
To appear in 10th Int'l Conf. on Intelligent Systems Design and Applications (ISDA’10), 2010.

1

Recognizing Handwritten Arabic Script through

Efficient Skeleton-Based Grapheme Segmentation

Algorithm

Gheith A. Abandah, Fuad T. Jamour

Computer Engineering Department

The University of Jordan

Amman 11942, Jordan

abandah@ju.edu.jo, fjamour@gmail.com

Abstract—To recognize unlimited set of handwritten Arabic

words, an efficient segmentation algorithm is needed to segment

these cursive words into a limited set of primal graphemes. We

propose a rule-based segmentation algorithm that segments

cursive words into graphemes through collecting special feature

points from the word skeleton. The development of this algorithm

is motivated by the need to solve problems and limitations

available in the state-of-the-art algorithms in this area. The

preliminary evaluation of the proposed algorithm is promising

with over 96% accuracy on a sample subset of the IFN/ENIT

database.

Keywords-optical character recognition; handwritten script;

letter segmentation algorithms; Arabic language

I. INTRODUCTION

The recognition of handwritten scripts is a challenging task
particularly due to high variability in letter shapes. The
challenge with the Arabic scripts is even larger because Arabic
is always cursive. If Arabic words are to be recognized with no
explicit segmentation, the number of recognition classes
becomes equal to the number of possible words, which is
overly huge. A more practical approach is to segment Arabic
words into letters then to recognize the segmented letters. This
approach works well with printed words because segmenting
printed Arabic words is relatively easy. Earlier researchers
have develop accurate systems for recognizing printed Arabic
text and some commercial products are available [1].

However, segmenting handwritten Arabic words is not as
easy. Handwritten words lack the uniformity needed to detect
invariant features for pinpointing the segmentation points.
Most of the successful handwritten Arabic recognition engines
use holistic approaches that recognize whole words without
segmenting them to letters [2]. Such approach is successful
with limited lexicon, thus, it is not a general solution.

We believe that building a practical, unlimited lexicon
recognition system for handwritten Arabic script requires
robust letter segmentation algorithm. We have studied several
existing segmentation algorithms and noticed their strengths
and limitations. In the following subsection, we briefly
describe eight of the leading algorithms, state their major
limitations, and provide some examples where they fail.

A. Letter Segmentation Algorithms Review

Motawa et al. use mathematical morphology to detect what
they call regularities [3]. The segmentation points are then
located within these regularities using certain rules. These
regularities are stroke segments that each connects two vertical
strokes. Their algorithm depends on the length and orientation
of the regularity, stroke width, baseline, and some logical rules.
The regularities should be horizontal and close to the baseline
in order to be considered. Short regularities might have one
segmentation point while long regularities might have two with
no clear guidelines how exactly to locate these points. We
believe that the features used in this algorithm are unreliable.
The lengths of various handwritten strokes are misleading for
segmentation and the baseline does not necessarily pass
through all the segmentation points. The word in Figure 1(a)
illustrates three limitations of this algorithm, the rightmost
regularity is not segmented because it is not horizontal, the
leftmost long regularity is over segmented in two segmentation

points instead of one, and the medial Seen (س) is also over
segmented with no special treatment.

Mansour et al. use the stroke width to locate segmentation
points [4]. A location where the stroke width is narrower than
the average stroke width is considered a segmentation point.
This approach does not give accurate results. The stroke width
is not a good indicator of the existence of a segmentation point.
The leftmost box in Fig. 1(b) contains a stroke with a pit that

gives a false segmentation of the isolated letter Theh (ث). On
the other hand, the rightmost box contains a constant-width

stroke where the segmentation point between initial Meem (م)

and final Alef (ا) is missed.

Sari et al. use local minima detected on the lower contour
of the word [5]. A local minimum that fulfills some rules is
considered a segmentation point. Though the stated rules are
powerful and cover many cases, the proposed approach does
not perform well on handwritings because many sub-words
containing segmentation points do not have local minima. For
example, the sub-word in the leftmost box of Fig. 1(c) does not
have a local minimum. And on the other hand, the rightmost

box that has the isolated Yeh (ي) is an example of a letter that
is falsely segmented because it has a local minimum.

This work is supported by the Deanship of Academic Research, The
University of Jordan.

To appear in 10th Int'l Conf. on Intelligent Systems Design and Applications (ISDA’10), 2010.

2

Figure 1. Example samples that suffer bad segmentation in previous work

Lorigo and Govindaraju get the baseline from the truth
information of the word database they use, IFN/ENIT [6].
After they refine the baseline for each sub-word using the
horizontal histogram method, they find segmentation points in
horizontal strokes that lie in the baseline strip. The baseline
strip is a horizontal region that extends above and below the
horizontal baseline of the word. The limitations of this
algorithm are already described in [6]. The most significant
limitation is the algorithm’s inability to handle sub-words with
slanted strokes, e.g., the word in Fig. 1(b). Moreover, the high
dependence on the baseline value is not safe in handwritings;
there exist many cases where the sub-word does not have a
consistent baseline.

Xiu et al. use the upper contour and the stroke width [7].
Local minima and regions of narrow strokes are initially
considered segmentation points. The algorithm first performs
over-segmentation then recognizes the produced graphemes.
The segmentation points are then modified based on the
grapheme pre-recognition results before producing the final
recognition output. The algorithm fails for cases like the cases
shown in Fig. 1(b) and 1(c).

Bentrcia and Elnagar use what they call agents to detect
segmentation points [8]. The baseline is one of these agents.
Other agents include cavities, loops, and the letter Seen. Some
of the limitations of this algorithm are already mentioned
in [8]. The algorithm conceptually works fine, but some
segmentation points are missed because of lack of agents near
them, and the detection of the agents is error prone because it is
highly dependent on the accuracy of the baseline detection.
Fig. 1(e) illustrates a case where the segmentation point is
missed because of lack of agents.

Wshah et al. use the skeleton and the boundary of the word
to do over/under segmentation [9]. The output of the algorithm
is graphemes that represent anything between one fifth of a
letter and three connected letters. The proposed segmentation
concept does not eliminate the need of using a lexicon because
the output of the algorithm contains combinations of up to
three letters. Moreover, the graphemes from over-segmentation
have unpredictable shapes, complicating the recognition engine
design. Fig. 1(f) is an example of the output of this algorithm.

Each box outlines one grapheme: the rightmost sub-word
which contains three letters is not segmented, and the final

Ghain (غ) is segmented into two graphemes.

Samoud et al. use the baseline detected using Hough
transform and the corners detected using Harris operator [10].
A corner point that is very close to the baseline (within 5
pixels) is considered a segmentation point. The first major
limitation of this algorithm is the high dependence on the
baseline. The second limitation is the low reliability of corner
detection. Hence, the algorithm performs over/under
segmentation in an unpredictable way.

Most of these algorithms ignore the treatment of secondary
bodies like dots and their association to their respective letters.
Thus, they produce a set of candidate segmentation points
rather than segmented letters.

In this paper, we present a segmentation algorithm that
avoids most of the above limitations. It segments a handwritten
Arabic word into a set of isolated graphemes and maps the
recognized graphemes into letters. Our segmentation algorithm
uses features solely extracted from the skeleton. We believe
that the skeleton contains enough and reliable information for
finding the correct segmentation points.

This paper is organized as follows: Section II describes our
segmentation and recognition approach, Section III presents
some experimental results obtained by running our system on
selected samples from the IFN/ENIT database [11], and
Section IV provides some conclusions and outlines our plans
for future work.

II. APPROACH

To save development time, we use the open-source
trainable OCR engine Tesseract for character recognition [12].
As this engine can recognize isolated characters only, we have
inserted our segmentation algorithm in this engine. Fig. 2
summarizes our approach for recognizing handwritten Arabic
text. This recognition process is carried out in three main
stages: (1) sub-word separation, (2) grapheme segmentation,
and (3) recognition and post-processing. Each stage consists of
two or three steps described in detail in the following
subsections.

The input image contains one line of text passed to our
routines from Tesseract after performing line segmentation and
preprocessing. Moreover, Tesseract’s character recognition
engine is used for grapheme recognition in the third stage.

A. Sub-word Separation

Sub-word separation is important because it simplifies the
segmentation process by removing any overlap between
adjacent sub-words and thus avoiding some segmentation
problems. More details about sub-word (or PAW – Part of
Arabic Word) can be found in [13]. As shown in Fig. 2, this
stage has two steps. The baseline is first estimated (shown as
light horizontal line) and main bodies and secondary bodies are
identified (secondary bodies are marked by boxes). Then the
main bodies of the sub-words are extracted and secondary
bodies are attached to their respective main bodies. The
following paragraphs explain these steps.

(e) (f)

(c) (d)

(a) (b)

To appear in 10th Int'l Conf. on Intelligent Systems Design and Applications (ISDA’10), 2010.

3

Figure 2. The proposed approach consists of three main stages

1) Baseline Estimation
We estimate the location of the script baseline to effectively

identify the secondary bodies as described in the following
paragraph. We use a simple yet adequate baseline estimation
method, the horizontal projection histogram. The row that
contains the maximum number of black pixels is considered
the baseline. More accurate and sophisticated baseline
estimation algorithms are discussed in [14].

2) Secondary Bodies Identification
The connected components analysis is used to identify the

components of the image and to identify the secondary bodies.
More than half the Arabic letters are composed of main body
and secondary components [15]. The secondary components
are letter components that are disconnected from the main body
such as dots and diacritics. The main bodies of one or more
adjacent letters can be connected in the cursive Arabic script to
comprise sub-words.

A body is classified secondary when one of the following
conditions applies: (1) it is very small compared to other bodies
in the same image, (2) it is relatively small and far from the
baseline, and (3) it is a vertical line and has a relatively large
body below it. The light grey bodies in Fig. 3(a) are examples
of identified secondary bodies. Furthermore, secondary bodies
that are close to each other and similar in size are considered
one secondary body group. This grouping is important in
grapheme separation as described in Subsection II.B.5.

Figure 3. (a) Secondary bodies identification; (b) Sub-words extraction

3) Sub-word Extraction and Secondary Bodies Assignment
Bodies that are not secondary bodies are main bodies of the

sub-words. Every sub-word is extracted with its secondary
bodies and passed to the next stages. Secondary bodies are
examined from right to left. For every secondary body, the
algorithm assigns it to the main body that is above its midpoint,
below its midpoint, above its left endpoint, below its left
endpoint, to its right, or the rightmost main body in the word
(first that applies). In Fig. 3(b), the upper word contains three
sub-words, and the lower word contains four sub-words. Note
that the overlap between some of the adjacent sub-words in
Fig. 3(a) is eliminated.

B. Segmentation

In this stage, sub-words are segmented to graphemes and
passed to the recognition stage. Passing graphemes to the
recognition engine instead of passing letters is done to tolerate
over-segmentation of complex letters and under-segmentation
of vertical ligatures. In Fig. 2, the rightmost letter (initial Seen

 is over-segmented to three graphemes and then ((س)
successfully reconstructed in the post processing step. The
segmentation algorithm would be much more complex if it
must produce individual letters [16]. The graphemes to
characters algorithm described in Subsection II.C.2 takes care
of mapping graphemes into individual characters. Our
segmentation algorithm uses morphological features extracted
from the skeleton of the sub-words as described below.

1) Thinning and Feature Points Identification
We temporarily remove the secondary bodies before using

Deutsch's thinning algorithm to get the skeleton of the sub-
word’s main body [17]. Feature points identified from the
skeleton include end points, branch points, and cross points.
Feature points are identified by examining the eight neighbors
of every skeleton pixel. An end point has one black neighbor, a
branch point has three, and a cross point has four (see Fig. 4).

2) Continuities Identification
Continuity is a continuous string of black pixels in the

skeleton that connects two feature points. If the starting point is
the ending point then the continuity is a simple loop. Fig. 5
shows a sub-word composed of three continuities. The
attributes kept for each continuity include its pixels and the
features at its ends.

s1 s2 s3

s1 s2 s3 s4
(a) (b)

Baseline and

Secondary Bodies

Identification

laE_keMllL_baB_waE_baB_yaP_hhA_daE_yaM_snM_snM_snB

Sub-word Extraction

and Secondary Bodies

Assignment

Thinning and Feature

Points Identification

Segmentation and

Grapheme Separation

Grapheme Recognition

Grapheme to

Characters

Word Matching

(Dictionary)

Output Text

Input Image

S
u

b
-w

o
rd

s

S
e

p
a

ra
ti

o
n

S
e

g
m

e
n

ta
ti

o
n

R
e

c
o

g
n

it
io

n
 a

n
d

P
o

s
t-

p
ro

c
e

s
s

in
g

To appear in 10th Int'l Conf. on Intelligent Systems Design and Applications (ISDA’10), 2010.

4

Figure 4. Sample feature points identified on a word’s skeleton

Figure 5. Continuity Examples

3) Subtle Branch Points and Edge Point Detection
Subtle branch points are branch points that are lost through

thinning. An example is shown in Fig. 6. They are extracted by
searching the skeleton for local maxima within a window of
size proportional to the average stroke width.

Figure 6. Subtle branch point

Edge points are points where the direction of the stroke
changes and are detected using the polygonal approximation of
the skeleton. Each vertex in the polygon that is not an end
point, cross point, nor branch point is considered an edge point.
Note the example in Fig. 7 that has two edge points. Each edge
point has two parameters: the edge angle (EA) which is a
measure of the edge type and the bisector angle (BA) which is
a measure of the edge direction. The edge angle is the angle
between the two lines that make the edge point. The bisector
angle is the angle between the bisector line of the edge and the
horizontal line. Edge angles have values between 0º and 180º
and bisector angles have values between 0º and ±180º.

Edge points that have large edge angles and bisector angles
close to 90º or -90º are ignored because they are usually local
minima or maxima. From now on, we call subtle branch points
and edge points feature points in addition to the previous three
simple feature points. Once these two feature points are
detected, a continuity that contains these points is split into as
many new continuities as needed. At the end of this step, we

get a list of continuities that each has two ends. The orientation
of the continuity and the attributes of its ends are used to
extract the segmentation points as explained in the following
subsection.

Figure 7. Polygonal approximation with two edge points

4) Segmentation Rules
Continuities that have the following properties are

segmented. In Fig. 8, continuities that have these properties are
marked with the letter C and continuities that don’t have any of
these properties are marked with the letter N and not
segmented:

 Not vertical: the orientation of the continuity should

be between -45º and +45º. In Fig. 8, the continuities

C1 through C11 have this property, while N1

doesn’t.
 If the right end is an edge, its bisector angle should

be between 45º and -135º, as in C1, C3, C4, and C11.

 The left end is not an end point. For violating this

property, continuities N3, N4, and N5 are not

segmented.

 If the left end is an edge, its bisector angle should be

between -155º and 65º, as in C3 and C10.

 It is not totally covered from above or from below

except in cases like C2 and C4 where there is

clearance in the upper-left direction or lower-right

direction, respectively. This property avoids

segmenting loops and other cases as in N2 and N6.
The angles in the above rules are selected according to the

shapes of Arabic letters that have edges in different
configurations. For example, the sub-word (نا) contains two
letters: the right letter is initial Noon (ن) that has an edge with
bisector angle of 135º, and the left letter is final Alef (ا) that has
an edge with bisector angle of 45º. The continuity connecting
the two edges is horizontal. The angle ranges we have selected
cover the various cases of letter configurations. The
continuities that have the above properties are then examined to
select the exact cut position.

EA2 EA1

BA2
BA1

EA: Edge Angle

BA: Bisector Angle

C1

C2

C3

Branch points Cross point

End points

To appear in 10th Int'l Conf. on Intelligent Systems Design and Applications (ISDA’10), 2010.

5

Figure 8. Segmentation examples

We search for the cut location starting after the first left
forth of the continuity. The first point in a horizontal small
segment of the continuity is the cut point. If the cut point
happens to cut a letter (by inspecting the stroke width at this
point), the cut point is shifted to the point where the stroke
width is minimum. If the continuity has no horizontal
segments, its midpoint is selected as the cut point. This cut
point selection method enhances the accuracy of secondary
bodies assignment.

In the segmentation rules described above, we included the
rules for the angle points to avoid unpredictable over-
segmentation. Using these rules, a single letter’s segments are
narrowed and thus the resulting graphemes are identified.

5) Grapheme Separation
In this step, the secondary bodies are reassigned to the new

main bodies of the graphemes. The same assignment algorithm
used in Subsection II.A.3 is used here also. Note that we assign
an entire secondary body group to one grapheme because these
secondary bodies usually belong to the same letter and we want
to avoid distributing them over multiple letters. In Fig. 2, note

that the two dots of the second letter from right, the medial Yeh

 .is separated as one grapheme along with its two dots ,(ي)

C. Recognition and Post-processing

In this stage, the extracted graphemes are recognized and
mapped to letters and words. Our set of graphemes includes the
graphemes of the four forms of the Arabic letters (isolated,
initial, medial, and final), graphemes of over-segmented letters
(shown in Table I), and graphemes of the vertical ligatures.

TABLE I. GRAPHEMES OF OVER-SEGMENTED LETTERS

1) Grapheme Recognition
We use Tesseract to recognize the extracted graphemes

[12]. This is possible because Tesseract has training features.
To train Tesseract on these graphemes, we segment the training
words using our segmentation algorithm described above,
specify the code of each segmented grapheme, and run
Tesseract training programs. We use grapheme codes similar to
the grapheme codes used in the IFN/ENIT database [11]. Fig. 2
shows that the output of the grapheme recognition step is 12
grapheme codes.

2) Graphemes to Characters
Graphemes are mapped to characters using a table of the

possible grapheme combinations that produce every character.
Each combination has a weight value. The grapheme
combination that has one grapheme has low weight. This
compels a grapheme to be combined with adjacent graphemes,
if possible. The maximum number of graphemes that produce
one character is four. The algorithm maps the graphemes of
every word to characters sequentially. For each grapheme, the
algorithm checks for the existence of combinations made up of
1, 2, 3, or 4 graphemes in the mapping table that include this
grapheme. And then it maps these combinations to the
corresponding characters with their weights. Finally, the
characters of the highest weight are chosen to form the word.

3) Word Matching
This step is used to improve the recognition accuracy when

the number of words is limited. Generic spell-checking engines
find the closest match to an erroneous word from a list of
possible words. Closest words are found through letter
additions, deletions, and replacements and validating the
speculated words in the list. A distance function is used to
measure the degree of similarity between the word and valid
speculated words. The speculated word that has the smallest
distance is chosen as the correct word [18]. We use Hunspell
implementation of this algorithm for its neat programming
interface and its ability to give each character a set of preferred

EP

BA ~ 0◦

BA ~ 60◦ BA ~ 180◦

CP

BA ~

135◦ EP

BA ~

135◦

EP

CP

BA ~ -30◦

BA ~ 135◦

BP BP

SBP

BP BP
BP

BA ~ 225◦

EP: End Point | BP: Branch Point | CP: Cross Point
SBP: Subtle Branch Point | BA: Bisector Angle of the edge point

C4
C5 C6 C7 C8 C9

C3

N5

C1

N2

N1

N3

BP CP BA ~

135◦
BA ~

45◦

N6

EP

BA ~ -45◦

C10 C11

EP

BP

BP
BP

 C2

N4

BA~

135◦

To appear in 10th Int'l Conf. on Intelligent Systems Design and Applications (ISDA’10), 2010.

6

replacement candidates [19]. This is very useful in Arabic OCR
because we can easily suggest good replacement candidates for
characters that are likely to be incorrectly recognized. For

example, the final Reh (ر) is often written similar to the final

Lam (ل) and thus is often miss recognized. The spell-checking
engine can solve such problems as shown for the leftmost
underscored letter in Fig. 2.

III. RESULTS

We evaluated our approach using 107 samples from the
IFN/ENIT database of two writers. Table II summarizes the
results obtained. Through inspection, we found that the
segmentation algorithm produces the expected graphemes
accurately. More than 96% of the samples are correctly
segmented, only one sample is under segmented, and three
samples suffer over segmentation. For the under-segmented
sample, the algorithm doesn’t segment two horizontally
adjacent letters. The over-segmented samples have letters that
are over segmented beyond the expected segmentation
described in Subsection II.C.

TABLE II. SUMMARY OF RESULTS

Measure Count Percentage

Total words 107 100%

Under-segmented words 1 1%
Over-segmented words 3 3%

Total characters 882 100%

Characters correctly recognized 763 86.5%
Words correctly recognized 101 94%

To evaluate the recognition accuracy, we randomly selected
96 samples out of the 107 samples to train Tesseract’s
recognition engine. About 87% of the 882 characters included
in the 107 samples are correctly recognized through the
recognition engine and the grapheme to character mapping
step. The recognition accuracy is further improved through the
word matching step to more than 94% of the words. Note that
the size of the IFN/ENIT corpus is 937 words.

However, when we increase the number of writers and the
number of training samples, the accuracy of the recognition
engine severely drops to low levels. As Tesseract is designed
for recognizing printed text, it seems that it is unsuitable for
recognizing handwritten shapes of high variability.

IV. CONCLUSIONS

We have built a system for recognizing handwritten Arabic
script using efficient skeleton-based grapheme segmentation
algorithm. By modifying an open-source OCR system, we
were able to evaluate the accuracy of this segmentation
algorithm. Our preliminary results are encouraging showing
segmentation accuracies above 96% and competitive to the
state-of-the-art work. We believe that this algorithm solves
problems found in other algorithms such as baseline estimation
accuracy, pitted and slanted strokes, and subtle and long letter
connections.

Since the used OCR system doesn’t give good results for
large number of writers, we plan to drop this system and use

other feature extraction and grapheme classification techniques
that are more suitable for handwritten Arabic script.

REFERENCES

[1] M. Khorsheed, “Off-line Arabic character recognition - a review,”
Pattern Analysis and Applications, vol.5, no.1, pp. 31–45, 2002.

[2] V. Märgner, and H. El Abed, “ICDAR 2009 Arabic handwriting
recognition competition,” Proc. 10th Int’l Conf. on Document Analysis
and Recognition (ICDAR'09), Catalonia, Spain, 2009, pp. 1383–1387.

[3] D. Motawa, A. Amin, and R. Sabourin, “Segmentation of Arabic cursive
script,” Proc. 4th Int’l Conf. on Document Analysis and Recognition
(ICDAR'97), Ulm, Germany, 1997, pp. 625–628.

[4] M. Mansour, M. Benkhadda, and A. Benyettou, “Optimized
segmentation techniques for Arabic handwritten numeral character
recognition,” Proc. 1st Int’l Conf. on Signal-Image Technology and
Internet-based Systems (SITIS’05), Yaoundé, Cameroon, 2005, pp. 96–
102.

[5] T. Sari, L. Souici, and M. Sellami, “Off-line handwritten Arabic
character segmentation algorithm: ACSA,” Proc. 8th Int’l Workshop on
Frontiers in Handwriting Recognition (IWFHR'02), Ontario, Canada,
2002, pp. 452–457.

[6] L. Lorigo, and V. Govindaraju, “Segmentation and pre-recognition of
Arabic handwriting,” Proc. 8th Int’l Conf. on Document Analysis and
Recognition (ICDAR'05), Seoul, Korea, 2005, pp. 605–609.

[7] P. Xiu, L. Peng, and X. Ding, “Multi-queue merging scheme and its
application in Arabic script augmentation,” 2nd Int’l Conf. on Document
Image Analysis for Libraries (DIAL'06), Lyon, France, 2006, pp. 24–29.

[8] R. Bentrcia and A. Elnagar, “Handwriting segmentation of Arabic text,”
Proc. 5th IASTED Int’l Conf. on Signal Processing, Pattern Recognition,
and Applications, Innsbruck, Austria, 2008, pp. 122–127.

[9] S. Wshah, Z. Shi, and V. Govindaraju, “Segmentation of Arabic
handwriting based on both contour and skeleton segmentation,” Proc.
10th Int’l Conf. on Document Analysis and Recognition (ICDAR'09),
Catalonia, Spain, 2009, pp. 793–797.

[10] F. B. Samoud, S. S. Maddouri, and N. Ellouze, “A hybrid method for
three segmentation level of handwritten Arabic script,” Proc. Int’l
Workshop on Multilingual OCR (MOCR'09), Barcelona, Spain, 2009,
pp. 1–6.

[11] M. Pechwitz, S. Snoussi Maddouri, V. Märgner, N. Ellouze, and H.
Amiri, “IFN/ENIT-database of handwritten Arabic words,” Proc. 7th
Colloque Int’l Francophone sur l'Ecrit et le Document, (CIFED’02),
Hammamet, Tunis, 2002, pp. 129–136.

[12] R. Smith, “An overview of the Tesseract OCR engine,” Proc. 9th Int’l
Conf. on Document Analysis and Recognition (ICDAR’07), Parana,
Brazil, 2007, pp. 629–633.

[13] A. AbdulKader, “Two-tier approach for Arabic offline handwriting
recognition,” Proc. 10th Int’l Workshop on Frontiers in Handwriting
Recognition, La Baule, France, 2006, pp. 161–166.

[14] S. S. Maddouri, F. B. Samoud, K. Bouriel, N. Ellouze, and H. El Abed,
“Baseline extraction: comparison of six methods on IFN/ENIT
database,” Proc. 11th Int’l Conf. on Frontiers in Handwriting
Recognition (ICFHR’08), Montréal, Québec, Canada, 2008.

[15] G. Abandah, and M. Khedher, “Analysis of handwritten Arabic letters
using selected feature extraction techniques,” Int’l Journal of Computer
Processing of Languages (IJCPOL), vol. 18, no.1, pp. 49–73, 2009.

[16] F. Menasri, N. Vincent, M. Cheriet, and E. Augustin, “Shape-based
alphabet for off-line Arabic handwriting recognition,” Proc. 9th Int’l
Conf. on Document Analysis and Recognition (ICDAR’07), Parana,
Brazil, 2007, pp. 69–73.

[17] E. S. Deutsch, “Thinning algorithms on rectangular, hexagonal, and
triangular arrays,” Communications of the ACM, vol. 15, no. 9, pp.
827–837, 1972.

[18] V. J. Hodge, and J. Austin, “A comparison of standard spell checking
algorithms and a novel binary neural approach,” IEEE Trans. on
Knowledge and Data Engineering, vol. 15, no. 5, pp. 1073-1081, 2003.

[19] Hunspell Official Website, http://hunspell.sourceforge.net.

