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Feature Extraction – Arabic OCR Case Study 

 

Gheith A. Abandah
 

 

 

Feature extraction is extracting from the raw data the information which is most 

relevant for classification purposes. 

 

The following subsections describe the techniques and algorithms used to extract 

an assortment of features used in this research.  

 We start by detecting the secondary components of the Arabic letters and 

extracting features from these components. 

 Then we remove the secondary components and extract additional features 

from  

o the main body,  

o the main body’s skeleton, and  

o the main body’s boundary. 
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3.1 Secondary Components Detection and Removal 

More than half the Arabic letters are composed of main body and secondary 

components. The secondary components are letter components that are 

disconnected from the main body. For example, Beh (ب) has a dot under its main 

body, Teh (ت) has two dots above its main body, and Kaf (ك) has a zigzag 

enclosed within the main body. Table 2 lists the secondary types that are 

encountered in written Arabic samples. 

 

Table 2  Types of the Secondary Components 

No Secondary Type Examples 

1 No Secondary 
 ا و ه م ل ع ط ص س ر د ح ء

2 One Dot ن ف غ ظ ض ز ذ خ ج ب 

3 Two Dots ي ق ة ت 

4 Three Dots ش ث 

5 Zigzag ك إ ؤ أ 

6 Vertical Bar a ط 

7 Vertical bar and a dot a ظ 

8 Long Stroke b ك 
a This secondary is encountered when the upper vertical stroke 

is drawn disconnected from the loop of Tah and Zah. 
b This secondary is encountered when the upper stroke is drawn 

disconnected from the lower part of initial Kaf. 

 

The type of the secondary components and their position are very important 

features for recognizing Arabic letters. For example, two dots below the main 

body are sufficient to recognize the letter Yeh (ي) because Yeh is the only letter 

with these features. Furthermore, some letter forms can only be distinguished by 

the type of secondary components as in medial Teh and medial Theh ( ث ت ), or the 

secondary position as in medial Teh and medial Yeh ( ي ت ). Table 3 shows the 

possible secondary components positions of Arabic letters. 

 

Table 3  Possible Positions of Secondary Components 

No Secondary Position Examples 

1 No Secondary 
 ا و ه م ل ع ط ص س ر د ح ء

2 Above ن ق ف غ ض ش ز ذ خ ث ة ت ؤ أ 

3 Within ج ظ ك  

4 Below ي ب إ 
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Detecting the secondary components can be done after segmenting the binary 

image of the letter into its disconnected components using the connected 

component labeling techniques [12, 13]. Then the main body is easily identified as 

it is usually the largest component and is closer to the baseline than the secondary 

components. The position of the secondary components is then easily found 

relative to the main body. Finally, the number and position of the secondary 

components play important role in finding their type. However, our approach in 

classifying the secondary components also utilizes other features extracted from 

the secondary components such as size, orientation, elongation, and spatial 

distribution (see Section 3.2.). 

There are important variations in drawing the secondary components; mostly in 

drawing two dots and three dots. As shown in Table 4-Samples A1, A2, and A3, 

the two dots come in three variations: two disconnected dots, two connected dots, 

and horizontal dash. Samples A5, A6, and A7 show three variations in drawing 

the three dots: three disconnected dots, one dot above horizontal dash, and 

inverted “v” shape. The secondary components classification process should take 

these variations into consideration. 

 

Table 4  Samples Showing Variations in Handwritten Letters 

 1 2 3 4 5 6 7 8 9 10 

A 
   

 

   

 

 
 

B 
   

  

 

    

C 
   

 
 

  

  
 

D 
  

 
 

  
  

  

E 
   

 
  

   
 

F 

   

 
 

 
  

  

 

It is important to note that some writers use styles that replace the secondary 

components of isolated and final forms with main body curves. Table 4 shows 

some examples: Samples A9 and A10 show how the two dots of isolated Qaf are 

replaced, Samples B1 and B2 show how the one dot of isolated Noon is replaced, 

and Samples B4 and B5 show how the zigzag of final Kaf is replaced. 
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One difficulty in recognizing the secondary components comes when hasty 

writers draw them connected to the main body. For example, Sample B7 shows 

the zigzag connected to Kaf’s body, Sample B8 shows the two dots connected to 

Teh’s body, Sample B9 shows the three dots connected to Theh’s body, and 

Sample B10 shows the dot connected to Jeem’s body. 

After detecting and classifying the secondary components, we remove them from 

the letter image and pass the main body to the feature extraction stages described 

below. 

3.2 Main Body Features 

Main body features are mainly statistical features. They are found from the letter 

image after removing the secondary components. The following paragraphs define 

some of these features, such as area, width, height, pixel distribution, moments, 

orientation, roundness, and number of loops. 

3.2.1 Size 

We use a threshold function to convert the 2-dimentional image into a binary 

image )1,0(),( yxB ; black pixels are the foreground pixels and take the value 1 

 [12]. The area A of the letter body is found by 


x y

yxBA ),( . (1) 

To find the main body’s width W and height H, the image is clipped into a 

rectangular shape such that all four borders have at least one black pixel. We also 

derive a scale-invariant feature; the width to height ratio W/H [14]. 

3.2.2 Distribution 

We partition the clipped image into four equal quadrants and find the fraction of 

black pixels in each quadrant relative to the area A. The resulting four fractions 

are: upper-right UR/A, lower-right LR/A, lower-left LL/A, and upper-left UL/A. 

We also find the fractions of the four halves relative to A: upper U/A, right R/A, 

lower Lo/A, and left Lt/A. 

3.2 Moments 

The moments of order )( vu   of the binary image [15,  16] can be found by 
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,3,2,1,0,),(  vuyxByxm
x y

vu

uv  (2) 

Note that m00 is the body’s area A, and the image’s center of mass ),( yx  is found 

from  

00

10

m

m
x   and 

00

01

m

m
y  . (3) 

The center of mass is dependant on the origin selection and the body’s scale. In 

order to normalize for these two factors, we compute the normalized center of 

mass ),( NN yx  using 

2/

2/)1(

W

Wx
xN


  and 

2/

2/)1(

H

Hy
yN


 . (4) 

The central moments, which are translation invariant, can be found by 

 
x y

vu

uv yxByyxx ),()()( . (5) 

Finally, the normalized central moments, which are translation and scale 

invariant, are derived from the central moments as follows 

k

uv
uv

)( 00


  ,  (6) 

where 2/)(1 vuk  for 2 vu . 

Hu has defined a set of seven moments which are invariant under the actions of 

translation, scaling, and rotation [17]. Using the feature evaluation techniques 

described in Section 5, we found that the normalized central moments uv  give 

better results than Hu’s moment invariants, suggesting that the added 

computational overhead of Hu’s moment invariants does not give added value for 

our samples that do not have rotational variations. 

3.2.4 Orientation 

The orientation   of an elongated object is the orientation of the elongation axis 

[12]. The axis of least inertia is the elongation axis. The inertia of the elongation 

axis is found by 


x y

yxBr ),(22 ,  (7) 
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where r is the perpendicular distance from point (x, y) to the elongation axis. 

Using polar coordinates and utilizing the fact that the elongation axis passes 

through the center of mass, the inertia is found from the second-order central 

moments by 

 2sin2cos)(
2

1
)(

2

1
1102200220

2  . (8) 

The orientation of the elongation axis can be found by solving the minimization 

problem of (8) with respect to  . The orientation   then can be found by solving 

2

0220

2

11

11

)(4

2
2sin







  and (9) 

2

0220

2

11

0220

)(4

)(
2cos









 . (10) 

3.2.5 Roundness 

The positive and negative values for sine and cosine of 2  in (9) and (10) can be 

plugged in (8) to find the minimum and maximum inertia values, respectively. 

The object elongation E (or eccentricity) is found by 

min

max




E . (11) 

The object roundness R, defined using (12), is a ratio between 0 for a straight line 

and 1 for a circle. 

2

max

2

min




R  (12) 

Table 5 shows the averages of the some of the statistical features described above. 

These averages are found for the features extracted from handwritten letter 

samples of the four forms. These samples are described in Section 4. The first 

three averages indicate that final and isolated forms are larger than initial and 

medial forms. Samples C1 and C2 of Table 4 show two extremes; the final Kaf is 

much larger than the initial Feh. Moreover, Samples C2 and C3 show that the 

initial and final forms of Feh have totally different sizes. 
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Table 5  Average Values of Some Statistical Features for the Four Letter Forms 

No Feature Isolated Initial Medial Final 

1 Area A (in pixels) 145 116 120 173 

2 Width W (in pixels) 23 20 22 29 

3 Height H (in pixels) 19 15 13 18 
4 Ratio W/H 1.40 1.51 2.09 1.75 

5 UR/A 0.28 0.31 0.22 0.23 

6 LR/A 0.24 0.26 0.29 0.24 
7 LL/A 0.33 0.32 0.32 0.34 

8 UL/A 0.15 0.11 0.17 0.19 

9 U/A 0.43 0.43 0.39 0.42 
10 R/A 0.52 0.57 0.51 0.47 

11 Lo/A 0.57 0.57 0.61 0.58 
12 Lt/A 0.48 0.43 0.49 0.53 

13 Nx
 

0.02 0.09 0.01 -0.05 

14 Ny
 

-0.09 -0.08 -0.12 -0.11 

15 Orientation  37° 34° 22° 27° 

16 Roundness R 0.24 0.23 0.25 0.22 

 

From the width and height averages, we can conclude that Arabic letters are 

generally elongated in the horizontal direction. Also note that the ratio W/H of 

medial and final forms is larger than that of isolated and initial forms. Sample C5 

shows isolated Alef, which has small W/H ratio. And Sample C6 shows the 

medial Seen, which has large W/H ratio. 

By studying the averages of fractions of pixel distributions and the normalized 

center of mass, we can reach some interesting conclusions about the 

characteristics of handwritten Arabic letters. In general, Arabic letters have more 

mass in the lower half of the clipped letter image. However, on average initial 

forms have more mass in the right half, and final forms have more mass in the left 

half. Sample C8 shows initial Yeh that demonstrates an example of large relative 

mass in the right half, and Sample C9 shows final Alef that demonstrates an 

example of large relative mass in the left half. Both these samples have most of 

their respective masses in the lower half. 

In general, the Arabic letters go from right to left and up to down. The average 

orientation is 30°. However, the four forms have different orientation averages. 

The medial form’s average is the closest to the horizontal direction and the 

isolated form’s average is the farthest. Sample D1 shows medial Teh which has a 

small orientation angle and Sample D2 shows isolated Alef which has a large 

orientation angle. 

Finally, Table 5 shows that the average Arabic letter is far from the rounded 

shape. However, Sample D4 shows the isolated Teh (closed form) which is the 

closest form to perfect circle. On the other hand, Sample D5 shows isolated Reh 

which is almost a straight line. 
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3.2.6 Loops 

The number of main body loops is a structural feature. While more than half the 

Arabic letters are usually written without loops (see Table 6), ten other letters are 

usually written with one loop in all four forms, two letters are written with one 

loop in the medial and final forms only, and three letters are written with or 

without a loop according to the writing style. For example, Jeem (ج) is written 

without a loop and with a loop as shown in Samples D7 and D8, respectively. 

 

 

Table 6  Existence of Loops in Arabic Letters 

No Loop Existence Examples 

1 No loops 
 ي ا ن ل ك ش س ز ر ذ د ث ت ب ء

2 One loop in all forms و ه م ق ف ظ ط ض ص ة 

3 One loop in some forms غ غ 

4 One loop in some styles ح خ ج 

 

Medial Heh has large style variation; Samples E1, E2, and E3 show that this form 

has styles with no loops, one loop, and two loops, respectively. Moreover, some 

writing styles introduce additional loops to the isolated and final forms by 

extending the curve of the letter’s end. Examples are Letters Beh (Sample E5), 

Teh, Theh (E6), Ain (E7), Ghain, Feh (E8), Qaf, Kaf (B4), Noon, curly Alef, 

and Yeh (E9). Some writers don’t close the loop of the final forms of closed Teh 

and Heh, as illustrated in Samples F1-F3. 

We have noticed that some samples of the isolated and final forms of the letters 

that have a rounded cusp have unexpected loops when the cusp is drawn 

completely closed. We have noticed this observation with some samples of Letters 

Seen, Sheen, Sad, Dad (see Sample F5), and Noon. Also we have noticed that 

many samples of letters that have a small loop are drawn with a filled loop that is 

hard to discover. This was frequently noticed with samples of Letters Feh, Qaf, 

Meem, and Waw. Samples F7 and F8 show how the Waw loop is drawn 

punctured and filled, respectively. Note also that Sample E8 shows final Feh 

drawn with a filled loop. 

There are many techniques to find the number of loops in an image. We used the 

connected component labeling algorithm to find the number of loops. The number 

of background components (white components) minus one is the number of loops. 
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For example, Sample D8 has one loop since is has two background components; 

the large background component surrounding the letter (always present) and the 

small component enclosed within the loop of the upper part of the letter. 

3.3 Skeleton Features 

Thinning is usually a pre-processing stage in character recognition where the 

character image is reduced to a simplified one-pixel wide skeleton. Fig. 1 shows 

an isolated Seen before thinning and the resulting skeleton after thinning. The 

skeleton allows extracting a variety of character features as described below. 

 

 

Fig. 1  An isolated Seen (a) before thinning and (b) its skeleton after thinning. 

 

There are many serial and parallel algorithms for thinning character images [18, 

 19]. We have found that the simplified version of Rutovitz’s thinning algorithm 

[20] as described by Stefanelli  and Rosenfeld  [21] generates good skeletons for 

our samples. However, this algorithm has a problem with diagonal lines where it 

sometimes generates two-pixel wide diagonal lines. We therefore adopted 

Deutsch's thinning algorithm [22] that has a complete set of rules to solve the 

diagonal lines problem and to get symmetric thinning. Table 7 shows some 

sample letters and the respective main body skeletons using this algorithm. 

 

Table 7  Letter Samples and Respective Skeletons 

 1 2 3 4 5 6 7 8 9 

X 
   

 
  

 

  

 
   

      

Y 
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We used the skeleton of the main letter’s body to extract five features. These 

features are the numbers of vertical and horizontal crossings and the feature points 

as described below. 

3.3.1 Vertical and Horizontal Crossings 

The vertical and horizontal crossings are found by counting the number of white-

black-white transfers when scanning the image’s pixels on a vertical line and a 

horizontal line, respectively.  These lines are the two lines that pass through the 

center of mass of the main body’s skeleton. These features are signs of the letter’s 

complexity. For example, Samples X1, X2, and X3 in Table 7 show the simple 

final Zain that has one vertical and one horizontal crossing, isolated Khah that 

has three vertical crossings and one horizontal crossing, and the complex final 

Sad that has two vertical crossings and four horizontal crossings. 

Elongated letters have large variance in the number of crossings in the elongation 

direction. For example, Samples X5 and X6 of the medial Seen, which is 

horizontally elongated, have one vertical crossing and two and five horizontal 

crossings, respectively. These two samples illustrate another problem; Seen has 

three small teeth that are often lost through the thinning process. 

Decorative loops in the isolated and final forms increase the number of crossings. 

Samples X8 and X9 illustrate that the vertical crossings of isolated Beh increase 

from one to two when this letter is written with a decorative loop. Also 

handwriting variations introduce variance in the number of crossings. Samples Y1 

and Y2 show two more samples of the isolated Khah; Sample Y1 has two vertical 

crossings because it is written with the loop shifted to the back, and Sample Y2 

has four vertical crossings because it is written with the loop hanging to the front. 

3.3.2 Feature Points 

Three important feature points can be easily found from the skeleton by 

examining the eight immediate neighbors of every black pixel: end point is a point 

with one black neighbor, branch point has three black neighbors, and cross point 

has four black neighbors. Fig. 2 shows the skeleton of isolated Sad that 

demonstrates three end points, one branch point, and one cross point. 
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Fig. 2  The Skeleton of isolated Sad has three end points, one branch point, and one cross point. 

 

The number of feature points is affected when decorative loops are added to the 

isolated and final forms. Although isolated Beh has only two end points as 

illustrated by Sample X8, adding a decorative loop adds a cross point, or 

eliminates an end point and adds a branch point as illustrated by Samples X9 and 

Y4, respectively. 

The number of feature points is also affected when the secondary objects touch 

the main body. Sample Y5 shows an isolated Beh with its dot touching the main 

body. As a result, the main body of isolated Beh gets one more end point and one 

branch point. 

Variations in drawing loops also affect the number of feature points. Samples Y7 

and Y8 show two final Qaf letters with punctured and filled loops, respectively. 

The punctured loop feature gives one cross point, whereas the filled loop gives 

one branch point and one end point. However the thinning process may dissolve 

the filled loop completely and end up with no feature points as illustrated in 

Sample Y9. 

Moreover, the thinning process may remove the teeth of Seen, Sheen, Sad, and 

Dad, as illustrated in Sample X5. The removal of every tooth eliminates one 

branch point and one end point. 

Table 8 shows the averages of the features extracted from the skeleton for the four 

letter forms. The averages of the medial and final forms are larger than the 

averages of the isolated and initial forms, which is an indication that medial and 

final forms are more complex. Note that the averages of the number of end points 

is around two or larger. Simple letters have two ends unless one end is a loop as in 

isolated Waw (و). The complex forms have more end points, branch points, and 

cross points.  
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Table 8  Average Values of the Skeleton Features for the Four Letter Forms 

No Feature Isolated Initial Medial Final 

1 Vertical Crossings 1.66 1.55 1.68 1.58 

2 Horizontal Crossings 1.75 1.59 1.84 1.91 

3 End Points 1.96 2.00 2.47 2.41 
4 Branch Points 0.71 0.88 1.20 0.99 

5 Cross Points 0.06 0.05 0.08 0.07 

 

We noticed that the number of cross points is smaller than the expected number. 

For example, we expected that the cross point feature would be found in 6 medial 

forms out of 23 (averaging 0.26). But the extracted average was only 0.08. The 

reason is that cross points are often lost through the thinning process and are 

converted to pairs of neighboring branch points as Fig. 3 illustrates. Here the main 

body of medial Ain has one perceptible cross point at the base of the loop. But the 

thinning process converts the cross into two pixels that are two adjacent branch 

points. 

 

 

Fig. 3  Medial Ain: (a) Main Body, (b) Skeleton after Thinning 

 

3.4 Boundary Features 

Boundary finding is another pre-processing stage in character recognition where 

the character outer contour is found [12]. Fig. 4 shows isolated Seen before and 

after finding its boundary. 

 

 

Fig. 4  Isolated Seen (a) Original Main Body and (b) Its Boundary 

 

Fig. 5 shows the algorithm we used for finding the boundary [23]. This algorithm 

first finds one boundary pixel, then it traces the boundary pixels in a clockwise 

fashion until it gets back to the first boundary pixel. 
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Fig. 5  Boundary Tracing Algorithm 

 

Table 9 shows some sample letters and the respective main body boundary using 

this algorithm. 

We used the boundary of the main letter’s body to extract several features. These 

features are the number of boundary pixels, perimeter length, perimeter to 

diagonal ratio, bending energy, compactness ratio, and elliptic Fourier descriptors 

as described below. 

 

Table 9  Letter Samples and Respective Boundaries 

 1 2 3 4 5 6 7 8 9 

Z  

 

 
  

 
 

  

  
 

 
  

  
  

 

3.4.1 Boundary Pixels 

The number of boundary pixels m is directly found by counting the boundary 

pixels miyx ii ,,2,1),,(   traced using the above algorithm. Then Freeman 

chain code is used to compactly encode the boundary pixels [24]. The direction 

from every boundary pixel to the next boundary pixel is put in the chain. The 

direction from the last pixel to the first pixel is the last code in the chain. The 

direction codes ]7,0[if  are as shown in Fig. 6. 

 

 

Fig. 6  Freeman Chain Code for the Eight Directions from One Boundary Pixel to the Next 
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3.4.2 Perimeter Length 

The perimeter length T is found by summing the distances from one pixel to the 

next. Formally, it is found from the chain code using 






  odd is  2

even is    1
)L(where),L(

i

i

1 f

f
ffT i

m

i

i . (13) 

3.4.3 Perimeter to Diagonal Ratio 

We also used a scale-invariant feature which is the ratio of half the perimeter 

length to the diagonal of the clipped main body rectangle T/2D. For simple shapes 

like Alef, this ratio is 1, and this ratio is larger than 1 for more complex shapes. 

22

2/
2/

HW

T
DT


   (14) 

Sample Z1 in Table 9 shows isolated Reh that has small T/2D ratio. Sample Z2 

shows final Khah that has large T/2D ratio. 

3.4.4 Compactness Ratio 

Another derived feature from the perimeter length and the area is the compactness 

ratio or roundness ratio which is found by (15) [15]. 

A

T




4

2

  (15) 

This ratio is 1 for a filled circle and is larger than 1 for distributed complex 

shapes. Samples Z4 and Z5 show isolated Teh and final Sheen, which are two 

extreme examples of small and large compactness ratios, respectively. 

3.4.5 Bending Energy 

The bending energy E is a measure of how curly the boundary curve is  [15]. It can 

be found from the chain code by summing the squares of the direction changes 

from one boundary pixel to the next. 

 











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iii kkk
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1 
, (16) 
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
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ii
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)8,mod(
where

1

1
. (17) 

Small rounded shapes tend to have large bending energy factor. One example is 

the initial Feh shown in Sample Z7. As the isolated Ain shown in Sample Z8 has 

rounded and coarse boundary, it also has a relatively large bending energy. The 

isolated Lam shown in Sample Z9 is an example large letter that has smooth 

boundary and low pending energy. 

Table 10 shows the averages of the above five features that are extracted from the 

boundary for the four letter forms. The averages of the number of boundary pixels 

and the perimeter length indicate that the final and isolated forms are larger than 

medial and initial forms. 

 

Table 10  Average Values of the Boundary Features for the Four Letter Forms 

No Feature Isolated Initial Medial Final 

1 Boundary Pixels 79 56 63 92 

2 Perimeter Length 90 63 71 105 

3 Perimeter to Diagonal Ratio 1.5 1.2 1.3 1.5 
4 Compactness Ratio 4.6 2.9 3.4 5.2 

5 Bending Energy 0.41 0.47 0.49 0.42 

 

The averages of T/2D and γ indicate that the final and isolated forms are more 

complex and spread than the medial and initial forms. Finally, the averages of the 

bending energy indicate that the medial and initial forms have slightly more curly 

boundaries than the final and isolated forms.  

3.4.6 Elliptic Fourier Descriptors 

The piecewise linear curve that passes through all boundary pixels is a closed 

outer contour curve. This curve passes through the points 

  mttytx ,,2,1,)(),(   and can be approximated using the elliptic Fourier 

descriptors (EFD) of Kuhl and Giardina [25]. These descriptors are useful 

features [14, 26] and are used to approximate the curve as follows 
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where T is the perimeter length and    )(),()(ˆ),(ˆ tytxtytx   in the limit when 

N . These descriptors are found by 
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Since the functions )( and )( tytx  are piecewise linear, then the discrete evaluation 

of these descriptors is 
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These descriptors can be normalized for phase and rotation [14]. However, the 

feature evaluation described in Section 5 proved that the raw descriptors give 

better results than the normalized descriptors, suggesting that the added 

computational overhead of the normalization does not give added value. 

Particularly because our samples are not rotated and the boundary start pixel is 

always found by scanning the images from the same direction. 
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