22341 Computer Organization (Fall 2010) Second Exam Solution

وقت الشعبة:	رقم التسجيل:	الاسم:

Instructions: Time **50** min. Closed books & notes. No calculators or mobile phones. No questions are allowed. Show your work clearly. Every problem is for 5 marks.

====

Q1. Draw the logic diagram of a 1-bit ALU slice that implements the following functions. This slice should be suitable for the least significant bits of the ALU. Assume that the inputs to this slice are: Operands *A* and *B*, *Carry*_{in}, *Less*, *Operation*₀ through *Operation*₂. Also assume that the output is *R* and *Carry*_{out}.

Function	Operation
slt	000
sub	001
add	101
nor	110
and	111

Q2. Show the contents of the two registers of the optimized multiplication hardware shown below when multiplying X=1011 by Y=0110 over the 4 multiplication steps.

Cycle	Multiplicand	Product
0	1011	0000 0110
1	1011	0000 0011
2	1011	1011 0011 0101 1001
3	1011	10000 1001 1000 0100
4	1011	0100 0010

Q3. The following two numbers are single-precision floating-point numbers in the IEEE 754 format. Add them using the algorithm described in the class and write the result in the space provided below using the same format.

1) Alignment

 $X_{I} = (-1)^{0} * 1.0101 * 2^{130} = + 1.0101 * 2^{130}$ $X_{2} = (-1)^{1} * 1.011 * 2^{128} = - 0.01011 * 2^{130}$

2) Addition

1.01010 - 0.01011 ------0.11111

3) Normalization

 $X_1 + X_2 = 0.11111 * 2^{130} = (-1)^0 * 1.1111 * 2^{129}$

$X_1 + X_2 =$					
	0	1000 0001	111 1000 0000 0000 0000 0000		

Q4. On the figure shown below, specify the values of the control signals to execute the beq instruction. For the ALU control, just specify the operation that the ALU must perform.

RegDst	X
Jump	0
Branch	1
MemRead	0
MemtoReg	X
ALU control	Subtraction
MemWrite	0
ALUSrc	0
RegWrite	0

Q5. Design a two-port register file that contains four 32-bit registers. This register file should have one output port and one input port and has the block diagram shown below.

<Good Luck>