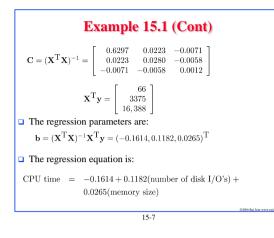
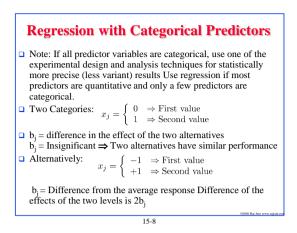

- 1. Multiple Linear Regression: More than one predictor variables
- 2. Categorical Predictors: Predictor variables are categories such as CPU type, disk type, and so on.
- 3. Curvilinear Regression: Relationship is nonlinear





dem	ands. In partic	ular, the num	e 15.1 I to observe thei ber of disk I/O's, nilliseconds) we	, memory size
	CPU Time	Disk I/O's	Memory Size	
	y_i	x_{1i}	x_{2i}	
	2	14	70	
	5	16	75	
	7	27	144	
	9	42	190	
	10	39	210	
	13	50	235	
	20	83	400	
				02006 Raj Jain www.rajjain.com
		15-5		

Categorical Predictors (Cont)

□ Three Categories: Incorrect:

 $x_1 = \begin{cases} 1 \Rightarrow \text{Type A} \\ 2 \Rightarrow \text{Type B} \\ 3 \Rightarrow \text{Type C} \end{cases}$

This coding implies an order \Rightarrow B is half way between A and C. This may not be true.

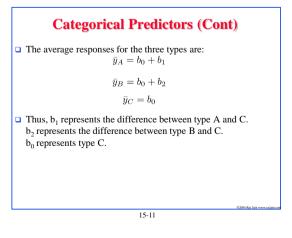
Recommended: Use two predictor variables

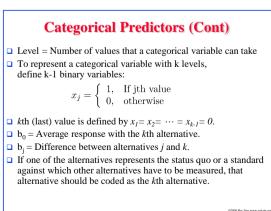
$$x_1 = \begin{cases} 1, & \text{If type A} \\ 0, & \text{Otherwise} \end{cases}$$
$$x_2 = \begin{cases} 1, & \text{If type B} \\ 0, & \text{Otherwise} \end{cases}$$

15-9

Categorical Predictors (Cont)

Thus, $(x_1, x_2) = (1, 0) \Rightarrow$ Type A


 $(x_1, x_2) = (0, 1) \Rightarrow \text{Type B}$


 $(x_1, x_2) = (0, 0) \Rightarrow \text{Type C}$

This coding does not imply any ordering among the types. Provides an easy way to interpret the regression parameters.

 $y = b_0 + b_1 x_1 + b_2 x_2 + e$

15-10

Case Study 15.1: RPC performance				
	UNIX		ARGUS	
RPC performance on Unix	Data	Time	Data	Time
and Argus	Bytes		Bytes	
-	64	26.4	92	32.8
$y = b_0 + b_1 x_1 + b_2 x_2$	64	26.4	92	34.2
•	64	26.4	92	32.4
	64	26.2	92	34.4
where, y is the elapsed	234	33.8	348	41.4
time, x_1 is the data size	590	41.6	604	51.2
, 1	846	50.0	860	76.0
and	1060	48.4	1074	80.8
$\int 1 \Rightarrow \text{UNIX}$	1082	49.0	1074	79.8
$x_2 = \begin{cases} 1 \Rightarrow \text{UNIX} \\ 0 \Rightarrow \text{ARGUS} \end{cases}$	1088	42.0	1088	58.6
(• • • • • • • • • • •	1088	41.8	1088	57.6
	1088	41.8	1088	59.8
	1088	42.0	1088	57.4
			02006	Raj Jain www.rajjain.co

15-13

Case Study 15.1 (Cont)

Para-		Std.	Confidence
meter	Mean	Dev.	Interval
b_0	36.739	3.251	(31.1676, 42.3104)
b_1	0.025	0.004	(0.0192, 0.0313)
b_2	-14.927	3.165	(-20.3509, -9.5024)

- □ All three parameters are significant. The regression explains 76.5% of the variation.
- □ Per byte processing cost (time) for both operating systems is 0.025 millisecond.
- Set up cost is 36.73 milliseconds on ARGUS which is 14.927 milliseconds more than that with UNIX.

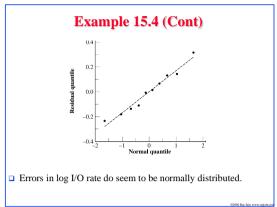
15-14

Curvilinear Regression Curvilinear Regression: Other Examples Nonlinear Linear □ If the relationship between response and predictors is nonlinear y = a + b/xy = a + b (1/x)but it can be converted into a linear form y=x/(a+bx)(1/y)=a+bx \Rightarrow curvilinear regression. y = x/(a+bx)(x/y) = a + bxExample: y = abx $\ln(y) = \ln(a) + (\ln(b))\mathbf{x}$ $y=a+bx_n$ $y=a+b(x^n)$ $y = bx^a$ □ If a predictor variable appears in more than one transformed Taking a logarithm of both sides we get: predictor variables, the transformed variables are likely to be $\ln y = \ln b + a \ln x$ correlated \Rightarrow multicollinearity. Try various possible subsets of the predictor variables to find a subset that gives significant parameters and explains a high Thus, ln x and ln y are linearly related. The values of ln b and a percentage of the observed variation. can be found by a linear regression of $\ln y$ on $\ln x$. 15-15 15-16

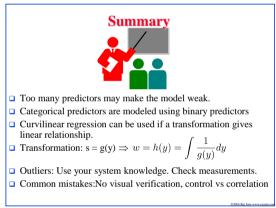
Example 15.4

Amdahl's la	aw: I/O rate is	proportional to	the processor	speed.
For each in	struction exect	uted there is on	e bit of I/O on	the
average.	Suctor No.	MIDS Used	I/O Poto	

1/O nate	MIF5 Used	System No.
288.60	19.63	1
117.30	5.45	2
64.60	2.63	3
356.40	8.24	4
373.20	14.00	5
281.10	9.87	6
149.60	11.27	7
120.60	10.13	8
31.10	1.01	9
23.70	1.26	10


Example 15.4 (Cont)

- **L**et us fit the following curvilinear model to this data:
 - I/O Rate = α (MIPS Rate)^{b1}
- □ Taking a log of both sides we get: $log(I/O \text{ Rate}) = log(\alpha) + b_1 log(\text{MIPS Rate})$


 $b_0 = \log(\alpha)$

Example 15.4 (Cont)					
Obs. No.	x_1	У	Para- Std. Confidence		
1	1.293	2.460	meter Mean Dev. Interval		
2	0.736	2.069	b_0 1.423 0.119 (1.20, 1.64)		
3	0.420	1.810	$b_1 = 0.888 = 0.135 = (0.64, 1.14)$		
4	0.916	2.552	· · · · · · · · · · · · · · · · · · ·		
5	1.146	2.572	Both coefficients are significant at		
6	0.994	2.449			
7	1.052	2.175			
8	1.006	2.081	The regression explains 84% of the		
9	0.004	1.493	variation.		
10	0.100	1.375	□ At this confidence level, we can		
			accept the hypothesis that the		
			1 51		
			relationship is linear since the		
			confidence interval for b ₁ includes		
			1.		
			02006 Raj Jais www.rajjais.ci		

15-19

15-20

15-21