
1

SimPack

CONTENTS

========

 1. CPUDISK EXAMPLE

 2. SIMPACK QUEUING LIBRARY

 2.1 Model Initialization

 2.2 Facilities

 2.3 Time & Scheduling

 2.4 Statistical Reporting

 2.5 Tracing and Visualization

 2.6 Random Variates

1. CPUDISK EXAMPLE

==================

cpudisk represents the simulation of the following network

composed of 1 CPU and 4 disks:

 CPU -----------------> Disk 1 ---->|

 ^ | |

 | |--------> Disk 2 ---->|

 | | |

 | |--------> Disk 3 ---->|

 | | |

 | |--------> Disk 4 ---->|

 | |

 |<---------------------------------|

There are 9 jobs that move through the system. A single job

alternately accesses CPU and a disk many times -- this

simulates the effect of a real program using these types of

resources. Of the 9 jobs, there are 6 low priority jobs and 3

high priority jobs.

2

2. SIMPACK QUEUING LIBRARY:

===========================

This is a set of routines that are functionally very similar

to the routine library called SMPL by M. H. MacDougall

("Simulating Computer Systems: Techniques and Tools", MIT

Press, 1987). SMPL was used a base, and this library contains

a large number of extended options and additional routines.

Each routine will be listed followed by a description of its

purpose.

2.1 Model Initialization

Usage: init_simpack(mode);

Type: int mode;

Example: init_simpack(HEAP);

This must be the first call to any of the SimPack routines.

'mode' can be one of 3 values: LINKED, HEAP or CALENDAR. If

'LINKED' is chosen, then a linear linked list is employed for

the future event list.

If 'HEAP' is chosen, then a priority queue (i.e. heap) will be

used instead. For relatively small future event lists, you

will find that LINKED is perfectly acceptable. For longer

lists, one should choose HEAP for the best performance. The

'CALENDAR' option is for very large future event lists.

SUGGESTION: try all three options for your simulation to see

which provides the best simulation times.

2.2 Facilities

** Usage: status(facility_id);

Type: int status(), facility_id;

Usage: if (status(cpu) == FREE) ...

Report back where the facility is BUSY or FREE.

** Usage: facility_id = create_facility(name, servers);

Type: int facility_id, servers; char *name;

3

Example: disk[2] = create_facility("disk", 1);

Create a resource (or "facility") called 'name' (in string

form) which has 'servers' number of servers. This capability

allows for single or multiple server facilities.

** Usage: status = request(facility_id, token, priority);

Example: if (request(cpu, token, 0) == FREE) ...

Token 'token' requests a facility. NOTE: tokens must be

defined to be of type TOKEN. Look at the single server queue

example under the 'func' subdirectory. The token has priority

level 'priority'. The higher the value, the higher the

priority. If the facility is free, then this token gets the

facility (i.e. it is immediately served).

If the facility is currently busy then this token is placed

with other tokens of the same priority level in the queue for

this facility. 'status' is one of two values: FREE or BUSY.

Implicit queuing is used in that the programmer need not

explicitly queue the request if the facility is busy -- this

is done automatically. NOTE: Use the first attribute of the

token to store an integer token id:

TOKEN token;

token.attr[0] = 1.0;

Currently, tokens are structures with a number of floating

point attributes.

This can easily be changed by looking at the definition of

'TOKEN' in the file 'queuing.c'. For many of your

applications, you might require only a token identification;

however, for some applications, you may want to store more

than a token id when the item is put within the future event

list (see the 'logic' program for an example).

** Usage: status = preempt(facility_id,token,priority);

Example: if (preempt(cpu,token,0) == FREE) ...

Token 'token' requests a facility. The token has priority

level 'priority'. The higher the value, the higher the

priority. If the facility is free, then this token gets the

4

facility (i.e. it is immediately served). Note that 'preempt'

acts just like 'request' when the facility is not busy. If, on

the other hand, the facility is busy then the current token's

priority level is checked against the priority level of the

token that currently has service. If it is less, then the

preemptive token is placed in the queue (as in the 'request'

call).

If, however, the preemptive token's priority is higher then

the token preempts (i.e. replaces) the token that has current

service by that facility/server. The preempted token is placed

at the head of the facility queue and is re-started (for the

amount of service time left) automatically once the preemptive

token has finished service.

** Usage: release(facility, token);

Example: release(cpu, token);

The token 'token' releases the facility once it has had

service.

WARNING: Always put a release in its own event routine (i.e.,

switch statement). Do NOT include it in the same event routine

where you request another facility.

2.3 Time & Scheduling

** Usage: time();

Example: current_time = time();

Return the current simulation time.

** Usage: busy_time(facility_id);

Type: int facility_id;

Example: total_busy_time = busy_time(2);

Return the total amount of busy time for a facility.

** Usage: schedule(event, inter-event-time, token);

Example: schedule(2, 3.4, token);

5

Event number 'event' (for a token) is scheduled to occur at

time =

 current_time + inter-event-time

Note that 'inter-event-time' is always relative to the current

simulation time.

** Usage: next_event(&event, &token);

Example: next_event(&event, &token);

Obtain the next event from the future event data structure.

This procedure, in effect, 'causes' the event to occur.

** Usage: int cancel_event(event);

Example: token_num = cancel_event(event);

Look through the future event list and cancel a list item

specified by 'event'. If this routine is successful in finding

this event then 1) the corresponding token number is returned

and 2) the linked list node is removed from the future event

list. On the other hand, if the event cannot be found then the

value NOT_FOUND (see queuing.h) is returned, and the future

event list is left unchanged. NOTE: You must use LINKED for

this routine.

** Usage: int cancel_token(token);

Example: event_num = cancel_token(token);

Look through the future event list and cancel a list item

specified by 'token'. If this routine is successful in finding

this token then 1) the corresponding event number is returned

and 2) the linked list node is removed from the future event

list. On the other hand, if the token cannot be found then the

value NOT_FOUND (see queuing.h) is returned, and the future

event list is left unchanged. NOTE: You must use LINKED for

this routine.

2.4 Statistical Reporting

** Usage: update_arrivals();

6

Place in event code where tokens enter the system. This is

used to keep track of the arrival rate.

** Usage: update_completions();

Place in event code where tokens leave the system. This is

used to keep track of the completion rate (i.e. throughput).

** Usage: report_stats();

Provide a summary report on the facilities.

2.5 Tracing and Visualization

****SOME OF THESE FUNCTIONS DO NOT WORK ON DOS****

Usage: trace_visual(type);

Type: int type;

Place this after 'init_simpack' to specify the type of trace

to do: either INTERACTIVE or BATCH. The interactive mode uses

UNIX 'curses' to allow you to step through the simulation

while viewing the key data structures (future event list,

facility queues). The BATCH mode is useful to output this

visual trace to a file. Currently, you must use LINKED (in

init_simpack) to obtain a graphical trace.

Usage: trace_facility(facility_id);

Type: int facility_id;

Print the queue for the facility. This routine causes an

immediate "dump" wherever it is placed within the code.

Usage: trace_eventlist();

Print the future event list if LINKED is used. This routine

causes an immediate "dump" wherever it is placed within the

code.

Usage: trace_eventlist_size();

7

Print the future event list size if LINKED is used. This

routine causes an immediate "dump" wherever it is placed

within the code.

Usage: print_heap();

Print out the heap (if HEAP is used).

2.6 Random Variates

NOTE: Made available originally from SMPL C-tool Library (M.H.

MacDougall) with the exception of 'triang'.

** Usage: stream(stream_number);

Type: int stream_number;

Select a random number stream between 1 and 15.

** Usage: number = ranf();

Type: double ranf();

Return a pseudo random variate with a uniform distribution

between 0 and 1.

** Usage: number = uniform(a, b);

Type: double uniform(a, b); double a, b;

Sample from a continuous uniform distribution in the range

[a,b].

** Usage: number = random(i, j);

Type: int random(i, j); int i, j;

Sample from a discrete uniform distribution in the range

i,i+1,...,j.

** Usage: number = expntl(x);

Type: double expntl(x); double x;

Sample from an exponential distribution with mean x.

8

** Usage: number = normal(x, s);

Type: double normal(x, s); double x, s;

Sample from a normal distribution with mean x and standard

deviation s.

** Usage: number = erlang(x, s);

Type: double erlang(x, s); double x, s;

Sample from an Erlang distribution with mean x and standard

deviation s.

** Usage: number = hyperx(x, s);

Type: double hyperx(x, s); double x, s;

Sample from a hyperexponential distribution with mean x and

standard deviation s.

** Usage: number = triang(a, c, b);

Type: double triang(a, c, b),a, c, b;

Sample from a triangular distribution with endpoints a and b

and mode c.

