0907521 Parallel and Distributed Systems (Fall 2012)
Midterm Exam

Instructions: Time 50 minutes. Open book and notes exam. No electronics. Please answer all problems in
the space provided and limit your answer to the space provided. No questions are allowed.
<Good Luck>

Q1. Perform a comparison between the 2-dimensional mesh and hypercube interconnection networks.
Assume that both networks have N nodes each. Use the table below to make this comparison.

<10 marks>
Criterion 2D Mesh Hypercube
Node cost 4 ports lg N ports
Links cost Costof 2(VN ‘Iiln)f = 2N -2JN Cost of (N/2) Ig N links
Bisection width VN links (N/2) links
Max latency Latency to passl'itzlr(zugh Z(W B 1) Latency to pass through Ig N links
Routing algorithm Direct, x then 'y Direct, fix one dimension at a time

lof4

Q2. Write an MPI program that computes a tree-structured global sum. Processor 0 should display this
sum. Assume that comm_sz is a power of two and each processor gets its partial sum through

my sum = get sum(my_ rank);

<10 marks>
#include <stdio.h>
#include <mpi.h>

int main(void) {
int comm sz, int my rank;
int half;
double my sum, sub to;

MPI Init (NULL, NULL);
MPI Comm size (MPI_COMM WORLD, &comm sz);
MPI Comm rank (MPI_COMM WORLD, &my rank);

my sum = get sum(my_ rank);

for (half = comm _sz/2; half>=1; half = half/2)
if (my_rank < 2*half) {
if (my_ rank >= half)
MPI Send(&my sum, 1, MPI DOUBLE, my rank - half, O,
MPI_COMM WORLD, MPI_STATUS_IGNORE) ;
else {
MPI Recv(&sub to, 1, MPI DOUBLE, my rank + half, O,
MPI_COMM WORLD, MPI_STATUS_ IGNORE) ;
my sum = my sum + sub_ to;

if (my rank == 0)
printf ("The global sum is $1f\n", my sum);

MPI Finalize();
return O;

20f4

Q3. Write a Pthreads program that implements the trapezoidal rule. This program should accept one
command line argument to specify the number of threads. Assume that calling init () would initialize
the shared variables n, a, b, and h, assume that n is divisible by thread count, and the Trap ()
function is available for you (you don’t need to write it). Use a shared variable for the sum of all the
threads’ computations. Use busy-waiting to enforce mutual exclusion.

<10 marks>
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

int thread count;
int n, turn=0;
double a, b, h, integral=0.0;

void* Do_trap(void* rank);

int main(int argc, char* argv[]) {
long thread;
pthread t* thread handles;

init();

thread count = strtol (argv([1l], NULL, 10);
thread handles = malloc (thread count * sizeof (pthread t));
for (thread = 0; thread < thread count; thread++)
pthread create(&thread handles|[thread], NULL, Do_trap,
(void*) thread);

for (thread = 0; thread < thread count; thread++)
pthread join(thread handles[thread], NULL);

free (thread handles);
return O;

void* Do_trap(void* rank) ({
long my rank = (long) rank;
int local n;
double local_a, local b, local integral;

local n n/thread count;
local a = a + my rank * local n * h;
local b = local a + local n * h;

local integral = Trap(local a, local b, local n, h);

3o0f4

while (my rank !'= turn) ; //busy wait

integral += local integral;
turn++;

return NULL;

40f 4

