0907542 Patter Recognition (Spring 2014) <u>Midterm Exam</u>

رقم الجلوس:

رقم التسجيل:

<u>Instructions</u>: Time **50** min. Open book and notes exam. No electronics. No questions are allowed. **Bold** case is used for vectors and matrices. Show your work clearly. Every problem is for 6 marks.

Q1. Assume that you have a pattern recognition problem of two classes: **salmon** and **sea bass**. The training sample includes 300 fish with the frequencies shown in the following table. The table shows the fish frequencies according to two qualitative features: **lightness** and **width**. Using Bayes classification rule, find the class of an unknown fish that is light and narrow. *You must show your work clearly*.

		Salmon		Sea Bass	
		Lightness		Lightness	
		Dark	Light	Dark	Light
Width	Narrow	55	5	40	10
	Wide	10	30	20	130
		100		200	
		ω_1		ω_2	

 $P(\omega_1)P(\boldsymbol{x}|\omega_1) < P(\omega_2)P(\boldsymbol{x}|\omega_2)$

 $\frac{100}{300} \times \frac{5}{100} <?> \frac{200}{300} \times \frac{10}{200}$ $\frac{5}{300} < \frac{10}{300}$

Hence it is $\omega_2 \equiv \text{Sea Bass}$

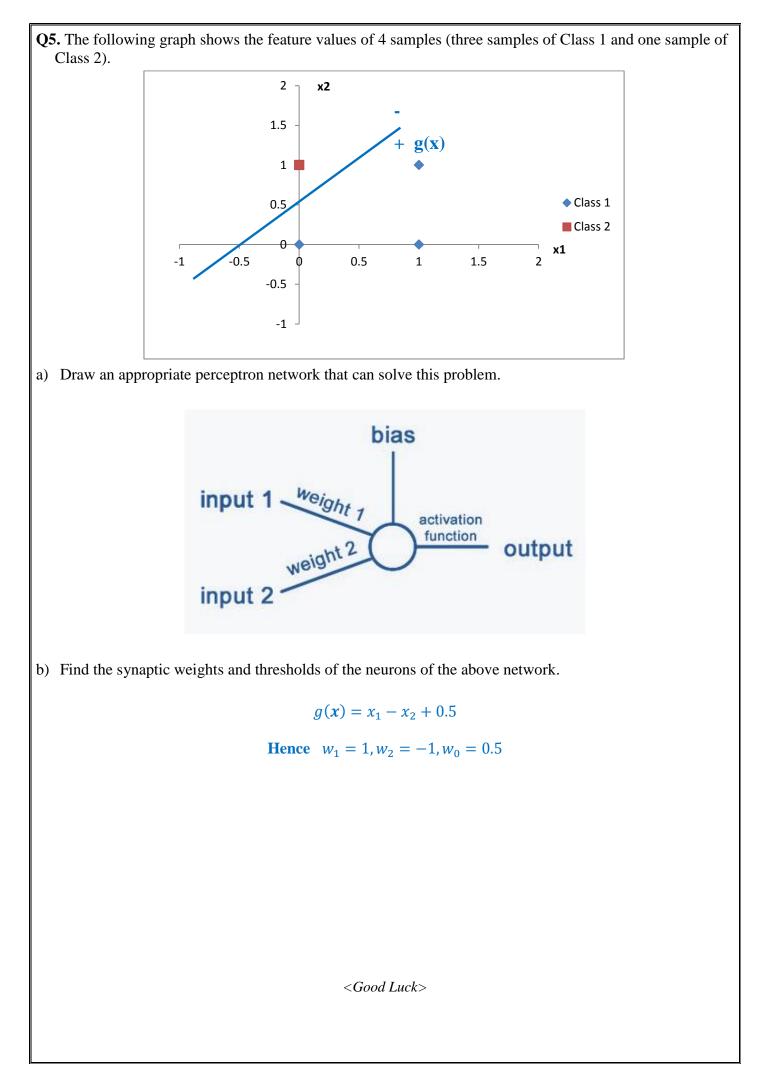
الاسم:

Q2. In a three-class recognition problem, find the value of $-\frac{1}{2}\mu_i^T \Sigma_i^{-1}\mu_i$ given that $\Sigma_i = 4I$ and $\mu_i = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}^T$, where *I* is the identity matrix of size 3-by-3.

 $\Sigma_{i} = \Sigma = 4I$ $\Sigma \Sigma^{-1} = 4I \Sigma^{-1} = I$ $I \Sigma^{-1} = \frac{1}{4}I$ $\Sigma^{-1} = \frac{1}{4}I$ $\sum_{i=1}^{-1} \frac{1}{4}I$ $-\frac{1}{2}\mu_{i}^{T}\Sigma_{i}^{-1}\mu_{i} = -\frac{1}{2}\mu_{i}^{T}\frac{1}{4}I\mu_{i} = -\frac{1}{8}\mu_{i}^{T}\mu_{i} = -\frac{1}{8}[1 \quad 2 \quad 3]\begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix} = -\frac{1}{8}(1+4+8) = -\frac{14}{8} = -\frac{7}{4}$

Q3. In a three-class recognition problem, write Matlab code to find the value of $-\frac{1}{2}\mu_i^T \Sigma_i^{-1}\mu_i$ given that $\Sigma_i = 4I$ and $\mu_i = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}^T$, where *I* is the identity matrix of size 3-by-3.

 $u = [1 \ 2 \ 3]';$


 $I = [1 \ 0 \ 0; \ 0 \ 1 \ 0; \ 0 \ 0 \ 1];$

```
-0.5*u'*inv(4*I)u
```

Q4. Suggest a feature extraction technique suitable in classifying three geometric shapes: **circle**, **rectangle**, and **triangle**. The following shows some example samples of this problem. Note that the size and shape can change within any of the tree classes.

Circle	Rectangle	Triangle
\bigcirc		\bigtriangleup
0		Δ

- Fill the inside space
- Find the area A
- Find the shape width (*W*) and height (*H*)
- Calculate the feature $A/(W \times H)$
 - Circle: $\pi/4$
 - Rectangle: 1
 - Triangle: 1/2

