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Simple Linear Regression Models

0 Regression Model: Predict a response for a given set
of predictor variables.

0 Response Variable: Estimated variable

a Predictor Variables: Variables used to predict the
response. predictors or factors

0 Linear Regression Models: Response is a linear
function of predictors.

a Simple Linear Regression Models:
Only one predictor
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Good Model (Cont)

0 Regression models attempt to minimize the distance
measured vertically between the observation point
and the model line (or curve).

0 The length of the line segment is called residual,
modeling error, or simply error.

0 The negative and positive errors should cancel out
= Zero overall error
Many lines will satisfy this criterion.
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Definition of a Good Model
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Good Model (Cont)

0 Choose the line that minimizes the sum of squares of
the errors. R
y=by+ bz

where, ¢ is the predicted response when the
predictor variable is x. The parameter b, and b, are
fixed regression parameters to be determined from the
data.
a Given n observation pairs {(Xy, Y1), --.» (X, Yo)}, the
estimated response ¥; for the ith observation is:
0i = bo + b1z

0 The error is: .
€ =Yi —Yi
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Good Model (Cont)

O The best linear model minimizes the sum of squared
errors (SSE):

Z:’=1 622 = 27;1(3/1 — by — byz;)?
subject to the constraint that the mean error is zero:
i€ =i (yi —bo —biz;) =0

Q This is equivalent to minimizing the variance of errors
(see Exercise).

Estimation of Model Parameters

0 Regression parameters that give minimum error
variance are:

Yxy — nxy _ _
bl:m and bo=y—b1x
a where, n n
_ 1 1
1= 1=

n n
Yay = Z Y Yol = Z z?
i=1 i=1
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Example 14.1

a The number of disk 1/O's and processor times of
seven programs were measured as: (14, 2), (16, 5),
(27, 7), (42, 9), (39, 10), (50, 13), (83, 20)

O For this data: n=7, T xy=3375, T x=271,  x2=13,855,
¥ y=66, T y?=828, 7=38.71, y=9.43. Therefore,

Yoy —nxy 3375 — 7 x 38.71 x 9.43
Ya? —n(z)2 13,855 — 7 x (38.71)2
by = §—biZ=9.43 —0.2438 x 38.71 = —0.0083

by = =0.2438

0 The desired linear model is:
CPU time = —0.0083 + 0.2438(Number of Disk I/O’s)

Example 14.1 (Cont)

CPU time in milliseconds
,
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Example 14. (Cont)

0 Error Computation

Disk I/O’s  CPU Time Estimate Error  Error”

x; v Ji=bo+b1 T  e;=yi-Ui e?
14 2 3.4043 -1.4043 1.9721
16 5 3.8918 1.1082 1.2281
27 7 6.5731 0.4269  0.1822
42 9 10.2295 -1.2295 1.5116
39 10 9.4982 0.5018 0.2518
50 13 12.1795 0.8205 0.6732
83 20 20.2235 -0.2235 0.0500
¥ 271 66 66.0000 0.00 5.8690

Derivation of Regression Parameters

0 The error in the ith observation is:
ei = Yi — i = yi — (bo + brz;)

0 For a sample of n observations, the mean error is:
€ = priei=y 1y — (bo+bizi)}

= y—by—biT
0 Setting mean error to zero, we obtain:
bp =y —biz

0 Substituting b0 in the error expression, we get:
e =y —§+bT—bz;=(y; —§) — bi(zi — T)
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Derivation of Regression Parameters (Cont)

Q The sum of squared errors SSE is:

SSE = i e?
i=1

= {97+ 1 (4 - 9) (00— )+ 87 (i - )}
i=1

1 & o 1 < - _
= nilg(yﬁy) *lemg(ywy)(zi*l)

1 n
+b? — Z (z; — i’)z
i=1

2 2 2 2
= s, —2bisy, +bis;
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Derivation (Cont)

O Differentiating this equation with respect to b, and
equating the result to zero:
d(SSE)

dby
0 That is,

=252, +2b1s5 =0

by — 82ﬂ _ Yxy — nxy
YT T N2 —n(z)?

Allocation of Variation

Q Error variance without Regression = Variance of the response
Error ¢; = Observed Response — Predicted Response

Yi— Y

and

n
. . . 1
Variance of Errors without regression 1 E e
n—
i=1

n

1 )
= —2 -9

i=1
= Variance of y
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Allocation of Variation (Cont)

0 The sum of squared errors without regression would be:

i=1
a This is called total sum of squares or (SST). It is a measure of
y's variability and is called variation of y. SST can be
computed as follows:

SST = Z(yi —9)? = <Z y?) —ng® = S8SY — 550
i=1 i=1

0 Where, SSY is the sum of squares of y (or  y?). SS0 is the sum
of squares of and is equal to 17

Allocation of Variation (Cont)

0 The difference between SST and SSE is the sum of squares
explained by the regression. It is called SSR:

SSR = SST — SSE
SST = SSR + SSE

0 The fraction of the variation that is explained determines the
goodness of the regression and is called the coefficient of
determination, R2:

g2 _ SSR_ SST - SSE

T SST ~  SST

or
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Allocation of Variation (Cont)

0 The higher the value of R?, the better the regression.
R?=1 = Perfect fit R?=0 = No fit
2
Siy
SzSy

Sample Correlation(z,y) = R,y =

0 Coefficient of Determination = {Correlation Coefficient (x,y)}?
a Shortcut formula for SSE:

SSE = Xy? — byZy — b1 Sy
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Example 14.2

Q For the disk 1/0-CPU time data of Example 14.1:

SSE = Xy? —byXy — b Say
= 828+ 0.0083 x 66 — 0.2438 x 3375 = 5.87

SST = SSY —SS0=Xy> — n(y)?
= 828 -7 x (9.43)% = 205.71
SSR = SST — SSE = 205.71 — 5.87 = 199.84

, SSR _ 199.84

R =55t = 20571

=0.9715

O The regression explains 97% of CPU time's variation.
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Visual Tests for Regression Assumptions

Regression assumptions:

1. The true relationship between the response variable y
and the predictor variable x is linear.

2. The predictor variable x is non-stochastic and it is
measured without any error.

3. The model errors are statistically independent.

4. The errors are normally distributed with zero mean
and a constant standard deviation.

1. Linear Relationship: Visual Test

0 Scatter plot of y versus x = Linear or nonlinear relationship
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2. Independent Errors: Visual Test
1. Scatter plot of ¢; versus the predicted response ¥;

(a) No trend {b) Trend P
Residual Residual R Residual

Predicted response Predicted response Predicted response

o All tests for independence simply try to find dependence.

Independent Errors (Cont)

2. Plot the residuals as a function of the experiment number

(a) No trend ({b) Trend
Residual Residual

Experiment number Experiment number
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3. Normally Distributed Errors: Test

O Prepare a normal quantile-quantile plot of errors.
Linear = the assumption is satisfied.
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a Terminology: Simple Linear Regression model, Sums of
Squares, Mean Squares, degrees of freedom, percent of
variation explained, Coefficient of determination, correlation
coefficient

0 Regression parameters as well as the predicted responses have
confidence intervals

Q It is important to verify assumptions of linearity, error
independence, error normality = Visual tests
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