
To appear in 10th Int'l Conf. on Intelligent Systems Design and Applications (ISDA’10), 2010. 

1 

 

Recognizing Handwritten Arabic Script through 

Efficient Skeleton-Based Grapheme Segmentation 

Algorithm 
 

Gheith A. Abandah, Fuad T. Jamour 

Computer Engineering Department  

The University of Jordan 

Amman 11942, Jordan  

abandah@ju.edu.jo, fjamour@gmail.com 

 

 
Abstract—To recognize unlimited set of handwritten Arabic 

words, an efficient segmentation algorithm is needed to segment 

these cursive words into a limited set of primal graphemes. We 

propose a rule-based segmentation algorithm that segments 

cursive words into graphemes through collecting special feature 

points from the word skeleton. The development of this algorithm 

is motivated by the need to solve problems and limitations 

available in the state-of-the-art algorithms in this area. The 

preliminary evaluation of the proposed algorithm is promising 

with over 96% accuracy on a sample subset of the IFN/ENIT 

database. 
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I.  INTRODUCTION 

The recognition of handwritten scripts is a challenging task 
particularly due to high variability in letter shapes. The 
challenge with the Arabic scripts is even larger because Arabic 
is always cursive. If Arabic words are to be recognized with no 
explicit segmentation, the number of recognition classes 
becomes equal to the number of possible words, which is 
overly huge. A more practical approach is to segment Arabic 
words into letters then to recognize the segmented letters. This 
approach works well with printed words because segmenting 
printed Arabic words is relatively easy. Earlier researchers 
have develop accurate systems for recognizing printed Arabic 
text and some commercial products are available [1]. 

However, segmenting handwritten Arabic words is not as 
easy. Handwritten words lack the uniformity needed to detect 
invariant features for pinpointing the segmentation points. 
Most of the successful handwritten Arabic recognition engines 
use holistic approaches that recognize whole words without 
segmenting them to letters [2]. Such approach is successful 
with limited lexicon, thus, it is not a general solution. 

We believe that building a practical, unlimited lexicon 
recognition system for handwritten Arabic script requires 
robust letter segmentation algorithm. We have studied several 
existing segmentation algorithms and noticed their strengths 
and limitations. In the following subsection, we briefly 
describe eight of the leading algorithms, state their major 
limitations, and provide some examples where they fail. 

A. Letter Segmentation Algorithms Review 

Motawa et al. use mathematical morphology to detect what 
they call regularities [3]. The segmentation points are then 
located within these regularities using certain rules. These 
regularities are stroke segments that each connects two vertical 
strokes. Their algorithm depends on the length and orientation 
of the regularity, stroke width, baseline, and some logical rules. 
The regularities should be horizontal and close to the baseline 
in order to be considered. Short regularities might have one 
segmentation point while long regularities might have two with 
no clear guidelines how exactly to locate these points. We 
believe that the features used in this algorithm are unreliable. 
The lengths of various handwritten strokes are misleading for 
segmentation and the baseline does not necessarily pass 
through all the segmentation points. The word in Figure 1(a) 
illustrates three limitations of this algorithm, the rightmost 
regularity is not segmented because it is not horizontal, the 
leftmost long regularity is over segmented in two segmentation 

points instead of one, and the medial Seen (س) is also over 
segmented with no special treatment.  

Mansour et al. use the stroke width to locate segmentation 
points [4]. A location where the stroke width is narrower than 
the average stroke width is considered a segmentation point. 
This approach does not give accurate results. The stroke width 
is not a good indicator of the existence of a segmentation point. 
The leftmost box in Fig. 1(b) contains a stroke with a pit that 

gives a false segmentation of the isolated letter Theh (ث). On 
the other hand, the rightmost box contains a constant-width 

stroke where the segmentation point between initial Meem (م) 

and final Alef (ا) is missed. 

Sari et al. use local minima detected on the lower contour 
of the word [5]. A local minimum that fulfills some rules is 
considered a segmentation point. Though the stated rules are 
powerful and cover many cases, the proposed approach does 
not perform well on handwritings because many sub-words 
containing segmentation points do not have local minima. For 
example, the sub-word in the leftmost box of Fig. 1(c) does not 
have a local minimum. And on the other hand, the rightmost 

box that has the isolated Yeh (ي) is an example of a letter that 
is falsely segmented because it has a local minimum. 

This work is supported by the Deanship of Academic Research, The 
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Figure 1. Example samples that suffer bad segmentation in previous work 

Lorigo and Govindaraju get the baseline from the truth 
information of the word database they use, IFN/ENIT [6]. 
After they refine the baseline for each sub-word using the 
horizontal histogram method, they find segmentation points in 
horizontal strokes that lie in the baseline strip. The baseline 
strip is a horizontal region that extends above and below the 
horizontal baseline of the word. The limitations of this 
algorithm are already described in [6]. The most significant 
limitation is the algorithm’s inability to handle sub-words with 
slanted strokes, e.g., the word in Fig. 1(b). Moreover, the high 
dependence on the baseline value is not safe in handwritings; 
there exist many cases where the sub-word does not have a 
consistent baseline. 

Xiu et al. use the upper contour and the stroke width [7]. 
Local minima and regions of narrow strokes are initially 
considered segmentation points. The algorithm first performs 
over-segmentation then recognizes the produced graphemes. 
The segmentation points are then modified based on the 
grapheme pre-recognition results before producing the final 
recognition output. The algorithm fails for cases like the cases 
shown in Fig. 1(b) and 1(c). 

Bentrcia and Elnagar use what they call agents to detect 
segmentation points [8]. The baseline is one of these agents. 
Other agents include cavities, loops, and the letter Seen. Some 
of the limitations of this algorithm are already mentioned 
in [8]. The algorithm conceptually works fine, but some 
segmentation points are missed because of lack of agents near 
them, and the detection of the agents is error prone because it is 
highly dependent on the accuracy of the baseline detection. 
Fig. 1(e) illustrates a case where the segmentation point is 
missed because of lack of agents. 

Wshah et al. use the skeleton and the boundary of the word 
to do over/under segmentation [9]. The output of the algorithm 
is graphemes that represent anything between one fifth of a 
letter and three connected letters. The proposed segmentation 
concept does not eliminate the need of using a lexicon because 
the output of the algorithm contains combinations of up to 
three letters. Moreover, the graphemes from over-segmentation 
have unpredictable shapes, complicating the recognition engine 
design. Fig. 1(f) is an example of the output of this algorithm. 

Each box outlines one grapheme: the rightmost sub-word 
which contains three letters is not segmented, and the final 

Ghain (غ) is segmented into two graphemes. 

Samoud et al. use the baseline detected using Hough 
transform and the corners detected using Harris operator [10]. 
A corner point that is very close to the baseline (within 5 
pixels) is considered a segmentation point. The first major 
limitation of this algorithm is the high dependence on the 
baseline. The second limitation is the low reliability of corner 
detection. Hence, the algorithm performs over/under 
segmentation in an unpredictable way. 

Most of these algorithms ignore the treatment of secondary 
bodies like dots and their association to their respective letters. 
Thus, they produce a set of candidate segmentation points 
rather than segmented letters. 

In this paper, we present a segmentation algorithm that 
avoids most of the above limitations. It segments a handwritten 
Arabic word into a set of isolated graphemes and maps the 
recognized graphemes into letters. Our segmentation algorithm 
uses features solely extracted from the skeleton. We believe 
that the skeleton contains enough and reliable information for 
finding the correct segmentation points. 

This paper is organized as follows: Section II describes our 
segmentation and recognition approach, Section III presents 
some experimental results obtained by running our system on 
selected samples from the IFN/ENIT database [11], and 
Section IV provides some conclusions and outlines our plans 
for future work. 

II. APPROACH 

To save development time, we use the open-source 
trainable OCR engine Tesseract for character recognition [12]. 
As this engine can recognize isolated characters only, we have 
inserted our segmentation algorithm in this engine. Fig. 2 
summarizes our approach for recognizing handwritten Arabic 
text. This recognition process is carried out in three main 
stages: (1) sub-word separation, (2) grapheme segmentation, 
and (3) recognition and post-processing. Each stage consists of 
two or three steps described in detail in the following 
subsections. 

The input image contains one line of text passed to our 
routines from Tesseract after performing line segmentation and 
preprocessing. Moreover, Tesseract’s character recognition 
engine is used for grapheme recognition in the third stage. 

A. Sub-word Separation 

Sub-word separation is important because it simplifies the 
segmentation process by removing any overlap between 
adjacent sub-words and thus avoiding some segmentation 
problems. More details about sub-word (or PAW – Part of 
Arabic Word) can be found in [13]. As shown in Fig. 2, this 
stage has two steps. The baseline is first estimated (shown as 
light horizontal line) and main bodies and secondary bodies are 
identified (secondary bodies are marked by boxes). Then the 
main bodies of the sub-words are extracted and secondary 
bodies are attached to their respective main bodies. The 
following paragraphs explain these steps.  

(e) (f) 

(c) (d) 

(a) (b) 
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Figure 2. The proposed approach consists of three main stages 

1) Baseline Estimation 
We estimate the location of the script baseline to effectively 

identify the secondary bodies as described in the following 
paragraph. We use a simple yet adequate baseline estimation 
method, the horizontal projection histogram. The row that 
contains the maximum number of black pixels is considered 
the baseline. More accurate and sophisticated baseline 
estimation algorithms are discussed in [14]. 

2) Secondary Bodies Identification 
The connected components analysis is used to identify the 

components of the image and to identify the secondary bodies. 
More than half the Arabic letters are composed of main body 
and secondary components [15]. The secondary components 
are letter components that are disconnected from the main body 
such as dots and diacritics. The main bodies of one or more 
adjacent letters can be connected in the cursive Arabic script to 
comprise sub-words. 

A body is classified secondary when one of the following 
conditions applies: (1) it is very small compared to other bodies 
in the same image, (2) it is relatively small and far from the 
baseline, and (3) it is a vertical line and has a relatively large 
body below it. The light grey bodies in Fig. 3(a) are examples 
of identified secondary bodies. Furthermore, secondary bodies 
that are close to each other and similar in size are considered 
one secondary body group. This grouping is important in 
grapheme separation as described in Subsection II.B.5. 

Figure 3. (a) Secondary bodies identification; (b) Sub-words extraction 

3) Sub-word Extraction and Secondary Bodies Assignment 
Bodies that are not secondary bodies are main bodies of the 

sub-words. Every sub-word is extracted with its secondary 
bodies and passed to the next stages. Secondary bodies are 
examined from right to left. For every secondary body, the 
algorithm assigns it to the main body that is above its midpoint, 
below its midpoint, above its left endpoint, below its left 
endpoint, to its right, or the rightmost main body in the word 
(first that applies). In Fig. 3(b), the upper word contains three 
sub-words, and the lower word contains four sub-words. Note 
that the overlap between some of the adjacent sub-words in 
Fig. 3(a) is eliminated. 

B. Segmentation 

In this stage, sub-words are segmented to graphemes and 
passed to the recognition stage. Passing graphemes to the 
recognition engine instead of passing letters is done to tolerate 
over-segmentation of complex letters and under-segmentation 
of vertical ligatures. In Fig. 2, the rightmost letter (initial Seen 

 is over-segmented to three graphemes and then ((س)
successfully reconstructed in the post processing step. The 
segmentation algorithm would be much more complex if it 
must produce individual letters [16]. The graphemes to 
characters algorithm described in Subsection II.C.2 takes care 
of mapping graphemes into individual characters. Our 
segmentation algorithm uses morphological features extracted 
from the skeleton of the sub-words as described below.  

1) Thinning and Feature Points Identification 
We temporarily remove the secondary bodies before using 

Deutsch's thinning algorithm to get the skeleton of the sub-
word’s main body [17]. Feature points identified from the 
skeleton include end points, branch points, and cross points. 
Feature points are identified by examining the eight neighbors 
of every skeleton pixel. An end point has one black neighbor, a 
branch point has three, and a cross point has four (see Fig. 4).  

2) Continuities Identification 
Continuity is a continuous string of black pixels in the 

skeleton that connects two feature points. If the starting point is 
the ending point then the continuity is a simple loop. Fig. 5 
shows a sub-word composed of three continuities. The 
attributes kept for each continuity include its pixels and the 
features at its ends. 
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Figure 4. Sample feature points identified on a word’s skeleton 

Figure 5. Continuity Examples 

3) Subtle Branch Points and Edge Point Detection 
Subtle branch points are branch points that are lost through 

thinning. An example is shown in Fig. 6. They are extracted by 
searching the skeleton for local maxima within a window of 
size proportional to the average stroke width. 

Figure 6. Subtle branch point 

Edge points are points where the direction of the stroke 
changes and are detected using the polygonal approximation of 
the skeleton. Each vertex in the polygon that is not an end 
point, cross point, nor branch point is considered an edge point. 
Note the example in Fig. 7 that has two edge points. Each edge 
point has two parameters: the edge angle (EA) which is a 
measure of the edge type and the bisector angle (BA) which is 
a measure of the edge direction. The edge angle is the angle 
between the two lines that make the edge point. The bisector 
angle is the angle between the bisector line of the edge and the 
horizontal line. Edge angles have values between 0º and 180º 
and bisector angles have values between 0º and ±180º. 

Edge points that have large edge angles and bisector angles 
close to 90º or -90º are ignored because they are usually local 
minima or maxima. From now on, we call subtle branch points 
and edge points feature points in addition to the previous three 
simple feature points. Once these two feature points are 
detected, a continuity that contains these points is split into as 
many new continuities as needed. At the end of this step, we 

get a list of continuities that each has two ends. The orientation 
of the continuity and the attributes of its ends are used to 
extract the segmentation points as explained in the following 
subsection. 

Figure 7. Polygonal approximation with two edge points 

4) Segmentation Rules 
Continuities that have the following properties are 

segmented. In Fig. 8, continuities that have these properties are 
marked with the letter C and continuities that don’t have any of 
these properties are marked with the letter N and not 
segmented: 

 Not vertical: the orientation of the continuity should 

be between -45º and +45º. In Fig. 8, the continuities 

C1 through C11 have this property, while N1 

doesn’t. 
 If the right end is an edge, its bisector angle should 

be between 45º and -135º, as in C1, C3, C4, and C11. 

 The left end is not an end point. For violating this 

property, continuities N3, N4, and N5 are not 

segmented. 

 If the left end is an edge, its bisector angle should be 

between -155º and 65º, as in C3 and C10. 

 It is not totally covered from above or from below 

except in cases like C2 and C4 where there is 

clearance in the upper-left direction or lower-right 

direction, respectively. This property avoids 

segmenting loops and other cases as in N2 and N6. 
The angles in the above rules are selected according to the 

shapes of Arabic letters that have edges in different 
configurations. For example, the sub-word (نا) contains two 
letters: the right letter is initial Noon (ن) that has an edge with 
bisector angle of 135º, and the left letter is final Alef (ا) that has 
an edge with bisector angle of 45º. The continuity connecting 
the two edges is horizontal. The angle ranges we have selected 
cover the various cases of letter configurations. The 
continuities that have the above properties are then examined to 
select the exact cut position. 

EA2 EA1 

BA2 
BA1 

EA: Edge Angle 

BA: Bisector Angle 

C1 

C2 

C3 

Branch points Cross point 

End points 
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Figure 8. Segmentation examples 

We search for the cut location starting after the first left 
forth of the continuity. The first point in a horizontal small 
segment of the continuity is the cut point. If the cut point 
happens to cut a letter (by inspecting the stroke width at this 
point), the cut point is shifted to the point where the stroke 
width is minimum. If the continuity has no horizontal 
segments, its midpoint is selected as the cut point. This cut 
point selection method enhances the accuracy of secondary 
bodies assignment. 

In the segmentation rules described above, we included the 
rules for the angle points to avoid unpredictable over-
segmentation. Using these rules, a single letter’s segments are 
narrowed and thus the resulting graphemes are identified. 

5) Grapheme Separation 
In this step, the secondary bodies are reassigned to the new 

main bodies of the graphemes. The same assignment algorithm 
used in Subsection II.A.3 is used here also. Note that we assign 
an entire secondary body group to one grapheme because these 
secondary bodies usually belong to the same letter and we want 
to avoid distributing them over multiple letters. In Fig. 2, note 

that the two dots of the second letter from right, the medial Yeh 

 .is separated as one grapheme along with its two dots ,(ي)

C. Recognition and Post-processing 

In this stage, the extracted graphemes are recognized and 
mapped to letters and words. Our set of graphemes includes the 
graphemes of the four forms of the Arabic letters (isolated, 
initial, medial, and final), graphemes of over-segmented letters 
(shown in Table I), and graphemes of the vertical ligatures. 

TABLE I.  GRAPHEMES OF OVER-SEGMENTED LETTERS 

    

    

 
   

   
 

 

1) Grapheme Recognition 
We use Tesseract to recognize the extracted graphemes 

[12]. This is possible because Tesseract has training features. 
To train Tesseract on these graphemes, we segment the training 
words using our segmentation algorithm described above, 
specify the code of each segmented grapheme, and run 
Tesseract training programs. We use grapheme codes similar to 
the grapheme codes used in the IFN/ENIT database [11]. Fig. 2 
shows that the output of the grapheme recognition step is 12 
grapheme codes. 

2) Graphemes to Characters 
Graphemes are mapped to characters using a table of the 

possible grapheme combinations that produce every character. 
Each combination has a weight value. The grapheme 
combination that has one grapheme has low weight. This 
compels a grapheme to be combined with adjacent graphemes, 
if possible. The maximum number of graphemes that produce 
one character is four. The algorithm maps the graphemes of 
every word to characters sequentially. For each grapheme, the 
algorithm checks for the existence of combinations made up of 
1, 2, 3, or 4 graphemes in the mapping table that include this 
grapheme. And then it maps these combinations to the 
corresponding characters with their weights. Finally, the 
characters of the highest weight are chosen to form the word. 

3) Word Matching  
This step is used to improve the recognition accuracy when 

the number of words is limited. Generic spell-checking engines 
find the closest match to an erroneous word from a list of 
possible words. Closest words are found through letter 
additions, deletions, and replacements and validating the 
speculated words in the list. A distance function is used to 
measure the degree of similarity between the word and valid 
speculated words. The speculated word that has the smallest 
distance is chosen as the correct word [18]. We use Hunspell 
implementation of this algorithm for its neat programming 
interface and its ability to give each character a set of preferred 
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replacement candidates [19]. This is very useful in Arabic OCR 
because we can easily suggest good replacement candidates for 
characters that are likely to be incorrectly recognized. For 

example, the final Reh (ر) is often written similar to the final 

Lam (ل) and thus is often miss recognized. The spell-checking 
engine can solve such problems as shown for the leftmost 
underscored letter in Fig. 2. 

III. RESULTS 

We evaluated our approach using 107 samples from the 
IFN/ENIT database of two writers. Table II summarizes the 
results obtained. Through inspection, we found that the 
segmentation algorithm produces the expected graphemes 
accurately. More than 96% of the samples are correctly 
segmented, only one sample is under segmented, and three 
samples suffer over segmentation. For the under-segmented 
sample, the algorithm doesn’t segment two horizontally 
adjacent letters. The over-segmented samples have letters that 
are over segmented beyond the expected segmentation 
described in Subsection II.C. 

TABLE II.  SUMMARY OF RESULTS 

Measure Count Percentage 

Total words 107 100% 

Under-segmented words 1 1% 
Over-segmented words 3 3% 

Total characters 882 100% 

Characters correctly recognized 763 86.5% 
Words correctly recognized 101 94% 

 

To evaluate the recognition accuracy, we randomly selected 
96 samples out of the 107 samples to train Tesseract’s 
recognition engine. About 87% of the 882 characters included 
in the 107 samples are correctly recognized through the 
recognition engine and the grapheme to character mapping 
step. The recognition accuracy is further improved through the 
word matching step to more than 94% of the words. Note that 
the size of the IFN/ENIT corpus is 937 words. 

However, when we increase the number of writers and the 
number of training samples, the accuracy of the recognition 
engine severely drops to low levels. As Tesseract is designed 
for recognizing printed text, it seems that it is unsuitable for 
recognizing handwritten shapes of high variability. 

IV. CONCLUSIONS 

We have built a system for recognizing handwritten Arabic 
script using efficient skeleton-based grapheme segmentation 
algorithm. By modifying an open-source OCR system, we 
were able to evaluate the accuracy of this segmentation 
algorithm. Our preliminary results are encouraging showing 
segmentation accuracies above 96% and competitive to the 
state-of-the-art work. We believe that this algorithm solves 
problems found in other algorithms such as baseline estimation 
accuracy, pitted and slanted strokes, and subtle and long letter 
connections. 

Since the used OCR system doesn’t give good results for 
large number of writers, we plan to drop this system and use 

other feature extraction and grapheme classification techniques 
that are more suitable for handwritten Arabic script. 
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