			0907432 Compute Midter	r Design (Fall 2 m Exam	014)
	1	رقم الشعبة:	لسلي:	الرقم التس	الاسم:
Instr the sp	uctions	Time 60 minutes Time and limit yo	. Open book and note ur answer to the space <go< td=""><td>es exam. No electro e provided. No ques bod Luck></td><td>onics. Please answer all problems in stions are allowed.</td></go<>	es exam. No electro e provided. No ques bod Luck>	onics. Please answer all problems in stions are allowed.
Q1. A pro me res	Assume ocessor emory i sulting l	that you have the l issues 2-instructio nstruction. Unroll oop for this proces	MIPS with static dual n packets and each pa the following loop t sor using the table bel	issue processor stud ocket comprises of o wice (total number low. Assume that th	died in the class. Remember that thi one ALU/branch instruction and on r of rolls is two) and schedule the ne number of iterations is even.
	Loop	:			
	lw	r4,0(r1)			
	lw	r5,0(r2)			
	ad	d r6,r4,r5			
	SW	r6,0(r3)			
	ad	di r1,r1,4			
	ad	di r2,r2,4			
	ad	di r3,r3,4			
	bn	e r1,r7,Loop)		
Γ	Packet	t A	LU/branch		Load/store
	1	nop		lw	r4,0(r1)
	2	addi r	1, r 1,8	lw	r5,0(r2)
	3	addi r	2, r 2,8	lw	r8,-4(r1)
	4	add r	6, r4 , r 5	lw	r9,-4(r2)
	5	addi r	3,r3,8	SW	r6,0(r3)

r10,r8,r9

r1,r7,Loop

add

bne

6

7

8

9

nop

SW

r10,-4(r3)

Note: Can use r6 instead of r10.

Q2. Assume that the following code sequence is executed by a four-issue speculative pipelined processor. This processor uses reservation stations, common data buses, and reorder buffer. The fetch stage takes one cycle and the issue stage takes one cycle. The integer latency is 1 cycle, the branch latency is 1 cycle, and the load latency is 2 cycles (1 cycle for address calculation and 1 cycle for data memory access). The processor has two address calculation units, two memory access units, two integer ALU units, and one branch unit. Assume that the beq instruction is predicted not taken but it is actually taken. Using the multi-cycle pipeline diagram below, specify the execution of these instructions in this processor pipeline.

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
lw	r4,0(r1)	F	Ι	A	Μ	W	С									
lw	r5,0(r2)	F	Ι	A	Μ	W	С									
add	r6,r4,r5	F	Ι				E	W	С							
beq	r4,r7,L1	F	Ι				E	W	С							
SW	r6,0(r1)		F	Ι	Α				N							
sub	r6,r4,r5		F	Ι			E	W	N							
SW	r5,8(r1)		F	Ι	Α				N							
SW	r6,12(r1)		F	Ι		Α			N							
Branch	target									F	•••					

B) Assume that a branch instruction is executed seven times, the first four times it was taken, the next two times it was not taken, and the last time is unknown. Complete the following table showing the branch predictions of this 2-bit predictor for this branch. Answer: *Taken, Not taken,* or *Unknown*.

[5 marks]

No.	Actual Direction	Prediction
1	Taken	Unknown
2	Taken	Unknown
3	Taken	Taken
4	Taken	Taken
5	Not Taken	Taken
6	Not Taken	Taken
7	Unknown	Not Taken