University of Jordan

Computer Engineering Department

CPE439: Computer Design Lab
Experiment 3: Five-Stage Pipeline Datapath – Part I
It is required to construct and test a Verilog module for a five-stage pipeline datapath similar to the one described in the computer organization course. Use the library file Lib439.v. In this experiment and as a first step, it is required that the pipeline executes only the instructions shown in the instruction sequence below. This pipeline should be able to perform the following basic functions:
· Fetch one 16-bit instruction from the instruction memory and increment the program counter by 2 each cycle.

· The fetched instruction should be stored in the instruction register.

· In the decode stage, the fetched instruction should be used to access the register file developed in Experiment 1. Two operands should be read from the register file and stored in the A and B registers.
· The two operands should be used in the execute stage to generate a result using the ALU developed in Experiment 2. The Result should be stored in the ALUOutput register. For memory instructions, the ALU should be used to find the memory address.
· In the memory stage, this result is passed as is for ALU instructions or used as an address to access the data memory for memory instruction.

· In the write-back stage, the register file is updated by the ALU result for ALU instructions or by the loaded word for load instructions.

· For simplicity, the instruction and data memories should have 16-bit data buses and 128 locations each; each location is 2 bytes.

To test your design, make the following initializations:
· Program Counter = 0x0000

· All 16 registers are initialized to the value 0x0000

· The data memory is initialized such that each location has a number greater than the previous location by 1 and location 0x00 is initialized to 0x0000, e.g., location 0x04 should be initialized to 0x0002, and location 0x06 is initialized to 0x0003.
· The instruction memory should be initialized to hold the following code sequence, starting at location 0x00:

lw

R1, 2(R0)

lw

R2, 4(R0)

lw

R3, 6(R0)

lw

R4, 6(R0)

or

R5, R1, R2
add
R6, R2, R3
slt
R7, R2, R4
sub
R8, R2, R5
and
R9, R6, R3
sw

R6, 0(R0)
When you simulate this module using proper test code for 14 cycles, R7 should hold the value 0x0001, R8 the value 0xffff, R9 the value 0x0001, and memory location 0x00 the value 0x0005.
The R-type instructions should have the following format:

	<4>
	<4>
	<4>
	<4>

	Op
	Rs
	Rt
	Rd

The I-type instructions should have the following format:

	<4>
	<4>
	<4>
	<4>

	Op
	Rs
	Rt
	Imm

The J-type instructions should have the following format:

	<4>
	<12>

	Op
	Jump Target

And the codes of the Op field are as shown in the table below. Note that you only need to implement the bold instructions in this experiment. The remaining instructions should be implemented in Experiment 4.
	Op
	Instruction

	0
	and

	1
	or

	2
	add

	3
	jr

	4
	beq

	5
	bne

	6
	sub

	7
	slt

	8
	andi

	9
	ori

	10
	addi

	11
	jal

	12
	lw

	13
	sw

	14
	

	15
	slti

PAGE
2

