Computer Design (0907432) Homework 1

Solutions
Problems 1-5 4 points each, Problems 6-8 8 points each

1. State the six reasons why latency improvements lag bandwidth improvements.
2. Moore's Law helps BW more than latency
3. Distance limits latency
4. Bandwidth easier to sell ("bigger=better")
5. Latency helps BW, but not vice versa
6. Bandwidth hurts latency
7. Operating System overhead hurts Latency more than Bandwidth
8. Why processor manufacturers have recently shifted to building multicore processors instead of building larger and faster uni-processors?
Building faster processors have hit the power wall, processors running on higher frequencies dissipate too much power.

Building larger processors have hit the ILP wall, diminishing returns on larger hardware for more ILP.
3. A program consists of multiplication operations and other operations. The multiplication operations are sped up by a factor of 5 . Using Amdahl's law, find out what should be the fraction of the execution time of the multiplication operations (f) to achieve an overall speed up of 4 .

Over all speedup	$=1 /((1-\mathrm{f})+\mathrm{f} / \mathrm{s})$
4	$=1 /((1-\mathrm{f})+\mathrm{f} / 5)$
$4-4 \mathrm{f}+4 \mathrm{f} / 5$	$=1$
3.2 f	$=3$
f	$=3 / 3.2$
f	$=0.94$

4. Calculate FIT and MTTF for a system that has 3 disks (1M hour MTTF per disk), 2 CPUs (2 M hour MTTF per CPU), and 4 memory modules (0.5 M hour MTTF per module).

Failure rate	$=(3 / 1,000,000$
	$=12 * 10^{3} \mathrm{FIT}$
MTTF	$=10^{9} / 1.2 * 10^{4}$
	$=\mathbf{8 3 , 3 3 3}$ hours

5. For the data shown in the following table, summarize the relative performance of

Machine A using one number.

Benchmark	Machine A Execution Time	Reference Machine Execution Time	$\underline{\text { Relative Perf }}$
1	100 sec	500 sec	$\underline{\mathbf{5 0 0} / \mathbf{1 0 0}=\mathbf{5}}$
2	75 sec	400 sec	$\underline{\mathbf{4 0 0} / \mathbf{1 0 0}=\mathbf{5 . 3 3}}$
3	200 sec	450 sec	$\underline{\mathbf{4 0 0} / \mathbf{1 0 0}=\mathbf{2 . 2 5}}$
4	150 sec	350 sec	$\underline{\mathbf{3 0 0} / \mathbf{1 5 0}=\mathbf{2 . 3 3}}$

Relative Performance	$=(5 * 5.33 * 2.25 * 2.33)^{1 / 4}$
Relative Performance	$=(137.7)^{1 / 4}$
Relative Performance	$=3.44$

6. Write code sequences to implement $\mathrm{D}=\mathrm{A} *(\mathrm{~B}-\mathrm{C}+\mathrm{A})$; on the four ISA classes.

Stack:
PUSH A
PUSH B
PUSH C
SUB
PUSH A
ADD
MUL
POP D

Accumulator:
LD B
SUB C
ADD A
MUL A
ST D

Register-Memory:

LD R1, A
LD R2, B
SUB R2, C
ADD R2, R1
MUL R2, R1
ST D, R2

Register-Register:

LD R1, A
LD R2, B
LD R3, C
SUB R2, R3
ADD R2, R1
MUL R2, R1
ST D, R2
7. Show how to implement the addressing modes in Figure B. 6 using register, immediate, and register indirect addressing modes.

- Displacement:
add $r 4,100(r 1) \equiv$ addi $r 4,100$
- Indexed:

add $r 3,(r 1, r 2) \quad \equiv \quad$ add $r 1, r 2$

- Direct:
add $\mathrm{r} 1,(1001) \quad \equiv \quad$ li $\mathrm{r} 1,1001$
- Memory indirect:

add r1, @(r3) \quad| lw r3, (r3) |
| :--- |

- Auto increment:
add $r 1,(r 2)+\quad$ add $r 1,(r 2)$
addi $r 2,4$
- Auto decrement:

add $r 1,-(r 2)$	addi $r 2,-4$
	add $r 1,(r 2)$

- Scaled:

add $r 1,100(r 2)[r 3] \equiv$	muli $r 3,4$
	add r2, r3
	addi r2, 100
	add $r 1,(r 2)$

8. Using pipeline diagrams, find how many cycles are needed to execute the following code sequence.
a. When stalls are used to solve hazards and branch instructions are resolved in the Execute stage.
b. When full forwarding paths are used plus stalls (when needed), one branch delay slot, and branch instructions are resolved in the Decode stage.

lw	$r 1,0(r 2)$
lw	$r 3,4(r 2)$
add	$r 4, r 1, r 3$
sw	$r 4,0(r 2)$
beq	$r 4, r 4, ~ s k i p$
andi	$r 4, r 4,0$
skip: sw	$r 4,4(r 2)$

(a) 16 Cycles

(b) 12 Cycles

lw	r1, 0 (r2)	F D E M W
1w	r3, 4 (r2)	F D E M W
add	r4, r1, r3	F D D E M W
sw	r4, 0 (r2)	F F D E M W
beq	r4, r4, skip	F D EMW
andi	r4, r4, 0	F D E M W
sw	r4, 4(r2)	F D E M

