0907335 Computer Organization (Fall 2014) <u>Midterm Exam</u>					
ي:	قم التسلسلم	الرة	رقم التسجيل:	الاسم:	
Instructions : Tin the space provide are allowed .	ne 70 minut d and limit	tes. Open boo your answer	ok and notes exam. No electron to the space provided. Numbers	nics. Please answer all problems in s are in hexadecimal. No questions	
			<good luck=""></good>		
Q1. At the end of registers.	executing	the following	, MIPS instruction sequence, sp	becify the contents of the following	
_				<5 points>	
lu	i ŞsO,	0x3232	202		
or	1 ŞSI,	$s_{\text{SU}}, \ \text{Ox2}, \ s_{\text{SU}}$	323		
au	t \$s2.	\$t0. \$s0			
sl	1 \$s3,	\$s2, 3			
SW	\$t0,	0(\$s1)			
lw	\$s4,	0(\$s1)			
Register \$s0 =	=0x32	2320000			
Register \$s1 =	=0x32	2322323			
Register \$s2 =	=1				
Register \$s3 =	=8				
Register \$s4 =	=4				

Q2. For the following C language loop, what is the corresponding MIPS assembly code? Assume that all variables are one-word signed integers. Also assume that the compiler maps i to \$50 and maps the starting address of Array A to Register \$51.

<5 points>

for (i=9; i>=0; i--) A[i] = 0;addi \$s0, \$zero, 9 Loop: \$t0, \$s0, \$zero slt \$t0, \$zero, End bne \$t1, \$s0, 2 sll addu \$t1, \$t1, \$s1 \$zero, 0(\$t1) sw addi \$s0, \$s0, -1 j Loop End:

Q3. The following screen capture shows the QtSpim after loading a simple MIPS program and execution to the point shown.

<5 points>

🖳 QtSpim								
F	File Simulator Registers Text Segment Data Segment Window Help							
≥ 🛃 🖼 🎟 🕨 🖬 📑 🞯								
Int	Regs [16]	5	×	Text				
P	с	= 400024	-			User Text Segment	[0040000][00440000]	
E	PC	= 0		[00400000]	8fa40000	lw \$4, O(\$29)	; 183: lw \$a0 0(\$sp) # aı	
C	ause	= 0		[00400004]	27a50004	addiu \$5, \$29, 4	; 184: addiu \$a1 \$sp 4 #	
B	adVAddr	= 0		[00400008]	24a60004	addiu \$6, \$5, 4	; 185: addiu \$a2 \$a1 4 #	
S	tatus	= 3000ff10		[0040000c]	00041080	sll \$2, \$4, 2	; 186: sll \$v0 \$a0 2	
				[00400010]	00c23021	addu \$6, \$6, \$2	; 187: addu \$a2 \$a2 \$v0	
H	I	= 0		[00400014]	0c100009	jal 0x00400024 [main]	; 188: jal main	
L	0	= 0		[00400018]	00000000	nop	; 189: nop	
				[0040001c]	3402000a	ori \$2, \$0, 10	; 191: li \$v0 10	
R	0 [r0]	= 0		[00400020]	000000c	syscall	; 192: syscall # syscall	
R	1 [at]	= 0		[00400024]	20100002	addi \$16, \$0, 2	; 7: addi \$s0, \$zero, 2	
R	2 [v0]	= 4		[00400028]	20110003	addi \$17, \$0, 3	; 8: addi \$s1, \$zero, 3	
R	3 [v1]	= 0		[0040002c]	02309020	add \$18, \$17, \$16	; 9: add \$s2, \$s1, \$s0	
R	4 [a0]	= 1		[00400030]	02309824	and \$19, \$17, \$16	; 10: and \$s3, \$s1, \$s0	
R	5 [a1]	= 7ffff730		[00400034]	02110018	mult \$16, \$17	; 11: mult \$s0, \$s1	
R	6 [a2]	= 7ffff738	-	[00400038]	0810000e	j 0x00400038 [end]	; 13: j end	
R	7 [a3]	= 0	=	•			-	

Specify the contents of the following registers after executing the "Single Step" function five times.

Register \$s2=	5
Register \$s3=	2
Register HI =	0
Register LO =	6
Register PC =	0x00400038

Q4. It is required to design a 4-bit ALU that can perform the operations specified in the following table. This ALU has the interface specified to the right.

a) Design a one-bit ALU slice that performs these four operations. Use full adder, multiplexer, and basic logic gates as your building blocks.

b) Connect four of these one-bit slices to get the required 4-bit ALU.

Q5. Show the contents of the two registers of the optimized multiplication hardware shown below when multiplying the multiplicand 1010_2 by the multiplier 1110_2 over the 4 multiplication steps.

Cycle	Multiplicand	Product
0	1010	0000 1110
1	1010	0000 0111
2	1010	1010 0111 0101 0011
3	1010	1111 0011 0111 1001
4	1010	10001 1001 1000 1100