0907432 Computer Design (Fall 2013) Ouiz 2 (Make up)			
رقم الشعبة: 1	الرقم التسلسلي:	الاسم:	
<u>Instructions</u> : Time 15 mi the space provided and lim	nutes. Open book and notes exam. No electronics. I it your answer to the space provided. No questions a <i>Good Luck</i> >	Please answer all problems in are allowed.	
Q1. Assume that you have 1235678 ₁₆ will be mapp	4-KB direct-mapped cache that has 16-byte blocks. bed to?	In which block the address	
< Plack offsat>	$- \log \operatorname{Block} \operatorname{size} - \log 16 - 4$ bits	[2 marks]	
Number of blocks	= I_{g_2} Block size = I_{g_2} 10 = 4 bits = Cache size / Block size = 4 KB / 16 B = $2^{12} / 2^4 = 2^8 = 256$ blocks		
<cache index=""></cache>	= lg_2 Number of blocks = $lg_2 2^8 = 8$ bits		
Therefore the four	least significant bits are the Block offset and the	next 8 bits are the Index.	
1235678 ₁₆			
This address will b	e mapped to block 67 ₁₆		
 <u>Anocate</u> the min then store to it. <u>No Allocate</u>, i.e memory. 	,, don't bring the block from the memory to the c	ache, store directory to the	
Q3. Assume that you have when Processor 0 attem	a 2-processor system that uses a snoopy cache coher pts to store to a location that is cached in Processor (rence protocol. What happens 0 and 1? [2 marks]	
Processor 0	first sends on the bus a write miss request.		
• When Proce its cache.	essor 1 snoops this request, it invalidates the block	< that has this location from	
When Proce	essor 0 receives acknowledgment to its request, it	stores to this location.	

Q4. For a 15,000-revolution/min hard disk, what is its maximum transfer rate if its storage density is 2 MB per cylinder?

		[2 marks]
Rotational speed	= RPM / (60 sec/min)	
	= 15,000 revolution/min / 60 sec/min = 250 revolution/sec	
In one revolution, ca	an read one cylinder	
Transfer rate	= Rotational speed * Storage density	
	= 250 revolution/sec * 2 MB/revolution	
	= 500 MB/sec	

Q5. For a RAID 4 storage system that has a total of 7 disks, how many disk read and write operations are required to update one data block on this storage system?

[2 marks]

Two reads: Need to read the old data block and parity. Two writes: To update the data block and parity.