	شعبة: ا	رقم ال	Ouiz 1 <u>Quiz 1</u> الرقم التسلسلي:	الاسم:
Instructi the space	<u>ons</u> : Time provided	and limit your a	pen book and notes exam. No electronics. P nswer to the space provided. No questions a <i><good luck=""></good></i>	Please answer all problems in are allowed.
Q1. Assu memo 20%.	ime that y ry stage. A The rest 80	you have a typi Assume that the 0% instructions	cal 5-stage pipelined processor that resolve CPI of branch instructions is 4 cycles and have an average CPI of 1.2 cycles.	es branch instructions in the their instruction frequency is
				[4 marks]
A) W	hat is the	average CPI?		
Α	verage Cl	$\mathbf{PI} = 0.2 \times 4 + 0$	0.8×1.2	
		= 0.8 + 0.96		
		= 1.76 cycle	\$	
B) W	hat is the	overall speed up	when the branches are resolved in the deco	de stage?
Ν	ew branc	h CPI is 2 cycle	°S	
Ν	ew Avg C	$\mathbf{PI} = 0.2 \times 2 + 0$	0.8×1.2	
	0	= 0.4 + 0.96		
		= 1.36 cycles	ŝ	
S	peed up	= 1.76 / 1.36	= 1.3	
Q2. Assu	me that yo	ou have a typica	1 5-stage pipelined processor that uses forwa	arding and stalls to solve data

hazards. Assume also that the processor resolves branch instructions in the decode stage. Use the three pipeline diagrams below to find the minimum number of cycles needed by this processor to execute each of the three instruction sequences. Show on the pipeline diagrams any forwarding required using arrows from the producer stage to the consumer stage.

[6 marks]

			1	2	3	4	5	6	7	8	9	10
lw	\$t0,	0(\$s1)	F	D	E	Μ	W					
sub	\$t1,	\$t0, \$s2		F	D	D	◆ E	Μ	W			
			1	2	3	4	5	6	7	8	9	10
lw	\$t0,	0(\$s1)	F	D	E	Μ	W					
SW	\$t0,	0(\$s2)		F	D	Е	M	W				
				•	•			•	•		•	•
			1	2	3	4	5	6	7	8	9	10
add	\$t0,	\$t1, \$s1	F	D	E	Μ	W					
beq	\$t2,	\$t0, Skip		F	D	D	E	Μ	W			