COURSE SYLLABUS Spring 2011

1. Department, Number and Course Title

Department:	Computer Engineering
Course Number:	ECE 22446
Course Title:	Microcomputer System Design

2. **Design:** Required Course

3. Catalog Description

Microprocessor architecture and organization, Bus architectures, types and buffering techniques, Memory and I/O subsystems, organization, timing and interfacing, Peripheral controllers and programming. Practice of the design of a microprocessor system design.

4. **Prerequisite(s)**

Digital Logic Design and Assembly Language

5. Textbook(s) and/or other Required Material

Barry B. Brey, The Intel Microprocessors: 8086/8088, 80186/80188, 80286, 80386, 80486, Pentium, Pentium Pro Processor, Pentium II, Pentium III, Pentium 4, and Core2 with 64-bit Extensions: Architecture, Programming, and Interfacing, 8th ed., Prentice-Hall, 2008.

- 1. James Antonakos, An Introduction to the Intel Family of Microprocessors, Prentice-Hall, 3ed Edition, 1999.
- 2. Walter Triebel and Avtar Singh, The 8088 and 8086 Microprocessors: Programming, Interfacing, Software, Hardware, and Applications, 4th ed., Prentice-Hall, 2002.
- 3. Intel 80x86 hardware reference manuals, Intel.

6. Course Objectives

- learn how the hardware and software components of a microprocessor-based system work together to implement system-level features;
- learn both hardware and software aspects of integrating digital devices (such as memory and I/O interfaces) into microprocessor-based systems;
- learn the operating principles of, and gain hands-on experience with, common microprocessor peripherals such as UARTs, timers, and analog-to-digital and digital-to-analog converters;
- get practical experience in applied digital logic design and assembly-language programming; and
- be exposed to the tools and techniques used by practicing engineers to design, implement, and debug microprocessor-based systems (during the Lab).

7. Topics Covered

- 80x86 Processor Architecture: Introduction, Processor Model, Programmer's model, Designer's Model: 8086 hardware details, Clock generator 8284A, Bus buffering and latching, Processor Read & Write bus cycles, Ready and wait state generation, Minimum versus Maximum mode operation.
- Memory Interfacing: 80x86 processor-Memory interfacing, Address decoding techniques, Memory Devices ROM, EPROM, SRAM, FLASH, DRAM devices, Memory internal organization, Memory read and write timing diagrams, DRAM Controller
- Basic I/O Interfacing: Parallel I/O, Programmed I/O, I/O port address decoding, The 8255A Programmable Peripheral Interface (PPI), programming 8255, Operation modes, Interface examples Keyboard matrix, LCD/7-Segment Display, Printer, stepper motor, A/D and D/A converter.
- Timer Interfacing: The 8254 Programmable Interval Timer (PIT), Timing applications.
- Serial I/O Interface: Asynchronous communication, Physical communication standard-EIA RS232, Programmable Communication Interface UART 8251, Interfacing serial I/O devices- mouse, modem, PC Keyboard.
- Interrupts: Interrupt driven I/O, Software & Hardware interrupts, Interrupt vectors and vector table, Interrupt processing, The 8259A Programmable Interrupt Controller (PIC)- cascading of 8259s, programming 8259, Interrupt examples Printer, Real-Time Clock, PC Keyboard.
- Direct Memory Access: Basic DMA operation, DMA Controlled I/O, The 8237 DMA Controller, Disk Memory Systems- Floppy disk, Hard disk, optical disk memory systems, video displays
- Bus Interfaces: PC bus standards & interfaces PCI, USB, Firewire, AGP

8. Course Contribution to Meet the Professional Component

This course is tightly integrated with a lab component which exposes the student to various aspects of microprocessor engineering including signal analysis, design & fabrication of medium-sized 80x86 microprocessor based system, manual wiring, testing, hardware troubleshooting, and conducting I/O interfacing experiments using professional processor kits.

9. Relationship to Program Outcomes

This course supports the following seven program outcomes out of the outcomes required by ABET Criterion 3 for accrediting computer engineering programs.

Outcome1: Ability to apply knowledge of mathematics, probability, and engineering in microprocessor based system design. [ABET Criterion 3a]

Outcome 2: Ability to design and conduct experiments related to microprocessor based system design and to analyze their outcomes. [ABET Criterion 3b]

Outcome 3: Ability to design, debug and test a small scale microprocessor system. [ABET Criterion 3c]

Outcome 4: Ability to identify, formulate, and solve engineering problems in microprocessor based system design. Ability to function as an effective team member. [ABET Criterion 3d]

Outcome 5: Ability to identify, formulate, and solve engineering problems in microprocessor based system design. [ABET Criterion 3e]

Outcome 6: Ability to use design tools for microprocessor system design, test and evaluation. [ABET Criterion 3k]

Outcome 7: Ability to engage in self-learning. [ABET Criterion 3i]

Course Learning Outcomes	Outcome Indicators and Details	Assessment Methods and Metrics
O1. Ability to apply knowledge of mathematics, probability and engineering in microprocessor based system design	 Analysis of bus Fan-in and Fan-out requirements, analysis of bus and processor timing, performance evaluation, CPU execution time memory access time and bandwidth wait state computation computation of timing delays I/O performance such as interrupt latency and DMA speed 	AssignmentsExams
O2. Ability to design and conduct experiments related to microprocessor based system design and to analyze their outcomes.	 Design & conduct experiments on clock generation, power-on-reset generation, ready synchronization, address decoding, memory interfacing and I/O interfacing 	Lab work
O3. Ability to design, debug and test a small scale microprocessor based system	 Design of Clock generation, Reset generation & synchronization, Wait state computation & generation, Ready synchronization, Address bus latching, data bus buffering, Design of Memory Map, Memory Address decoder, Memory Read and write logic Interfacing of RAM and EPROM memories. to processor(appropriate selection and connection of address bus, data bus, read/write control and chip select) Modes of I/O data transfer – Programmed or Polled I/O, Interrupt driven I/O, DMA Design of Parallel & Serial I/O devices to processor using peripheral chips 8255 PPI, 8254 PIT. - appropriate selection and connections between peripheral chips and I/O devices - Programming of Peripheral interfacing chips > data, control and status signal interconnections between peripheral chips and I/O devices - Programming of Peripheral interfacing chips > debug and test the design as well as to develop small test program to test the design appropriately 	 Assignments Exams Lab work

	Report and document the design.	
O4. Ability to function as an effective team member	 Working in a team to design, assemble and tes small microprocessor based system prototype 	st a • Lab work
O5. Ability to identify, formulate, and solve engineering problems in microprocessor based system design	 Identify, formulate and solve engineering problem the microprocessor based system design conside the following : Enhancements in the processor inte architecture, processor address & data bus w Latest trends and developments in Men Technology (SRAM, DRAM, SDR, RDRAM, DDR/DDR2) Recent developments in I/O interfa standards and I/O devices 	ering ernal vidth nory AM,
O6. Ability to use design tools for microprocessor system design, test and evaluation	 Use of tools for debugging, develop techniques testing, and use of trace analysis and timing evaluation Use of Logic analyzers, oscilloscopes, logic promultimeters 	for • Lab work
O7. Ability to engage in self-learning	 Demonstrates reading and writing skills Identifying, retrieving, and organizing information Following a learning plan Demonstrate critical thinking skills such as appl the facts, formulae, theories, etc. to everyday situati 	