

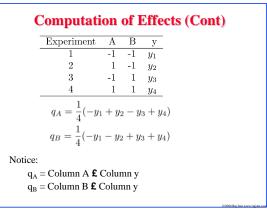
	Model
	$y = q_0 + q_A x_A + q_B x_B + q_{AB} x_A x_B$
Observations:	
	$15 = q_0 - q_A - q_B + q_{AB}$
	$45 = q_0 + q_A - q_B - q_{AB}$
	$25 = q_0 - q_A + q_B - q_{AB}$
	$75 = q_0 + q_A + q_B + q_{AB}$
Solution:	
	$y = 40 + 20x_A + 10x_B + 5x_A x_B$
Interpretation: Mean	performance = 40 MIPS
Effect of memory = 20) MIPS; Effect of cache = 10 MIPS
Interaction between m	emory and cache $= 5$ MIPS.

Computation of Effects Experiment Α В У $-1 \quad y_1$ -1 1 1 -1 y_2 2 $1 y_3$ 3 -1 41 $1 \quad y_4$ $y = q_0 + q_A x_A + q_B x_B + q_{AB} x_A x_B$ $y_1 = q_0 - q_A - q_B + q_{AB}$ $y_2 = q_0 + q_A - q_B - q_{AB}$ $y_3 = q_0 - q_A + q_B - q_{AB}$ $y_4 = q_0 + q_A + q_B + q_{AB}$ 17-6

Computation of Effects (Cont)

Solution:

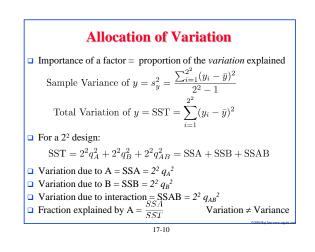
$$q_{0} = \frac{1}{4}(y_{1} + y_{2} + y_{3} + y_{4})$$

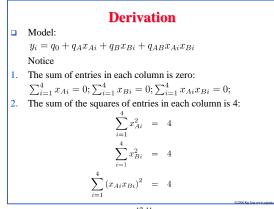

$$q_{A} = \frac{1}{4}(-y_{1} + y_{2} - y_{3} + y_{4})$$

$$q_{B} = \frac{1}{4}(-y_{1} - y_{2} + y_{3} + y_{4})$$

$$q_{AB} = \frac{1}{4}(y_{1} - y_{2} - y_{3} + y_{4})$$

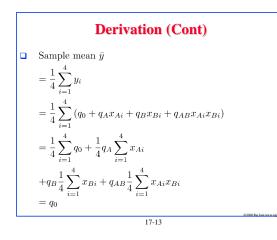
Notice that effects are linear combinations of responses. Sum of the coefficients is zero \Rightarrow contrasts.

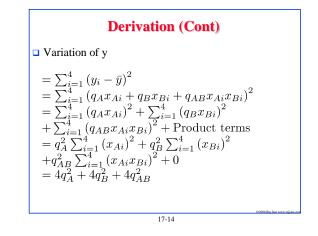

17-7

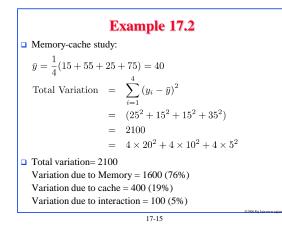


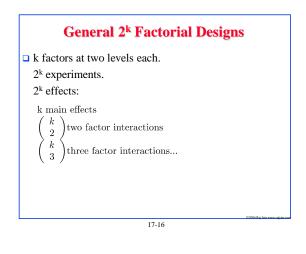
Ι	Α	В	AB	
1	-1	-1	1	1
1	1	-1	-1	4
1	-1	1	-1	2
1	1	1	1	7
160	80	40	20	Tota
40	20	10	5	Total/

17-9

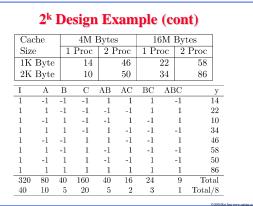







7-11

17-12

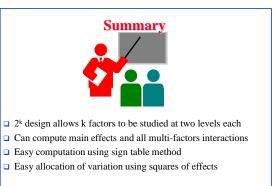


	2 ^k Design Exa	ample	
Thre	e factors in designing a ma	chine:	
≻ C	ache size		
> N	lemory size		
× 11.	lemory size		
	umber of processors		
		Level -1	Level 1
	umber of processors	Level -1 4MB	Level 1 16MB
> N	umber of processors Factor		

17-18

17-17

Analysis of 2^k Design


SST =
$$2^{3}(q_{A}^{2} + q_{B}^{2} + q_{C}^{2} + q_{AB}^{2} + q_{AC}^{2} + q_{BC}^{2} + q_{ABC}^{2})$$

$$= 8(10^2 + 5^2 + 20^2 + 5^2 + 2^2 + 3^2 + 1^2)$$

- = 800 + 200 + 3200 + 200 + 32 + 72 + 8 = 4512
- = 18% + 4% + 71% + 4% + 1% + 2% + 0%
- = 100%

□ Number of Processors (C) is the most important factor.

17-20