

Proof Let y = g(x), so that $x = g^{-1}(y)$. $F_Y(y) = P(Y \le y) = P(x \le g^{-1}(y))$ $= F_X(g^{-1}(y))$ If g(x) = F(x), or y = F(x) $F(y) = F(F^{-1}(y)) = y$ And: f(y) = dF/dy = 1That is, y is uniformly distributed between 0 and 1.

28-3

Applications of the Inverse-Transformation Technique		
Distribution	CDF $F(x)$	Inverse
Exponential	$1 - e^{-x/a}$	$-a\ln(u)$
Extreme value	$1 - e^{-e^{\frac{x-a}{b}}}$	$a + b \ln \ln u$
Geometric	$1 - (1 - p)^x$	$\left\lceil \frac{\ln(u)}{\ln(1-p)} \right\rceil$
Logistic	$1 - \frac{1}{1 + e^{\frac{x-\mu}{b}}}$	$\mu - b \ln(\frac{1}{u} - 1)$
Pareto	$1 - x^{-a}$	$1/u^{1/a}$
Weibull	$1 - e^{(x/a)^b}$	$a(\ln u)^{1/b}$
	28-7	02006 Raj Jain wew