


Experimental Design and Analysis

How to:

- Design a proper set of experiments for measurement or simulation.
- Develop a model that best describes the data obtained.
- Estimate the contribution of each alternative to the performance.
- □ Isolate the measurement errors.
- Estimate confidence intervals for model parameters.
- Check if the alternatives are significantly different.
- Check if the model is adequate.

16-3

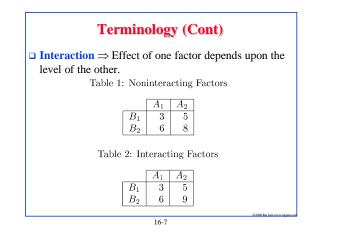
Example

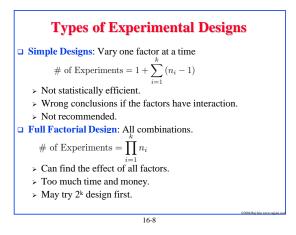
Personal workstation design

- 1. Processor: 68000, Z80, or 8086.
- 2. Memory size: 512K, 2M, or 8M bytes
- 3. Number of Disks: One, two, three, or four
- 4. Workload: Secretarial, managerial, or scientific.
- 5. User education: High school, college, or postgraduate level.

Five Factors at 3x3x4x3x3 levels

16-4

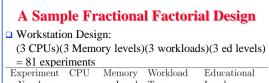

Terminology


- Response Variable: Outcome.
- E.g., throughput, response time
- Factors: Variables that affect the response variable.
 E.g., CPU type, memory size, number of disk drives, workload used, and user's educational level.
- Also called predictor variables or predictors.
- Levels: The values that a factor can assume, E.g., the CPU type has three levels: 68000, 8080, or Z80.
 # of disk drives has four levels.
- Also called **treatment**.
- **Primary Factors**: The factors whose effects need to be quantified.
 - E.g., CPU type, memory size only, and number of disk drives.

Terminology (Cont)

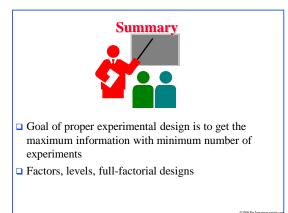
- Secondary Factors: Factors whose impact need not be quantified.
- E.g., the workloads.
- **Replication**: Repetition of all or some experiments.
- Design: The number of experiments, the factor level and number of replications for each experiment.
 E.g., Full Factorial Design with 5 replications: 3×3×4×3×3 or 324 experiments, each repeated five times.
- **Experimental Unit**: Any entity that is used for experiments. E.g., users. Generally, no interest in comparing the units.
- Goal minimize the impact of variation among the units.

16-6



Types of Experimental Designs (Cont)

□ Fractional Factorial Designs: Less than Full Factorial


- > Save time and expense.
- > Less information.
- > May not get all interactions.
- > Not a problem if negligible interactions

Experiment	OI U	memory	mondad	Educational
Number		Level	Type	Level
1	68000	512K	Managerial	High School
2	68000	2M	Scientific	Post-graduate
3	68000	8M	Secretarial	College
4	Z80	512K	Scientific	College
5	Z80	2M	Secretarial	High School
6	Z80	8M	Managerial	Post-graduate
7	8086	512K	Secretarial	Post-graduate
8	8086	2M	Managerial	College
9	8086	8M	Scientific	High School

16-10

16-9

