

Testing Random-Number Generators

Goal: To ensure that the random number generator produces a random stream.

- Plot histograms
- □ Plot quantile-quantile plot
- Use other tests
- Passing a test is necessary but not sufficient
- □ Pass \neq Good
- Fail **⇒** Bad
- New tests ⇒ Old generators fail the test
- Tests can be adapted for other distributions

27-3

Chi-Square Test

- Most commonly used test
- Can be used for any distribution
- Prepare a histogram of the observed data
- Compare observed frequencies with theoretical
- k = Number of cells
- $o_i = \text{Observed frequency}$ $e_i = \text{Expected frequency}$ $D = \sum_{i=1}^k \frac{(o_i e_i)^2}{e_i}$
- □ $D=0 \Rightarrow$ Exact fit
- \Box *D* has a chi-square distribution with *k*-1 degrees of freedom.
- \Rightarrow Compare D with $\chi^2_{[1-\alpha, k-1]}$ Pass with confidence α if D is less

27-4

Example 27.1								
• 1000 random numbers with $x = 1$	$x_n =$	$c_n = (125x_{n-1} + 1) \mod (2^{12})$						
with $x_0 = 1$	C	ell	Obsrvd	Exptd	$\frac{(0-e)^2}{e}$			
$\Box \chi^2_{[0.9;9]} = 14.68$		1	100	100.0	0.000			
		2	96	100.0	0.160			
		3	98	100.0	0.040			
 Observed difference = 10.380 Observed is Less ⇒ Accept IID U(0, 1) 		4	85	100.0	2.250			
		5	105	100.0	0.250			
		6	93	100.0	0.490			
		7	97	100.0	0.090			
		8	125	100.0	6.250			
		9	107	100.0	0.490			
		10	94	100.0	0.360			
	Tot	al	1000	1000.0	10.380			
				6200	6 Pui hin way minin our			

Chi-Square for Other Distributions

- **\Box** Errors in cells with a small e_i affect the chi-square statistic more
- **D** Best when e_i 's are equal.
- ⇒ Use an equi-probable histogram with variable cell sizes
- Combine adjoining cells so that the new cell probabilities are approximately equal.
- The number of degrees of freedom should be reduced to k-r-1 (in place of k-1), where r is the number of parameters estimated from the sample.
- Designed for discrete distributions and for large sample sizes only \Rightarrow Lower significance for finite sample sizes and continuous distributions
- If less than 5 observations, combine neighboring cells

27-6

Serial-Correlation Test

□ Nonzero covariance \Rightarrow Dependence. The inverse is not true

$$R_{k} = \text{Autocovariance at lag } k = \text{Cov}[x_{n}, x_{n+k}]$$
$$R_{k} = \frac{1}{n-k} \sum_{i=1}^{n-k} (U_{i} - \frac{1}{2})(U_{i+k} - \frac{1}{2})$$

- **\Box** For large *n*, R_k is normally distributed with a mean of zero and a variance of 1/[144(n-k)]
- **1** 100(1- α)% confidence interval for the autocovariance is: $R_k \mp z_{1-\alpha/2}/(12\sqrt{n-k})$

For k_1 Check if CI includes zero

a For k = 0, R_0 = variance of the sequence Expected to be 1/12 for IID U(0,1)

27-7

Example 27.5. Serial Correlation Test									
$x_n = 7^5 x_{n-1} \mod (2^{31} - 1)$									
10,000 random numbers with $x_0=1$:									
Lag	Autocovariance	St. Dev.	90% Confidence Interval						
k	R_k	of R_k	Lower Limit	Upper Limit					
1	-0.000038	0.000833	-0.001409	0.001333					
2	-0.001017	0.000833	-0.002388	0.000354					
3	-0.000489	0.000833	-0.001860	0.000882					
4	-0.000033	0.000834	-0.001404	0.001339					
5	-0.000531	0.000834	-0.001902	0.000840					
6	-0.001277	0.000834	-0.002648	0.000095					
7	-0.000385	0.000834	-0.001757	0.000986					
8	-0.000207	0.000834	-0.001579	0.001164					
9	0.001031	0.000834	-0.000340	0.002403					
10	-0.000224	0.000834	-0.001595	0.001148					
				©2006 Raj Jain www.rajjain.c					

Example 27.2. Samial Completion Test

27-8

□ In two dimensions, divide the space between 0 and 1 into K² cells of equal area

Serial Test (Cont) Given $\{x_1, x_2, \dots, x_n\}$, use n/2 non-overlapping pairs (x_1, x_2) , (x_3, x_2) x_4), ... and count the points in each of the K^2 cells.

- Expected= $n/(2K^2)$ points in each cell.
- □ Use chi-square test to find the deviation of the actual counts from the expected counts.
- □ The degrees of freedom in this case are K^{2} -1.
- □ For *k*-dimensions: use *k*-tuples of non-overlapping values.
- □ *k*-tuples must be non-overlapping.
- Overlapping \Rightarrow number of points in the cells are not
- independent chi-square test cannot be used
- □ In visual check one can use overlapping or non-overlapping.
- □ In the spectral test overlapping tuples are used.
- Given n numbers, there are n-1 overlapping pairs, n/2 nonoverlapping pairs. 27-11

