique Books LDC ATB3

Sukun correction 2.5% 6.3%

Fatha correction 2.0% 1.1%

Dictionary correction 19.3% 1.3%

Total 23.8% 8.7%

all 11 training sets (a total of 2,009 K words). However

activating a trained RNN is relatively fast.

These experiments use the one-to-one netwok, two

250-node hidden layers, and the weight noise distortion

training option.

This RNN setup is also used with the ATB3 samples.

Table 3 shows the results of three experiments where

three different training data are used: the training sets of
the 11 books only, the 11 books and the ATB3, and the

ATB3 only, respectively. The table shows that the worst

result is got when the training is done using the classical

11 books. The results are improved when the MSA ATB3

train data is added to the 11 books. However, best DER
at 2.74% and WER at 9.31% are obtained when training

is done using the ATB3 train data only. This indicates

that there are large differences between classical Arabic

and MSA and different networks should be used with

each type.

For the separate training and test sets case described

in Section 4.3, we noticed that the DER is higher by

less than 5% compared with the single set case. For the

ATB3 samples, the DER is 2.87% (versus 2.74%) and

for the “all training” samples, it is 2.57% (versus 2.48%).

This increase is expected as separate training does not

tune the net for the test set.

5.5 Influence of post-processing

The error rates reported in the previous subsections

include the improvements due to Sukun and Fatha cor-

rections, but not dictionary correction. Table 4 details

the impact of all three post-processing techniques for

the “all training” and ATB3 experiments.

The Sukun correction has more effect on the ATB3

than “all training” (6.3% vs. 2.5%), presumably because

the ATB3 is partially diacritized.
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The dictionary used in the “all training” case is con-

structed from the training sets of the 11 books and the

dictionary used with the ATB3 is constructed from its

training set (first 509 newswire stories). The dictionary

correction gives significant error reduction of 19.3% in

the “all training” case. However, it gives smaller re-

duction of only 1.3% with ATB3. The reason for this

smaller improvement is the smaller ATB3 dictionary

that is constructed from the earlier newswire stories.

The last 90 stories used in the test include many new

words not in the earlier stories.

In fact, dictionary correction in the “all training”

case reduces the error rates for all 11 books, as shown in

Figures 10, with the average DER dropping from 2.48%

to 2.09%. In the ATB3 case, the DER is marginally

reduced from 2.74% to 2.72%.

To conclude presenting results, we present the final

WER for the “all training” case in Figure 11. The aver-

age WER at 5.82% is naturally higher than DER, but

the relative standings of the 11 books is maintained. In

the ATB3 case, the WER is 9.07%.

6 Discussion

Table 5 shows the diacritization results of best pub-

lished systems and our system. For each system, the

table shows its publication year, the database used in

evaluating it, and its DER and WER. The table shows

that over the last eight years, diacritization accuracy

has generally improved and our system continues this

trend with a significant boost over its predecessors.

The table shows two sets of results reported by Zi-

touni et al. who defined the ATB3 benchmark. The

first set were obtained using a rich collection of input

features, including POS tags, while the second set used

only the raw undiacritized sentences, the same as our

system.

Said et al. system, to best of our knowledge, is the

system that has the best reported accuracy on the ATB3.

For this database, our system provides 25% DER im-

provement and 20% WER improvement over Said et

al. system. And this improvement is achieved with our

approach that uses the raw undiacritized sentences only,

without utilizing a hybrid approach combining statistical

and rule-based techniques.

In evaluating his system, Hifny also used books from

the Tashkila collection [37], similar to our work. Com-

pared with the ATB3, Tashkila is much larger and is
freely available. For the Tashkila samples, our system

provides 38% DER improvement and 35% WER im-

provement over Hifny’s system.

The results shown for the KAD system were reported

by Bahanshal and Al-Khalifa [6]. Among three available

automatic diacritization systems evaluated in their study

(KAD, Sakhr, and Mishkal), KAD has the best results

for diacritizing verses from the Holy Quran. However,

our system has much better accuracy in diacritizing

Quran verses, especially when it is trained only on some

of the Quran verses. For Quran, our system provides

45% DER improvement over KAD. This table shows the

Quran results for the “individual training” case followed

by the “all training” case.

In addition to showing the error rates when all dia-

critization errors are counted, Table 5 shows the error

rates when the errors in diacritizing the last letter of

each word are ignored. Although the proportion of last
letters to all letters is one to 4.64, the error rates are

significantly lower when these errors are ignored. The

diacritic of the last letter is generally determined by the

syntax and is usually harder to get right compared with

the diacritics of other letters.

The last column in Table 5 shows the difference

between the All-Diacritics DER and Ignore-Last DER.

This difference is the proportion of last letter diacritiza-

tion errors of all letters. This column demonstrates that
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Table 5 Diacritization results of related work and our system. The table shows the reported error rates when all diacritization
errors are counted (All Diacritics) and when the diacritization errors of the last word letters are ignored (Ignore Last). The last
column is the difference between the All-Diacritics DER and Ignore-Last DER.

All Diacritics Ignore Last

System Data DER WER DER WER DER-Last

Zitouni et al. 2006 [38] ATB3 5.5 18.0 2.5 7.9 3.0

(8.2) (25.1)

Habash & Rambow 2007 [22] ATB3 4.8 14.9 2.2 5.5 2.6

Rashwan et al. 2011 [31] ATB3 3.8 12.5 1.2 3.1 2.6

Said et al. 2013 [33] ATB3 3.6 11.4 1.6 4.4 2.0
Hifny 2012 [23] Tashkila - 8.9 - 3.4

KAD System 2012 [6] Quran 5.5 - - -

This work ATB3 2.72 9.07 1.38 4.34 1.34

Tashkila 2.09 5.82 1.28 3.54 0.81

Quran (indiv.) 3.04 8.70 1.98 5.82 1.06

Quran (all) 4.71 15.29 3.07 10.23 1.64

Table 6 Distribution of word errors for the “all training” case

Errors per word One Two Three+ Total

Last letter OK 38.3% 10.6% 1.7% 50.6%

Error in last letter 39.2% 7.6% 2.6% 49.4%

Total 77.5% 18.2% 4.3% 100.0%

our system is more successful than previous work in

reducing this error. This error rate (1.34) is 33% lower

than Said et al.’s system on the ATB3.

Now we discuss the errors of our system. Table 6

shows the distribution of word errors according to the

number of diacritic errors per word and whether there

is an error in the diacritic of the last letter or not. The

table shows that more than three quarters of the word

errors (77.7%) have one diacritic error, two errors per

word comprise 18.2%, and three errors or more per word

are not frequent (4.3%).

The table also shows that about half the word errors

(49.4%) have an error in the last letter. As there are

an average of about four letters per word, one would

expect to have smaller error rate in the last letter had

the errors been uniformly distributed. However, as other

researchers have noticed, the diacritic of the last letter

highly depends on the context and is hard to predict in

the Arabic language that has rich inflection rules [38].

Moreover, last-letter errors are hard to correct using

dictionaries.

We have manually inspected 200 error samples. Ta-

ble 7 shows six sample sequences that have errors. The

words that have errors are underlined and the table

shows the target (test) sequence and the output se-

quence.

We have noticed that, in about 55% of the samples,

the word that has diacritic error is a valid Arabic verb

or noun. Sample 1, for example, shows that target stem

verb “saffa”
��	


�

� (past tense of the verb enqueue) is

output as “sif”
�	

�� (command form of the verb de-

scribe). Sample 2 shows that the noun “hubbu”
��

I.
�

k

(love) is output as “habbu”
��

I.
�

k (seeds). Sample 3, shows

a counter example where the output word �
©

��	
J

�
�

�
�
 is not a

valid Arabic word.

Sample 4 shows an example where the output word

is missing the diacritic of the last letter “akhiyk” ½J

	

k�

�
@

(your brother). This word has the possessive pronoun

suffix “ka”
�
¼. We have traced the reason of this error

to the training data used. We have noticed that this

pronoun suffix is not diacritized in many cases in the

training data.

We also noticed that a significant fraction of the

error words (23%) have prefixes or suffixes or both, as

in Samples 1, 4, and 5. The error word in Sample 5 has

both; it has the prefix “la”
�

È, the stem verb “tarawunna”
��	
à

�
ð �Q

��
K, and the pronoun suffix “haa” A

�
ë. These complex

words are the hardest words to be correctly diacritized

especially because the inflection dicritic often goes to
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Table 7 Sample sequences with errors

Sample Target Sequence Output Sequence 

 ثمَُّ صِف همُ   ثمَُّ صَفَّهمُ   1

 وَحَبُّ  ال جَاهِ عَلىَ ال قلَ بِ غَالبِ   وَحُبُّ ال جَاهِ عَلىَ ال قلَ بِ غَالبِ   2

نعَُهُ النَّاسُ  3 نعََ مَا لََّ يصَ  نعَُهُ النَّاسُ  إلََّّ أنَ  يصَ  نَّعَ  مَا لََّ يصَ   إلََّّ أنَ  يصَ 

تُ أخَِيكَ  4 تُ أخَِيك أخُ   أخُ 

 ثمَُّ لتِرََونهِاَ عَي نَ ال يقَيِنِ  ثمَُّ لتَرََوُنَّهاَ عَي نَ ال يقَيِنِ  5

 يقُيِمُ عِن دَهُ وَلََّ شَىءَ لهَُ يقَ رِيهِ بهِِ  يقُيِمُ عِن دَهُ وَ لََّ  شَىءَ لهَُ يقَ رِيهِ بهِِ  6

the last letter in the stem, and not to the last letter of

the suffix.

We have estimated that about 3% of the errors are
due to diacritization errors in the test samples used. For

example, Sample 6 shows that the Fatha in the word

“laa” B
�

was mistakenly entered after the last letter (
�
B),

not after the first letter.

It seems that the Shadda diacritic is harder to restore

than the average diacritic; although the samples have

about 6.5% Shadda diacritic relative to all diacritics,

Shadda errors are about 9.8% of the DER. Note that

the problematic words in Samples 1, 2, 3, and 5 have

Shadda diacritic in the target or the output word.

7 Conclusions

In this paper, we have tackled the problem of adding

diacritics to Arabic text as a sequence transcription

problem using deep bidirectional LSTM network. Our

approach is a pure machine learning approach. The

network is trained on transcribing raw undiacritized
Arabic text sequences into fully diacritized sequences.

We have experimentally selected the type and config-

uration of the used network. Best accuracy is obtained

when using the one-to-one network, training with weight

noise distortion, and using two hidden layers each of

250-node size.

We have used samples from ten books of the Tashk-

ila collection and the Quran to test this approach. The

experimental evidence indicates that the accuracy im-

proves as the training set size increases. Best average

results are obtained when training the network using

the training sets of the 11 books.

In order to improve accuracy, we used four post-
processing correction techniques: letter, Sukun, Fatha,

and dictionary. These techniques reduce the average

DER by 23.8% for the 11 books. The dictionary correc-

tion is responsible of 19.3% of this reduction.

We have also tested this approach on the LDC ATB3

that is widely used in related work. Although some

words in the ATB3 are not, or partially, diacritized and
the ATB3 is smaller than the 11 books samples, this

approach achieves high accuracy on the ATB3 as well.

The achieved DER of 2.72% and WER of 9.07% are

better than the best published results by 25% and 20%,

respectively. Also the last letter diacritization error rate

is 33% lower than the best published results.

These results are mainly due to the sequence tran-

scribing capabilities of the network used and its abil-

ity to exploit long-range context dependencies in the

foreword and backward directions. Even without the

post-processing techniques used, this approach has a

DER better than the best published results by 18%.

This approach outperforms leading hybrid approaches.

It gives better results without utilizing available rule-

based techniques such as morphological analysis. How-

ever, we think that integrating such techniques as pre-

processing stages before the sequence transcription stage

could provide higher accuracy.

We intend to experiment with adding such techniques

to this approach. This future work is motivated by the

observation that significant fraction of the errors is in

complex words that have prefixes, suffixes, or both. We

expect that providing the morphological analysis of

such words to the RNN would provide it with better

information to achieve higher accuracy.



Automatic diacritization of Arabic text using recurrent neural networks 15

References

1. Abandah, G., Khundakjie, F.: Issues concerning code
system for Arabic letters. Dirasat Engineering Sciences
Journal 31(1), 165–177 (2004)

2. Abandah, G.A., Jamour, F.T., Qaralleh, E.A.: Recogniz-
ing handwritten Arabic words using grapheme segmen-
tation and recurrent neural networks. Int’l J. Document
Analysis and Recognition 17(3), 275–291 (2014)

3. Al-Sughaiyer, I.A., Al-Kharashi, I.A.: Arabic morphologi-
cal analysis techniques: A comprehensive survey. Journal
of the American Society for Information Science and Tech-
nology 55(3), 189–213 (2004)

4. Azim, A.S., Wang, X., Sim, K.C.: A weighted combination
of speech with text-based models for Arabic diacritiza-
tion. In: 13th Annual Conf. Int’l Speech Communication
Association, pp. 2334–2337 (2012)

5. Azmi, A.M., Almajed, R.S.: A survey of automatic Arabic
diacritization techniques. Natural Language Engineering
pp. 1–19 (2013). DOI 10.1017/S1351324913000284. Pub-
lished online

6. Bahanshal, A., Al-Khalifa, H.S.: A first approach to the
evaluation of Arabic diacritization systems. In: Int’l Conf.
Digital Information Management, pp. 155–158 (2012)

7. Beesley, K.R.: Arabic finite-state morphological analy-
sis and generation. In: 16th Conf. on Computational
Linguistics, vol. 1, pp. 89–94 (1996)

8. Buckwalter, T.: Buckwalter Arabic Morphological Ana-
lyzer, v2.0 edn. Linguistic Data Consortium, Philadelphia
(2004)

9. Dahl, G., Yu, D., Deng, L., Acero, A.: Context-dependent
pre-trained deep neural networks for large-vocabulary
speech recognition. IEEE Trans. Audio, Speech, and
Language Processing 20(1), 30–42 (2012)

10. Damerau, F.J.: A technique for computer detection and
correction of spelling errors. Comm. of the ACM 7(3),
171–176 (1964)

11. El-Sadany, T., Hashish, M.: Semi-automatic vowelization
of Arabic verbs. In: 10th National Computer Conf., pp.
725–732 (1988)

12. Gal, Y.: An HMM approach to vowel restoration in Arabic
and Hebrew. In: ACL-02 Workshop on Computational
Approaches to Semitic Languages, pp. 1–7 (2002)

13. Gers, F., Schraudolph, N., Schmidhuber, J.: Learning
precise timing with LSTM recurrent networks. Journal of
Machine Learning Research 3(1), 115–143 (2002)

14. Graves, A.: Practical variational inference for neural net-
works. In: Advances in Neural Information Processing
Systems, pp. 2348–2356. Curran Associates, Inc. (2011)

15. Graves, A.: Offline Arabic handwriting recognition
with multidimensional recurrent neural networks. In:
V. Märgner, H. El Abed (eds.) Guide to OCR for Arabic
Scripts, pp. 297–313. Springer, London (2012)

16. Graves, A.: Sequence transduction with recurrent neural
networks. In: ICML Representation Learning Worksop
(2012)

17. Graves, A.: Supervised sequence labelling with recurrent
neural networks. Springer, Berlin (2012)

18. Graves, A.: Generating sequences with recurrent neural
networks. arXiv preprint arXiv:1308.0850 (2013)

19. Graves, A.: RNNLIB: A recurrent neural net-
work library for sequence learning problems.
http://sourceforge.net/projects/rnnl/ (2013)

20. Graves, A., Mohamed, A.r., Hinton, G.: Speech recog-
nition with deep recurrent neural networks. In: IEEE
Int’l Conf. Acoustics, Speech and Signal Processing, pp.

6645–6649 (2013)
21. Graves, A., Schmidhuber, J.: Framewise phoneme classifi-

cation with bidirectional LSTM and other neural network
architectures. Neural Networks 18(5-6), 602–610 (2005)

22. Habash, N., Rambow, O.: Arabic diacritization through
full morphological tagging. In: Conf. North American
Chapter of the Association for Computational Linguistics,
pp. 53–56 (2007)

23. Hifny, Y.: Smoothing techniques for Arabic diacritics
restoration. In: 12th Conf. on Language Engineering, pp.
6–12 (2012)

24. Hochreiter, S., Schmidhuber, J.: Long short-term memory.
Neural Computation 9(8), 1735–1780 (1997)

25. Kirchhoff, K., Bilmes, J., Das, S., Duta, N., Egan, M., Ji,
G., He, F., Henderson, J., Liu, D., Noamany, M., et al.:
Novel approaches to Arabic speech recognition: report
from the 2002 Johns-Hopkins summer workshop. In: IEEE
Int’l Conf. Acoustics, Speech, and Signal Processing, vol. 1,
pp. 344–347 (2003)

26. Lewis, M.P. (ed.): Ethnologue: Languages of the World,
16th ed. edn. SIL International, Dallas (2009)

27. Maamouri, M., Bies, A., Buckwalter, T., Mekki, W.: The
Penn Arabic treebank: Building a large-scale annotated
Arabic corpus. In: NEMLAR Conf. Arabic Language
Resources and Tools, pp. 102–109 (2004)

28. Märgner, V., El Abed, H.: ICDAR 2009 - Arabic hand-
writing recognition competition. In: Int’l Conf. Document
Analysis and Recognition, pp. 1383–1387 (2009)

29. Murray, A.F., Edwards, P.J.: Enhanced MLP performance
and fault tolerance resulting from synaptic weight noise
during training. IEEE Trans. Neural Networks 5(5), 792–
802 (1994)

30. Nelken, R., Shieber, S.M.: Arabic diacritization using
weighted finite-state transducers. In: ACL Workshop
on Computational Approaches to Semitic Languages, pp.
79–86 (2005)

31. Rashwan, M., Al-Badrashiny, M., Attia, M., Abdou, S.,
Rafea, A.: A stochastic Arabic diacritizer based on a
hybrid of factorized and unfactorized textual features.
IEEE Trans. Audio Speech Language Processing 19(1),
166–175 (2011)

32. Ryding, K.C.: A Reference Grammar of Modern Standard
Arabic. Cambridge University Press, Cambridge (2005)

33. Said, A., El-Sharqwi, M., Chalabi, A., Kamal, E.: A hy-
brid approach for Arabic diacritization. In: E. Mtais,
F. Meziane, M. Saraee, V. Sugumaran, S. Vadera (eds.)
Natural Language Processing and Information Systems,
Lecture Notes in Computer Science, vol. 7934, pp. 53–64.
Springer (2013)

34. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural
networks. IEEE Trans. Signal Processing 45(11), 2673–
2681 (1997)

35. Vergyri, D., Kirchhoff, K.: Automatic diacritization of
Arabic for acoustic modeling in speech recognition. In:
Workshop on Computational Approaches to Arabic Script-
based Languages, pp. 66–73 (2004)

36. Zarrabi-Zadeh, H.: Tanzil - Quran Navigator.
http://tanzil.net/download. Last accessed on Nov
27, 2014

37. Zerrouki, T.: Arabic corpora resources, Tashkila
collection from the Arabic Al-Shamela library.
http://aracorpus.e3rab.com. Last accessed on Nov
27, 2014

38. Zitouni, I., Sorensen, J.S., Sarikaya, R.: Maximum entropy
based restoration of Arabic diacritics. In: 21st Int’l Conf.
Computational Linguistics, pp. 577–584 (2006)


