
1

Princess Sumaya University for Technology
Computer Engineering Department

22440: Microprocessor Lab

Experiment 1: Introduction to Microsoft Assembler (MASM)

Introduction

The Microsoft Assembler (MASM) translates an assembly language source file into a
machine language object file. The assembler program requires that a symbolic program be first
written, using a text editor provided with the assembler package. The editor provided by this
version is edit.exe. When you use any word processor, the source file that you generate must
use the extension “.asm” that is required for the assembler to properly identify your source
program.

Once your source file is prepared, it must be assembled. This is accomplished by using a
DOS command. Once a program is assembled, it must be linked before it can be executed. The
linker converts the object file into an executable file “.exe”. You can use the DOS command
(ml name.asm) to assemble and link your program.

Code view is also available with MASM. (cv name.exe) must be typed at the DOS
command line to access it.

Program Structure

The machine language program consists of code, data, and stack. Each part occupies a
memory segment. Each program segment is translated into a memory segment by the
assembler.

Memory Models

The size of code and data a program can have is determined by specifying a memory
model using .MODEL directive, which has the following syntax:

.MODEL memory-model

The most frequently used memory models are: small, medium, and compact. The
.MODEL directive should come before any segment definition. The following table describes
these models.

Model Description
Small Code in one segment, Data in one segment

Medium Code in more than one segment, Data in one segment
Compact Code in one segment, Data in more than one segment

Data Segment

 A program's data segment contains all the variable definitions. To declare a data
segment, we use the directive .DATA followed by variable and constant declarations. For
example:

.DATA

2

Word1 db 2

Msg db 'This is a message$'

Stack Segment

The purpose of the stack segment declaration is to set aside a block of memory (the
stack area) to store the stack data. The stack area should be big enough to contain the stack at
its maximum size. The declaration syntax is:

.STACK size

Where size is an optional number that specifies the stack area size in bytes, for example:
.STACK size

If size is omitted, 1KB is set aside for the stack area.

Code segment

The code segment contains a program's instructions. The declaration syntax is:
.CODE name

Where name is the optional name for the segment (there is no need for the name in a
small program, because the assembler will generate an error). Inside a code segment,
instructions are organized as procedures. The simplest procedure definition is:

name PROC

; body of the procedure

name ENDP

Where name is the name of the procedure.

Putting It All Together

Now you have seen all the program segments, we can construct the general form of a
small program. With minor variables, this form may be used in most applications.

.MODEL small

.STACK 100H

.DATA

;Data definitions go here.

.CODE

MAIN PROC

;Initializing data and extra sections

MOV AX, @DATA

MOV DS, AX

MOV ES, AX

;Instructions go here.

MOV AH, 4CH

INT 21H ;Exit to DOS

MAIN ENDP

;Other procedures go here

END MAIN

3

Exercise

1) Enter the following program using MS-DOS editor (edit exp1.asm).
.MODEL small

.STACK 100H

.DATA

;Data definitions go here.

.CODE

MAIN PROC

MOV AX, @DATA

MOV DS, AX

MOV ES, AX

;Instructions go here.

MOV CX, 5

MOV BX, 50H

MOV AL, BL

MOV DX, CX

;Exit to DOS

MOV AH, 4CH

INT 21H

MAIN ENDP

END MAIN

2) Save your program as exp1.asm
3) Use the DOS command (ml exp1.asm) to assemble and link your program. What is

the result of this operation?

4) Type the command (cv exp1) to access the code view.
5) Fill the AL register with 45h. Declare in the data segment label1 db ?. Move the

contents of the AL register to the memory location label1. Check that the memory
location does contain 45h. How do you check the contents of memory locations and
the registers?

__
__
__

6) View the registers and memory view ports and execute your program step by step

using F8.

4

7) Add the following instructions to your program and write down the register value

after applying each instruction, write your own comments for each instruction below.
Mov al, 100 ; AL =

Mov ah, 32H ; AH =

Mov bl, 'a' ; BL =

Mov bh, '1' ; BH =

8) What is the difference between the size of “DE” in ASCII code and 0DEH in Hex?

9) Write below the appropriate instruction to fill the hexadecimal word 0ABCDH in to

Register AX. Test the instruction and check that the register does really contains the
number?

10) Try the wrong instruction Mov ax, bl. Link the program. What does the output

state for the line in which there is this error? Write below the output.

Remember
Label1 db 10 dup(?) ;Reserves 10 locations starting at Label1

Label1 db 10 dup(5) ;Reserves 10 locations starting from Label1, all have 5

 Mov cx, [Bx] ;Moves the memory word specified by Bx + 10*Ds to cx.

 Mov [Bp], dl ;Moves dl contents to memory address specified by Bp + 10*ss

 Mov [Di], Bh ;Moves Bh contents to memory address specified by Di + 10*Ds

