0907432 Computer Design (Spring 2012) <u>Midterm Exam Solution</u>

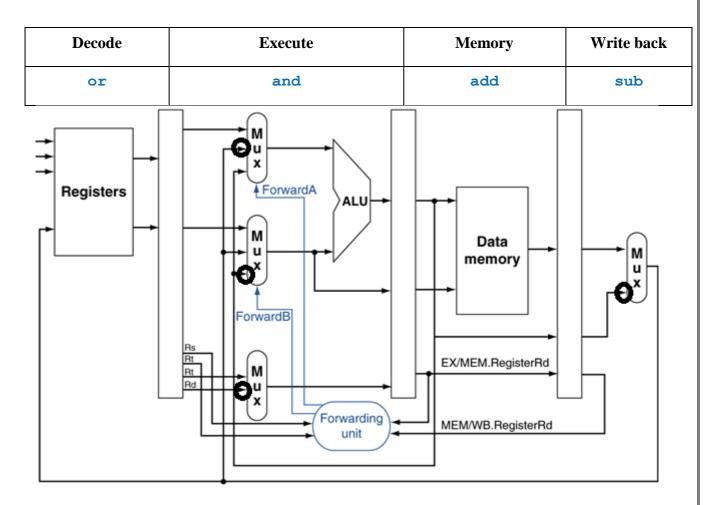
رقم الشعبة:	<u>Midterm Exam Solution</u> رقم التسلسل:	الاسم:
	Closed books & notes. No calculators or mole work clearly and give the final answer in the sp	1 1
executed on a processor that	tions and 50% of these instructions are memory t runs on a 2-GHz clock, executes the memory her instructions in an average 1.0 CPI.	
(a) What is the overall aver	rage CPI?2.5 cycles	
Average CPI = 0.50 *	4.0 + 0.50 * 1.0 = 2.5	
(b) What is the time needed	d to execute this program? <u>1.25</u> see	conds
Time = $(10^9 * 2.5) / (2^5)$	$(*10^9) = 1.25$	
(c) Using Amdahl's law, w of 4?2.5	what is the speedup when the memory instruction	ons are improved by a factor
f = 2/2.5 = 0.8 Speedup = 1 / ((1-0.8)	+ 0.8/4) = 1 / 0.4 = 2.5	
	er costs \$5,000 and has an average yield of 50% that of area $22 \times 7 \text{ mm}^2$ each.	%. The wafer radius is 70 mm [3 marks]
The approximate die co	ost is:100 dollars	[5 marks
No of dies per wafer = Cost ≅ \$5000 / (100 * 0	- Wafer Area / Die Area ≅ ((22/7) * 70 * 70) / 0.50) = \$100	/ (22*7) = 100

Q3. Assume that you have a typical 5-stage pipelined processor that uses forwarding and stalls to solve data hazards. After you do code scheduling (modifying and rearrange instructions) for the following code sequence, the minimum number of cycles needed to execute this sequence is: ____8___ cycles (*You must show your modified code in the right space*)

[3 marks]

Original Code Sequence					Rearra	nged and Modified Code Sequence
L1:	lw	R5,	0(R1)	L1:	lw	R5, 0(R1)
	add	R6,	R5, R5		lw	R30, 0(R2)
	lw	R5,	0(R2)		add	R6, R5, R5
	add	R7,	R5, R5		add	R7, R30, R30

Q4. Assume that the following eight instructions are executed by a speculative superscalar processor of degree 3. This processor uses reservation stations and 48-entry reorder buffer. The integer latency is 1 cycle, the memory latency is 2 cycles, and floating-point latency is 3 cycles. The processor has one address calculation unit, one memory access unit, one integer ALU unit, one floating-point unit, and one branch unit. The processor has 5 reservation stations for each functional unit. Using pipeline diagram in the space below, the number of cycles needed to fetch and commit these instructions is: ____15___ cycles [6 marks]


			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
lw	R1,	0(R2)	F	Ι	A	M	W	С											
lw	FO,	0(R1)	F	Ι				A	Μ	W	С								
add.d	F4,	F2, F0	F	Ι							E	E	E	W	С				
SW	F4,	0(R1)		F	Ι				A						С				
lw	R1,	8(R2)		F	Ι	A	Μ	W							С				
lw	FO,	0(R1)		F	Ι					A	Μ	W				С			
sub.d	F4,	F0, F6			F	Ι							E	E	E	W	С		
SW	F4,	0(R1)			F	Ι					A						С		

Q5. Assume that you have a typical 5-stage pipelined processor that uses forwarding and stalls to solve data hazards. Assume that the processor is executing the following code segment and that the first instruction has reached the write back stage.

[6 marks]

sub	R1,	R2,	R3
add	R2,	R1,	R3
and	R4,	R1,	R2
or	R1,	R2,	R3

- (a) In the following table specify what instruction has reached each of the four listed stages.
- (b) The figure below shows the last four stages of this pipeline. This figure has four multiplexers. For each multiplexer, draw a circle mark on the selected (active) multiplexer input.

Q6. The size of a direct-mapped cache is 16 KB and is organized in 128 blocks. The processor accesses this cache using a 32-bit address in 1 cycle when the data is in the cache. This cache is a write-back cache and does not use write buffers. The second memory level is the main memory and it takes 100 cycles to read or write one memory block.
[6 marks]
(a) What is the cache block size? <u>128</u> bytes
Block size = cache size / no of blocks = $16 * 2^{10} / 2^7 = 2^{14} / 2^7 = 2^7 = 128$
(b) How many bits are needed for the tag field?18 bits
$< tag > = 32 - lg_2 \ 128 - lg_2 \ 128 = 32 - 7 - 7 = 18$
(c) How many cycles are needed to access the cache when there is a cache miss and there is a need to
replace a dirty block?201 cycles
1 cycle to access the cache plus 100 cycles to write back the dirty block plus 100 cycles to load the missed block = 201 cycles.

<Good Luck>