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Abstract  There are many feature extraction methods for handwritten letters. These methods provide large sets 

of features that include redundant and irrelevant features. Feature selection is needed to select a subset of 

features that gives good recognition accuracy and has low computational overhead. We use feature selection 

techniques to evaluate a large set of features extracted from handwritten Arabic letters. We extract 96 features 

from the letter’s secondary components, main body, skeleton, and boundary. These features are evaluated and 

best subsets of varying sizes are selected using five feature selection techniques.  These techniques vary in 

complexity from selecting best individual features, through sequential forward selection, to evolutionary 

optimization algorithm. The best subsets of selected features include secondary components features, letter 

form, low-order elliptic Fourier descriptors, moments, size features, and features extracted from the boundary. 

We use three popular classifiers to evaluate the subsets selected by the five selection techniques and to find the 

recognition accuracy as a function of the feature subset size. The evolutionary algorithm has the highest time 

complexity but it selects feature subsets that give the highest recognition accuracies. In most cases, feature 

subset sizes of about 20 features achieve best recognition accuracy. 
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1  Introduction 

Recognition of handwritten cursive text such as Arabic text is an active research problem 

(Arica, 2002), (Lorigo, 2006). Offline recognition of unconstrained handwritten cursive text 

images must overcome many difficulties such as unlimited variation in human handwriting, 

similarities of distinct character shapes, character overlaps, and interconnections of 

neighboring characters. Although offline systems are less accurate than online systems that 

use touch screens or electronic pens, they are now good enough for specialized systems such 

as interpreting Latin handwritten postal addresses on envelopes and reading currency 

amounts on bank checks. Some progress has been made on recognizing handwritten Arabic 

text samples of limited vocabulary (e.g., IFN/ENIT database of handwritten Tunisian town 

names (Pechwitz, 2002)). In ICDAR Arabic handwriting recognition competitions held in 

2005, 2007, and 2009 (Märgner, 2005), (Märgner, 2007), (Märgner, 2009), best systems’ 

accuracies improved from 76% through 87% to 93% on the IFN/ENIT database. However, 

more progress is needed to achieve good accuracies on unlimited vocabulary. 
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Offline recognition of handwritten unconstrained cursive text involves several stages: 

preprocessing the scanned images to prepare them for latter stages, segmenting the scanned 

page into lines and words, segmenting the words into letters, extracting features from the 

segmented letters, recognizing these letters using a trained classifier, and post-processing to 

improve the recognition accuracy. Progress is needed in all these stages in order to build 

efficient recognition system. 

In this paper, we concentrate on improving the feature extraction stage by selecting efficient 

feature subsets to extract. Figure 1 summarizes the methodology used in this paper. We use 

common feature extraction techniques (Lorigo, 2006) to extract a large set of features from a 

database of handwritten Arabic letter forms. We use five different feature selection 

techniques to select best feature subsets from the extracted 96 features. We evaluate these 

feature subsets to select a small subset of features that provides high recognition accuracy. 

We also analyze the recognition accuracy as a function of the feature subset size using three 

popular classifiers. 

 

Fig. 1  Methodology of Feature Extraction, Selection, and Evaluation 

 

Although there are some published work in selecting features for recognizing handwritten 

Arabic text (Pechwitz, 2006), (El Abed, 2007), (Abandah, 2008), (Abandah and Anssari, 

2009), this work presents a comprehensive evaluation of large set of features using state-of-

the-art feature extraction techniques. 

This paper is organized in seven sections. Section 2 describes the five feature selection 

techniques used. Section 3 introduces the 96 features used in this research and describes their 

extraction techniques. Section 4 describes the three classifiers used to evaluate feature 

subsets. Section 5 describes the used database of Arabic letter samples and the feature 

extraction tools. It also provides the implementation details of the feature selection 

techniques. Section 6 describes the experiments and presents the results. This section 

evaluates the features and recommends best feature subsets. It also analyzes the classification 

accuracy as a function of the feature subset size. Finally, Section 7 provides a discussion and 

states the main conclusions, recommendations, and future work. 

2  Feature selection  

Feature selection is typically a search problem for finding an optimal or suboptimal subset of 

m features out of original M features. Feature selection is important in many pattern 

recognition problems for excluding irrelevant and redundant features. It allows reducing 

system complexity and processing time and often improves the recognition accuracy (Guyon, 

2003). For large number of features, exhaustive search for best subset out of 2
M

 possible 

subsets is infeasible. Therefore, many feature subset selection algorithms have been 

proposed. 
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In this paper, feature subset selection is applied on a set of feature values ijkx ; Ni ,,2,1  ; 

Cj ,,2,1  ; and Mk ,,2,1  , where ijkx
 
is the ith sample of the jth letter form (class) of 

the kth feature. Therefore, the average of the kth feature for letter form j  is 
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And the overall average of the kth feature is  
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The following subsections describe the feature subset selection techniques used in this paper. 

2.1  Scatter criterion (J)  

The simplest feature selection methods select best individual features. A feature evaluation 

function is used to rank individual features, then the highest ranked m features are selected. 

Although these methods can exclude irrelevant features, they often include redundant 

features. “The m best features are not the best m features” (Peng, 2005). One such feature 

evaluation function is the scatter criterion kJ , which is a ratio of the mixture scatter to the 

within-class scatter (Theodoridis, 2006). The within-class scatter of the kth feature is 
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where Sjk is the variance of class j , and )( jP   is the priori probability of this class and 

found by: 
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The between-class scatter is the variance of the class centers with respect to the global center 

and is found by 
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And the mixture scatter is the sum of the within and between-class scatters, and equals the 

variance of all values with respect to the global center. 
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Hence, the scatter criterion Jk of the kth feature is 
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Higher value of this ratio indicates that the feature has high ability in separating the various 

classes into distinct clusters. 

2.2  Symmetric uncertainty (SU) 

Another approach to select best individual features is to select the features that have highest 

symmetric uncertainty (SU) values between the feature and the target classes (Duda, 2001). 

To find this indicator, we first normalize the feature values for zero mean and unit variance 

by 
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Then the normalized values of continuous features are discretized into L finite levels to 

facilitate finding probabilities. The corresponding discrete values are ijkx~ . The mutual 

information of the kth feature is 
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where )~( lkxP  is the distribution of the kth feature and ),~( jlkxP   is the joint probability. This 

indicator measures how much the distribution of the feature values and target classes differ 

from statistical independence. This is a nonlinear estimation of correlation between the 

feature values and target classes. The symmetric uncertainty (SU) is derived from the mutual 

information by normalizing it to the entropies of the feature values and target classes. 
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where the entropy of variable X is found by )(log)()( 2 i

i

i xPxPXH  . 

2.3  Fast correlation-based filter (FCBF) 

Many sequential and random search algorithms have been used in feature subset selection 

(Liu, 2005). The sequential search methods are variations of sequential forward selection, 

sequential backward elimination, and bidirectional selection. These algorithms are simple to 

implement and fast; they have time complexity of )( 2MO or less. However, as they don’t 

perform complete search, they may miss the optimal feature subset. 

The fast correlation-based filter (FCBF) algorithm is a sequential forward selection 

algorithm and aims to select a subset of relevant features and exclude redundant features (Yu, 

2004). FCBF uses the symmetric uncertainty ),( ωxkSU to estimate the relevance of feature k 

to the target classes. It also uses the symmetric uncertainty between two features k and o 

),( okSU xx to approximate the redundancy between the two features. This algorithm grows a 

subset of predominant features by adding the relevant features to the empty set in descending 

),( ωxkSU order. Whenever feature k is added, FCBF excludes from consideration for 
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addition to the subset all remaining redundant features o that have ),(),( ωxxx ook SUSU  . 

In other words, it excludes all features that their respective correlation with already selected 

features is larger than or equals their correlation with the target classes. 

2.4  Minimal-redundancy-maximal-relevance (mRMR)  

The minimal-redundancy-maximal-relevance (mRMR) algorithm is another sequential 

forward selection algorithm (Peng, 2005).  It uses the mutual information to select best m 

features that have minimal redundancy and maximal relevance criterion. 

For the complete set of features X, the subset S of m features that has the maximal relevance 

criterion is the subset that satisfies the maximal mean value of all mutual information values 

between individual features ix  and class ω . 
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The subset S of m features that has the minimal redundancy criterion is the subset that 

satisfies the minimal mean value of all mutual information values between all pairs of 

features ix  and jx . 
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In the mRMR algorithm, the subset S of m best features is grown iteratively using forward 

search algorithm. The following criterion is used to add the jx  feature to the previous subset 

of 1m  features: 
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2.5  Non-dominated sorting genetic algorithm (NSGA) 

Genetic algorithms are random search algorithms and often offer efficient solutions to 

general NP-complete problems. They can explore large, nonlinear search space by 

performing simultaneous search in many regions. A population of solutions is evaluated 

using some fitness function. In feature selection, this fitness function usually calls the 

classifier to evaluate the population’s individuals (feature subsets); constituting a wrapper 

algorithm. The individuals’ fitness is then used to select individuals for breeding and 

producing the next generation. Multi-objective genetic algorithms (MOGA) have been 

successfully used in feature selection (Oliveira, 2003). MOGA have the advantage of 

generating a set of alternative solutions.  

The non-dominated sorting genetic algorithm (NSGA) is an efficient algorithm for multi-

objective evolutionary optimization (Srinivas, 1995). We use NSGA to search for optimal set 

of solutions with two objectives: 

i. Minimize the number of features used in classification. 

ii. Minimize the classification error. 
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This algorithm searches for a set of optimal solutions on a front called the Pareto-optimal 

front. Figure 2 shows an example Pareto-optimal front and a population of solutions found in 

optimizing the number of features and the classification error. This front is the set of non-

dominated solutions among this population. A non-dominated solution is one that does not 

have any other solution that dominates it. Solution )1(S dominates Solution )2(S when no 

objective value of )2(S  is less than )1(S  and at least one value of )2(S  is strictly greater than 
)1(S . In this two-objective case, a non-dominated solution of m features is the solution that 

has the smallest classification error among all solutions that have m features. 

 

Fig. 2  Example Pareto-Optimal Front and Population Examined by NSGA 

  

3  Feature set 

There are many used feature extraction methods for offline recognition of characters. These 

methods are extracted from the character’s binary image, boundary, or skeleton (Trier, 1996), 

(Dalal, 2008). The following subsections describe an assortment of features used in this 

research. The letter form feature is described after giving a necessary overview of the Arabic 

writing. Then we describe our approach that starts by detecting the secondary components of 

the Arabic letters and extracting features from these components. Then the secondary 

components are removed and additional features are extracted from the main body, the main 

body’s skeleton, and the main body’s boundary. 

3.1  Overview of Arabic writing 

Arabic is written from right to left and is always cursive. The Arabic alphabet has 28 basic 

letters (Abandah and Khedher, 2009). Each letter has multiple forms depending on its 

position in the word. Each letter is drawn in an isolated form when it is written alone, and is 

drawn in up to three other forms when it is written connected to other letters in the word. For 

example, the letter Ain has four forms: isolated (ع), initial (ع), medial (ع), and final (ع). 

Within a word, every letter can connect from the right with the previous letter. However, 

there are six letters that do not connect from the left with the next letter. These letters have 

only the isolated and final forms. When one of these six letters is present in a word, the word 

is broken into sub-words, often called parts of Arabic word (PAWs). For example, the word 

“Arabic” (عربية) has two PAWs: the first PAW consists of initial Ain (ع) and final, left-
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disconnecting, Reh (ر); and the second PAW consists of initial Beh (ب), medial Yeh (ي), and 

final Teh Marbuta (ة). 

3.2  Letter form 

When segmenting PAWs into letters, the letter form feature can be easily found. The letter 

form of a letter in a single-letter PAW is isolated. The letter forms of the first letter and last 

letter in a multi-letter PAW are initial and final, respectively. Finally, the letter form of a non-

boundary letter in a PAW with more than two letters is medial.  

3.3  Secondary components detection and removal 

More than half the Arabic letters are composed of main body and secondary components. The 

secondary components are letter components that are disconnected from the main body. For 

example, Beh (ب) has a dot under its main body, Teh (ت) has two dots above its main body, 

and Kaf (ك) has a zigzag enclosed within the main body. 

Detecting the secondary components can be done after segmenting the binary image of the 

letter into its disconnected components using the connected component labeling techniques 

(Rosenfeld, 1976). Then the main body is easily identified as it is usually the largest 

component and is closer to the letter’s center than the secondary components. The secondary 

position is then easily found as the position of the secondary components relative to the main 

body. Finally, the number and position of the secondary components play important role in 

finding the secondary type. However, our approach in finding the type of the secondary 

components also utilizes other features extracted from the secondary components such as 

size, orientation, roundness, and spatial distribution (see Section 3.4). 

After detecting and classifying the secondary components, we remove them from the letter 

image and pass the main body to the other feature extraction stages described below. 

3.4  Main body features 

Main body features are mainly statistical features. They are found from the letter image after 

removing the secondary components. The following paragraphs define some of these 

features. 

 

Size. We use a threshold function to convert the 2-dimentional image into a binary image 

]1,0[),( yxB ; black pixels are the foreground pixels and take the value 1 (Jain, 1995). A 

low threshold is used to maintain connectivity of light pen strokes. The area A of the letter 

body is found by 


x y

yxBA ),( . (14) 

To find the main body’s width W and height H, the image is clipped into a rectangular shape 

such that all four borders have at least one black pixel. We also derive a scale-invariant 

feature; the width to height ratio W/H (Trier, 1996). 
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Distribution. We partition the clipped image into four equal quadrants and find the fraction 

of black pixels in each quadrant relative to the area A. The resulting four fractions are: upper-

right UR/A, lower-right LR/A, lower-left LL/A, and upper-left UL/A. We also find the 

fractions of the four halves relative to A: upper U/A, right R/A, lower Lo/A, and left Lt/A. 

 

Moments. The normalized central moments of order )( vu   of the binary image, which are 

translation and scale invariant (Theodoridis, 2006), (Reiss, 1991), are found by 
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where 2/)(1 vuk  for 2 vu .  

We compute the normalized center of mass ),( NN yx  from the image’s center of mass ),( yx  
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Orientation. The orientation   of an elongated object is the orientation of the elongation 

axis (Jain, 1995). The axis of least inertia is the elongation axis. The inertia of the elongation 

axis is found by 


x y

yxBr ),(22 ,  (17) 

The orientation   then is found by solving 
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where uv is central moment of order )( vu  . 

 

Roundness. The positive and negative values for the sine and cosine of 2  in Eqs. (18) and 

(19) are used to find the minimum and maximum inertia values, respectively. The object 

elongation E (or eccentricity) is minmax / E . The object roundness 
2

max

2

min / R  is a 

ratio between 0 for a straight line and 1 for a circle. 

 

Loops. The number of main body loops is a structural feature. There are many techniques to 

find the number of loops in an image. We use the connected component labeling algorithm to 

find the number of loops. The number of background components (white components) minus 

one is the number of loops. For example, Sad (ص) has one loop because it has two 

background components: the large background component surrounding the letter (always 

present) and the small component enclosed within the loop in the right. 
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3.5  Skeleton features 

Thinning is usually a pre-processing stage in character recognition where the character image 

is reduced to a simplified one-pixel wide skeleton. We use Deutsch's thinning algorithm 

which gives good skeletons for our samples (Deutsch, 1972). We use the skeleton of the main 

letter’s body to extract the following five features. 

 

Vertical and horizontal crossings. The vertical and horizontal crossings are found by 

counting the number of white-black-white transfers when scanning the image’s pixels on a 

vertical line and a horizontal line, respectively. These lines are the two lines that pass through 

the center of mass of the main body’s skeleton. 

 

Feature points. Three important feature points can be easily found from the skeleton by 

examining the eight immediate neighbors of every black pixel: end point is a point with one 

black neighbor, branch point has three black neighbors, and cross point has four black 

neighbors. 

3.6  Boundary features 

Boundary finding is another pre-processing stage in character recognition where the character 

outer contour is found (Ha, 1997). We find the boundary of the main letter’s body and use it 

to extract the following six features. 

 

Boundary pixels. The number of boundary pixels m is directly found by counting the 

boundary pixels miyx ii ,,2,1),,(  . Then Freeman chain code is used to compactly 

encode the boundary pixels (Freeman, 1961). The direction from every boundary pixel to the 

next boundary pixel is put in the chain. The direction from the last pixel to the first pixel is 

the last code in the chain. The direction codes ]7,0[if  are used such that right is 0, up-right 

is 1, up is 2, etc. 

 

Perimeter length. The perimeter length T is found by summing the distances from one pixel 

to the next. Formally, it is found from the chain code using 






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f
ffT i
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i .  (20) 

Perimeter to diagonal ratio. We also use a scale-invariant feature which is the ratio of half 

the perimeter length to the diagonal of the clipped main body rectangle T/2D. For simple 

shapes like Alef (ا), this ratio is 1, and this ratio is larger than 1 for more complex shapes. 

22

2/
2/

HW

T
DT


   (21) 

Compactness ratio. Another derived feature from the perimeter length and the area is the 

compactness ratio or roundness ratio which is found by Eq. (22) (Theodoridis, 2006). 
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This ratio is 1 for a filled circle and is larger than 1 for distributed complex shapes. 

 

Bending energy. The bending energy E is a measure of the curvature of the boundary 

(Theodoridis, 2006). It can be found from the chain code by summing the squares of the 

direction changes from one boundary pixel to the next. 
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Elliptic Fourier descriptors. The piecewise linear curve that passes through all boundary 

pixels is a closed outer contour curve. This curve can be approximated using the elliptic 

Fourier descriptors (EFD) (Kuhl, 1982). These descriptors are useful features (Trier, 1996), 

(Mezghani, 2002) and are used to approximate the curve. 

4  Classifiers 

To ensure that our results are not restricted to a specific classifier, we use three widely-used 

classifiers: k-nearest neighbor (k-NN), linear discriminant analysis (LDA), and support vector 

machine (SVM) (Duda, 2001). These classifiers are often used in evaluating various feature 

sets (Peng, 2005), (Wei, 2007). Therefore, we expect that the selected features give good 

accuracy on various types of classifiers. These classifiers are usually trained using n training 

samples. Each training sample nii ,,2,1; x , is a vector of m feature values of a known 

class. Given a testing sample jx  of an unknown class, the classifier finds the class of this 

sample. These three classifiers are described below. 

 

k-Nearest Neighbor (k-NN): This classical classifier classifies jx  by assigning it the class 

most frequently represented among the k nearest training samples (Mitchell, 1997). 

Neighborhood is found based on a distance metric. We found that best results are achieved 

with 5k  and using the city block distance metric. The data is first scaled to zero mean and 

one standard deviation. 

 

Linear Discriminant Analysis (LDA): The LDA classifier is one of the earliest classifiers 

(Webb, 2002). It learns a linear classification boundary for the training samples space. It can 

be used for both 2-class and multiclass problems. LDA fits a multivariate normal density to 

each class, with a pooled estimate of covariance. In order to overcome the problems of high 

dimensionality and co-linearity, we use the principal component analysis as a preprocessing 

stage (Fukunaga, 1990). 
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Support Vector Machine (SVM): SVM is a newer classifier that uses kernels to construct 

linear classification boundaries in higher dimensional spaces (Burges, 1998). SVM selects a 

small number of critical boundary samples from each class and builds a linear discriminant 

function. The SVM used in this paper is the LIBSVM package (Hsu, 2002). Using grid 

search, we found that best results are achieved with the RBF kernel (radial basis function), 

penalty parameter 12C , and gamma parameter 04.0 . Similar to k-NN, the data is first 

scaled to zero mean and one standard deviation. 

5  Implementation 

Our experimental setup comprises a database of handwritten Arabic samples and feature 

extraction, selection, and evaluation tools. The following subsections describe this database 

and present the implementation details of the feature selection tools. 

5.1  Database of handwritten Arabic samples 

Our database of handwritten Arabic samples was collected from 48 volunteers (Khedher, 

2002). These volunteers were selected to represent various age, gender, and educational 

background groups. The samples were collected by asking the participants to write, as they 

normally do write, on a blank paper a one page of cursive Arabic text. This text was carefully 

selected so that it contains all the letter forms of the 28 Arabic letters. 

We have extracted from the 48 page samples about 440 collections of individual words, 

PAWs, and letter forms. Each collection comprises 48 samples from 48 different volunteers. 

Figure 3 shows the collection of 48 samples of the isolated Ain form.  

 

 

Fig. 3  A Collection of 48 Samples of the Isolated Ain Form 

 

The collections of the initial, medial, and final letter forms were extracted after manually 

segmenting their cursive PAWs into individual letters. Manual segmentation is used to avoid 

errors that may come from an automatic letter segmentation process. We use in this research 

104 collections of letter forms: 30 isolated forms, 22 initial forms, 22 medial forms, and 30 

final forms. These collections contain all the 28 basic Arabic letters. 
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5.2  Feature extraction tools 

To allow easy extraction of many features from this database of handwritten Arabic samples, 

we developed a desktop application. This application is an expandable tool that allows 

developers to easily add various preprocessing and feature extraction routines.  It enables the 

user to select the order of the routines to be applied on the sample collections. This 

application allows the user to visualize the results of preprocessing routines and obtain the 

results of the feature extraction routines. Figure 4 shows this application with its dialog box 

for selecting what routines to apply on the collection of the isolated Ain samples. 

 

Fig. 4  Arabic OCR Application Tool and Its Routine Selection Dialog Box 

 

The preprocessing routines implemented in this application include binarization, noise 

removal, thinning, and boundary finding. This application also features batch processing 

where the selected routines can be applied on multiple sample collections. The results of the 

feature extraction routines can be exported from this application into an Excel spreadsheet. 

We have implemented in this application feature extraction routines for all the features 

described in Section 3. These routines were applied on the 104 collections of letter forms. 

5.3  Feature selection tools 

Using the feature extraction application described in the previous subsection, we extracted 96 

features for the 4,99248104  letter samples. This data is organized in a spreadsheet and is 

fed to a tool written in C++ for feature processing. This tool performs needed normalization, 

discretization, and probability estimation, as described in Section 2, to find the scatter 

criterion and symmetric uncertainty. This tool also selects features using the FCBF algorithm 

and reports them in descending SU values order. 
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We used the C/C++ implementation of the mRMR algorithm developed by Peng et al. (Peng, 

2005). The data is fed to the mRMR program after normalization and discretization. 

We used a fast implementation of the multi-objective genetic algorithms (NSGA-II) 

developed by Illinois Genetic Algorithms Laboratory (Deb, 2002). By performing grid 

search, we selected the following parameter settings: 

 Population size: 128 

 Number of generations: 1000 

 Selection type: tournament of size 2 without replacement 

 Crossover probability ( cp ): 0.8 using simulated binary crossover and 0.8 gene-wise 

swap probability 

 Probability of mutation ( mp ): 0.1, selective 

NSGA is used to find solutions that optimize the dual objectives: classification accuracy A 

and feature subset size m. To evaluate the fitness of an individual, the NSGA program calls 

one of the three classifiers. Given a subset of m features, the classifier returns the 

classification accuracy. We prepared three MATLAB programs for the three classifiers that 

we refer to as NSGA/k-NN, NSGA/LDA, and NSGA/SVM. 

The relation between best A and m is not monotonic. The accuracy increases as m increases 

for small m, and it often falls after some high m value. Therefore, the NSGA program does 

not explore the search space evenly. It concentrates on the search subspace of small m values. 

To overcome this problem, we modified the value returned by the classifier to include a 

dummy term proportional to m. The retuned dummy fitness ( mA 02.0 ) is monotonic and 

ensures that the NSGA program searches evenly for all m values. 

To reduce execution time, we only use half of the available samples in the NSGA 

experiments. The 4-fold cross validation method is used to avoid over-fitting and to get stable 

results (Stone, 1974). 

6  Experiments and results 

This section presents the results of the conducted experiments. We start by presenting the 

results of evaluating the 96 features using two metrics. Then we present the results of the five 

feature selection techniques and present the best subset of 20 features. Finally, we present the 

results of evaluating best subsets of m features using the three classifiers. 

6.1  Feature Evaluation 

Figure 5 shows the scatter criterion for the 96 features found from all the sample data. Higher 

values indicate that the respective features have high ability in clustering the samples of 

distinct letters into distinct clusters. 

Figure 6 shows the symmetric uncertainty for the 96 features. Higher values indicate that the 

respective features have high correlation with the target classes. Similar to the scatter 

criterion results, the symmetric uncertainty of the letter form, secondaries features, size-

related features, and some EFDs is high. The features extracted from the skeleton and the 

bending energy have relatively low symmetric uncertainty. Moreover, orientation and 

features extracted from the boundary have relatively high symmetric uncertainty values. 
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Fig. 5  Scatter Criterion for 96 Features. Features distributions, moments, and EF descriptors are sets of features 

that have averages and ranges. 
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Fig. 6  Symmetric Uncertainty for 96 Features 

 

6.2  Best 20 features 

Using the five feature selection techniques, we found the best subset of 20 features. These 

five 20-feature subsets are shown in Table 1 and include the letter form, secondary type and 

position features, several low-order EFDs, few normalized central moments, and some 

statistical features extracted from the main body or the boundary, e.g., area, orientation, and 

perimeter to diagonal ratio. Only one skeleton feature (vertical crossing) makes it to this list, 

in the NSGA/LDA’s subset. 
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There are many common features in the five subsets; especially the subsets of scatter 

criterion, symmetric uncertainty, and mRMR. In fact 17 out of the 20 features are common in 

these three subsets. The feature subset selected by the FCBF algorithm has only 14 features 

common with the mRMR’s subset. This low number is a result of excluding some important 

features such as secondary position and perimeter length. These features are excluded 

because they have relatively high correlation with selected features. Although the features 

found by NSGA are found through optimizing the classification error for the LDA classifier, 

they include 16 features that are common with the subsets of the other four feature selection 

methods. 

The rightmost two columns in Table 1 summarize the results of these five feature selection 

methods and the results found when using NSGA with the k-NN and SVM classifiers (not 

shown in this table) in addition to the LDA classifier. These two columns list the 20 most 

common features using the seven feature selection methods and the frequency of how many 

times the respective features are selected using the seven methods. The features secondary 

type, letter form, and EFDs 0a , 0c , and 1c  are unanimously selected by the seven methods. 

Table 1  Best Twenty-Feature Subsets Found Using Various Methods 

Order Scatter Criterion Symm. Uncertainty FCBF mRMR NSGA/LDA Best Features Frequency 

1 Letter Form Letter Form Letter Form Secondary Type Secondary Type Secondary Type 7 

2 Descriptor a0 Secondary Type Secondary Type Letter Form Letter Form Letter Form 7 

3 Secondary Position Secondary Position Descriptor a0 Area Secondary Position Descriptor a0 7 

4 Area Descriptor a0 Area Orientation Descriptor a0 Descriptor c0 7 

5 Height Area Height Secondary Position Descriptor c0 Descriptor c1 7 

6 Perimeter Length Height Descriptor a1 Descriptor a0 Descriptor c1 Area 6 

7 Boundary Pixels Descriptor a1 Descriptor c1 Descriptor a1 Height Secondary Position 6 

8 Descriptor c1 Perimeter Length Orientation Descriptor c0 Perimeter Length Height 6 

9 Moment 
02

  Descriptor c1 Width Descriptor c1 Descriptor b1 Descriptor b1 6 

10 Descriptor c0 Orientation Descriptor c0 Height Width Compactness 6 

11 Width Boundary Pixels Descriptor b1 Perimeter Length Descriptor c2 Width 5 

12 Ratio T/2D Moment 
02

  Ratio T/2D Descriptor b1 Normalized Mean x Normalized Mean x 5 

13 Ratio W/H Width Moment
03

  Width Boundary Pixels Orientation 4 

14 Compactness Descriptor c0 Compactness Ratio T/2D Compactness Perimeter Length 4 

15 Moment
20

  Ratio W/H Moment
20

  Moment 
02

  Horizontal Cross. Ratio T/2D 4 

16 Elongation Descriptor b1 Descriptor c2 Descriptor c2 Descriptor a2 Moment 
02

  4 

17 Orientation Ratio T/2D Descriptor b2 Normalized Mean x Moment
12

  Descriptor c2 4 

18 Normalized Mean x Moment
03

  Descriptor d1 Boundary Pixels Fraction U/A Boundary Pixels 4 

19 Secondary Type Compactness Moment
03

  Ratio W/H Loops Ratio W/H 4 

20 Loops Moment
20

  Descriptor a2 Moment
20

  Descriptor d3 Moment
20

  4 

 

6.3  Classification accuracy 

To find how many features are needed to achieve good character recognition accuracy, we 

find the classification error as a function of the number of features used. In each experiment, 

we used best m features as selected by the five feature selection methods; for m = 4, 5, …, 96. 

The results are shown in Figure 7. For every feature selection method, we evaluated the best 
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m features using the 10-fold cross validation method on the k-NN, LDA, and SVM 

classifiers. The feature subsets used in the three NSGA curves come from respective 

optimizing experiments with NSGA/k-NN, NSGA/LDA, and NSGA/SVM. Note that the 

curves of the FCBF method stop at 79m  because this method excludes features as 

discussed earlier. 

  

  

 

 

Fig. 7  Classification Error of the Feature Subsets Selected by the Five Feature Selection Methods on the Three 

Classifiers 

 

For the three classifiers, the classification error decreases fast as the number of features 

increases from 4 to about 20 features. The LDA’s classification error keeps decreasing slowly 

with more features. However, the k-NN’s classification error increases when the number of 

features increases after reaching a minimum value in the region ]26,13[m depending on the 

feature selection method used. SVM’s classification error also increases with large m values, 

but stays with low values in a larger m region. For small m values, best classification 

accuracy is achieved by the SVM classifier. However, as SVM’s classification error increases 

with large m values, the best accuracy is achieved by the LDA classifier for large m values. 

The SVM classifier achieves best classification accuracy for 20 features. And best SVM 

classifier’s results are achieved using features selected by the NSGA/SVM method. Figure 8 
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gives clearer comparisons among the five feature selection methods on the three classifiers. 

This figure shows best results achieved for every feature selection method/classifier 

combination for 20m features. The NSGA/SVM and SVM combination achieves the 

lowest classification error of 9% at 18m  features. 

 

Fig. 8  Classification Error Using 20 Best Features Selected by the Five Selection Methods on the Three 

Classifiers 

 

In general, best results are achieved with the features selected by the NSGA method followed 

by mRMR method. The FCBF and scatter criterion methods give unreliable results compared 

with the other three methods. The FCBF method selects features that give the worst 

classification error (23% with the LDA classifier). The scatter criterion method selects 

features that give the worst classification error when using the k-NN and SVM classifiers. 

Also note that the SVM classifier has best classification accuracy and the k-NN classifier has 

the worst. 

7  Discussion and Conclusions 

In this discussion, we try to tackle the following questions: 

 Is the set of 96 features used big enough? Do we miss any important feature that 

captures some letter features not captured by these 96 features? Can the results be 

improved by adding other features? 

 Are features selected by an NSGA method that uses certain classifier for fitness 

evaluation useful when using a different classifier in the production recognition 

system? 

We used the feature subset that gave best results in Figure 8 with an SVM classifier and 

examined the recognition accuracy of every letter form. We found that the classification error 

is between 0% for easy to recognize letter forms and 29% for the hardest letter forms. The 

error is 0% for easy to recognize letters such as Alef (ا), Yeh (ي), and Thal (ذ). Table 2 

shows the ten letter forms that have the worst classification errors. 
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Table 2  Letter of the Worst Ten Classification Errors 

No Letter Error Often Mistaken For 

1 Isolated Feh (ف) ق ض %29 

2 Medial Hah (ح) ع م %29 

3 Medial Feh (ف) ق غ %29 

4 Medial Meem (م) ع ح %29 

5 Medial Ghain (غ) ف %27 

6 Isolated Noon (ن) ف %25 

7 Medial Ain (ع) ص م %25 

8 Final Hah (ح) ع %21 

9 Final Qaf (ق) ص %21 

10 Isolated Zah (ظ) ط %19 

 

These ten letters are always drawn with loops or drawn with loops in some writing variations 

(Abandah and Khedher, 2009). There are substantial similarities among multiple Arabic letter 

form groups that have loops. Often the sole difference between such letters is a subtle 

difference in the loop’s shape; notice how the medial Feh (ف) and medial Ghain (غ) differ. 

Moreover, letters with dots above the main body tend to have low recognition accuracies 

because the variations in drawing the dots give inaccuracies in extracting the secondary type 

feature (Abandah and Khedher, 2009). After careful examination of the samples that were 

incorrectly recognized, we concluded that most of these samples are hard to recognize even 

by a human expert reader. However, we think that the door is open to search for extracting 

new features that capture subtle differences in loop shapes and secondary types. 

Referring to Figure 8, the average classification error of the three feature subsets selected by 

NSGA/k-NN, NSGA/LDA, and NSGA/SVM on the classifiers k-NN, LDA, and SVM, 

respectively, is 12.1%. We carried additional experiments where the feature subset selected 

by one NSGA/classifier program is used on the other two classifiers and the classification 

error is recorded. For these six cases, the average classification error is 13.0%. The average 

classification error of the second best selection method (mRMR) is 14.3%.  These numbers 

suggest that the features selected by an NSGA method that uses certain classifier are useful 

when using a different classifier in the recognition system. 

In this paper, we have presented the results of using five feature selection methods to select 

feature subsets to recognize handwritten Arabic letters. These methods select out of 96 

extracted features some important features such as the secondary type and position, letter 

form, and low-order elliptic Fourier descriptors. Other often selected features are moments 

and size-related features. Subset sizes of 20 features or less are generally sufficient to achieve 

low classification error. 

The genetic algorithm method that wraps a classifier selects best subsets of features 

compared with the other four methods. The next best method is mRMR. For the purpose of 

selecting features for recognizing handwritten Arabic letters, we recommend using the 

genetic algorithm method. However, if one cannot afford its complexity and long execution 

time, mRMR provides a good alternative. 

Our future work includes using the best feature subset indentified in this research in a 

complete system for recognizing handwritten Arabic text. Our approach segments the sub-

words into graphemes prior to feature extraction and classification. Additionally, we plan to 
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evaluate some features that were successfully used with oriental languages such as chain code 

and gradient features (Liu, 2008). 
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العربية المكتوبة فحرو اللازمة لمتعرف عمى ال الميزاتاختيار   

 

مجموعات كبيرة من اليد، وىذه الطرق توفر خط ف المكتوبة بمن الحرو  الميزاتاستخراج  طرقىناك العديد من  :ممخص
 ختيارلا الميزاتاختيار نحتاج إلى عممية . تتضمن ميزات زائدة عن الحاجة وغير ذي صمةعادةً من الميزات التي 

في ىذا البحث . وكفاءة يمكن استخراجيا بسرعةو عمى الحروف تعرف عالية في الدقة  مجموعة فرعية من الميزات تعطي
ميزة  69 ناجاستخر  حيث. من الحروف العربية مستخرجةاللتقييم مجموعة كبيرة من الميزات  الميزاتنستخدم تقنيات اختيار 

أفضل واختيار ىذه الميزات تقييم ب وقمنا. هوحدود وىيكمو الثانوية  ومكوناتجسم الحرف و من  الحروفمن ميزات ىذه 
ىذه التقنيات تختمف في . الميزات ختيارلاخمس تقنيات استخدام ب من ىذه الميزاتمن أحجام مختمفة جزئية مجموعات 
جدنا لقد و و . تطوريةالتعظيم الخوارزمية ي إلى متتابع الأمامالختيار الا إلىالفردية  الميزاتانتقاء أفضل تقنيات التعقيد من 

من  واصفات فورييو بيضاوي الشكلووضع الحرف و ميزات المكونات الثانوية  تضمنتجزئية المجموعات الأفضل أن 
متعرف لأنظمة ثلاثة وقمنا باستعمال . الحرف والميزات المستخرجة من حدود الترتيب الأولي والعزوم وميزات حجم الحرف

دقة التعرف عمى الحروف  لإيجادوذلك خمس ال الاختيارن تقنيات مختارة مال الميزاتلتقييم مجموعات عمى الأنماط 
في ىي الأبطأ تطورية التعظيم الخوارزمية  كانتمن بين التقنيات الخمس وجدنا أن . وعلاقة ىذه الدقة مع حجم المجموعة

المجموعات ق تحقفي معظم الحالات كما وجدنا أنو . تعرفتعطي أعمى دقة جزئية مجموعات  ا تختارولكنيالاختيار 
 .أفضل دقة تعرفتقريباً ميزة  02من حوالي  الجزئية

 


