0907542 Patter Recognition (Spring 2015) <u>Midterm Exam</u>

رقم الجلوس:

رقم التسجيل:

الاسم:

<u>Instructions</u>: Time 60 min. Closed books & notes. No calculators or mobile phones. No questions are allowed. **Bold** case is used for vectors and matrices. Show your work clearly.

Q1. Using Bayes classification rule, find the classification threshold point and classify the Point x = 1.75 given that:

[8 marks]

 $P(\omega_1) = 0.25$, $P(\omega_2) = 0.75$, $p(x|\omega_1) = x/2$, $p(x|\omega_2) = 1 - x/2$

The threshold is at

$$P(\omega_1) p(x|\omega_1) = P(\omega_2) p(x|\omega_2)$$

$$0.25 \times \frac{x}{2} = 0.75 \times (1 - \frac{x}{2})$$

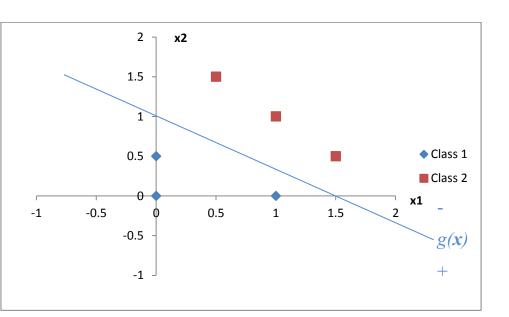
$$\frac{x}{8} + \frac{3x}{8} = 3/4$$

$$\frac{4x}{8} = \frac{3}{4} \to x_0 = \frac{3}{2}$$

As x = 1.75 > 3/2 then x belongs to ω_1

Q2. Given the following four training samples belonging to classes ω_1 and ω_2 :

 $\omega_1: \begin{bmatrix} 0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix}, \omega_2: \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1 \end{bmatrix}$


Using the Matlab classify() function, write the necessary Matlab code to classify the unknown sample $x = \begin{bmatrix} 0.6 & 0.4 \end{bmatrix}^T$.

[7 marks]

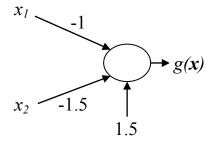
```
training = [0 0; 0 1; 1 0; 1 1];
group = ['Class 1'; 'Class 1'; 'Class 2'; 'Class 2'];
sample = [0.6 0.4];
classify(sample, training, group)
```

Q3. The following graph shows the feature values of 6 samples (three samples of Class 1 and three samples of Class 2).

[7 marks]

Design a perceptron network to classify these six samples (you must find the synaptic weights of your design and draw the resulting network).

Assume the decision line g(x) as drawn above


 $g(\mathbf{x}) = w_1 x_1 + w_2 x_2 + w_0$ Where $g(\mathbf{x}) > 0$ for Class1 and $g(\mathbf{x}) < 0$ for Class 2 To find the weights, let

$$g(x) = w_1 x_1 + w_2 x_2 + w_0 = 0$$

$$x_1 = 0 \to w_2 = -w_0/1.0$$

$$x_2 = 0 \to w_1 = -\frac{w_0}{1.5}$$

Let $w_1 = -1 \to w_0 = 1.5$

$$w_2 = -\frac{w_0}{1.0} = -1.5$$

Hence $g(x) = -x_1 - 1.5x_2 + 1.5$

Q4. In a three-class recognition problem, find the value of $-\frac{1}{2}\mu_2^T \Sigma_i^{-1}\mu_2$ given that $\Sigma_i = 4I$ and $\mu_2 = [-1 \ 1 \ 2]^T$, where I is the identity matrix of size 3-by-3. [8 marks] $\Sigma_i \Sigma_i^{-1} = I$ $4I\Sigma_i^{-1} = I$ $\Sigma_i^{-1} = I/4$ $-\frac{1}{2}\mu_2^T \Sigma_i^{-1}\mu_2 = -\frac{1}{2}[-1 \ 1 \ 2] \left(\frac{I}{4}\right) \begin{bmatrix} -1\\1\\2 \end{bmatrix}$ $= -\frac{1}{8}[-1 \ 1 \ 2] \begin{bmatrix} -1\\1\\2 \end{bmatrix}$ $= -\frac{1}{8}(1+1+4)$ $= -\frac{6}{8}$ $= -\frac{3}{4}$

<Good Luck>